
Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

637

SKYLINE IN CLOUD COMPUTING

1 ABDELLAH IDRISSI, 2 MANAR ABOUREZQ
Research Computer Sciences Laboratory (LRI)

Computer Sciences Department, Faculty of Sciences
University Mohammed V - Agdal, Rabat

E-mail: 1 idriab@gmail.com , 2 manar.abourezq@gmail.com

ABSTRACT

The cloud computing technology is booming. The utility of this technology is no longer to show. In this
paper, we investigate the problem of search and selection systems allowing users to search through Cloud
services and find the ones that best meet their needs. In this context, we propose a new algorithm to address
this problem. This algorithm is based on the principle of the Skyline. One of the main contributions of our
work is the construction of a Web Agent using the Skyline method to determine which Cloud services best
meet users’ requirements. In this work, we expose our algorithm and present some experimental results
showing that our approach is very promising.
Keywords: Cloud Computing, Cloud Services, Skyline, Block-Nested Loops Algorithm.

1. INTRODUCTION

Cloud computing has emerged as one of the new
technologies that will reshape the way enterprises
function in the near future [1]. Its goal is to replace
the local use of computers with a centralized use
where resources such as networks, servers, storage
space, applications, and services are stored, used
and managed by a third-party in a way that is
transparent for end-users. It has rapidly evolved
with big IT companies developing their own
solutions, such as Amazon’s Elastic Compute
Cloud [2], Google’s App Engine [3], IBM’s Blue
Cloud [4]…

The concept of Cloud Computing is not new. In
1960, John McCarthy predicted that « Computing
may someday be organized as a public utility just
as the telephone system is a public utility » [5]. In
the 90s, the term « Grid » was coined to refer to
technologies that allow on-demand use of
computing resources. However, the use has evolved
since the needs have shifted from treatment power
to on-demand services, which are offered by Cloud
Computing. Thus, Cloud Computing can be seen as
an evolution of Grid Computing [6].

Cloud Computing can be defined as being a
model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of
configurable computing resources [7]. These

resources can be provisioned and released in a rapid
and simple way.

Every Cloud system has the following essential
characteristics:

− It is a shared system that uses virtualization to
offer a set of physical and virtual resources
such as networks, servers, storage space,
bandwidth, applications…;

− It is a system that is dynamically configurable,
which makes it easy to expand or decrease
depending on the user’s needs, without
affecting the level of reliability and security;

− It is a system that is accessible via a network,
usually the Internet, from various machines
(computers, smart phones, tablets, PDAs…)
using standard APIs;

− It is a system that uses specific measure
systems to control and optimize the use of
resources and to offer a billing based on what
was consumed, without surplus or need of
managing the underlying infrastructure.

The services reachable via Cloud may be
divided into three categories [8]: Software as a
Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS). Each one of these
categories has specific characteristics that make it
more adapted to certain use cases.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

638

SaaS [9] allows users to remotely access
applications that run in the Cloud’s infrastructure
by using thin or thick clients. Thus, there is no need
to invest in an infrastructure or to buy software
licenses. For providers, costs of installation, hosting
and maintenance are optimized since many users
access to the same application. Examples of SaaS
include Google Drive [10] (formerly Google Docs)
and Salesforce CRM [11].

PaaS [12] offers a software layer or a
development environment as a service on which
users will build and deploy their own applications.
That way, users won’t need to manage the
infrastructure while keeping control of the deployed
applications and configuring the hosting
environment. Examples of PaaS include
Salesforce’s Force.com [13], Google App Engine
[14] and Microsoft Windows Azure [15].

IaaS [16] provides as a service basic storage and
computing resources such as servers, network
equipments, data warehouses… These resources
will be used to run users’ own applications.
Usually, IaaS satisfies best the end-users’ needs of
interoperability and portability [17] because they
choose the various blocks that compose the
infrastructure used. Examples of IaaS include
Amazon Elastic Compute Cloud [2] and Microsoft
SQL Azure [15].

Cloud services can be deployed in various
models [18], depending on the use case, the
provider’s business model... The most widespread
deployment models are Public, Private, Community
and Hybrid.

A Public Cloud [18] is an open Cloud provided
by an organization to the general public. It can be
accessed via a network, usually the Internet.
However, the fact that the Cloud is public doesn’t
imply that services are offered for free or that the
data exchanged by its means is not confidential.

A Private Cloud [18] is offered to the sole use
of one organization that either manages it or
delegates its management to a third-party. The main
advantage of this deployment model is that there
are no limitations regarding bandwidth or security,
since the resources are exclusively used by the
organization.

A Community Cloud [17] is a Cloud shared by
organizations belonging to the same community.
They can manage their Cloud themselves or
delegate the chore to a third-party.

A Hybrid Cloud [19] contains two or more of
the Clouds above interconnected by standard or
proprietary technologies.

In addition to these four deployment models,
new ones are emerging, like the On-Site Private
Cloud [17] and the Special Purpose Cloud [20].

The On-Site Private Cloud is a Cloud intended
for the private use of a sole organization, just like
the Private Cloud. However, it is hosted by the
organization, either in a centralized or distributed
way. The security aspect is also managed by the
organization.

The Special-Purpose Cloud provides, on top of
standard resources, additional methods regarding
specific use cases. An example that illustrates this
model is Google’s App Engine with the specific
capacities it offers to document management.

Using a Cloud service presents many
advantages to end-users, such as:

− Cost reduction: since users purchase only the
resources they need, without surplus, they
don’t need to invest in infrastructure or
maintenance;

− Ubiquitous access: instant and uninterrupted
access to computing and storage resources is
granted to any user who has a network
connected machine;

− Scalability: users can easily adapt the available
resources to their specific needs;

− Capacity: users can add resources as required.

We are interested, in this work, in the search
and selection of cloud services. This research area
has been subject to many contributions [21, 22, 23,
24, 25]. In the same way, we propose, in this paper,
a new method which allows Cloud users to find a
Cloud service that meets their requirements. Our
approach is based on the principle of the Skyline
[26]. One of this work’s main contributions is
building an Agent that uses the Skyline to
determine which Cloud services best meet the
users’ requirements.

This paper is organized as follows. We expose, in
the next section, some related works. In section 3,
we present some principles of the Skyline method.
Then, we propose our prototype of a Cloud Service
Research and Selection System in section 4. We
expose the algorithm we used in section 5. In
section 6, we develop and present a proof-of-
concept of our system and finally we conclude in
section 7.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

639

2. RELATED WORK

With the increase use of Cloud Computing,
one of the major needs today is to have a system
that allows searching among various Cloud services
to select the ones that best match users’
requirements. There are several studies in the
literature which deal with this subject like [21, 22,
23, 24, 25].

Kang and Sim [21] presented a Cloud portal
with a Cloud service search engine based on
similarity. The user specifies the 3 types of
requirements of the Cloud services they are looking
for, namely functional requirements (category of
service), technical requirements (OS, CPU,
memory, storage space...) and cost requirements
(price and timeslot range). Then the search engine
consults the adopted Cloud ontology to calculate an
aggregated similarity and returns the list of
matching Cloud services ordered by this similarity.

In another work [22], Kang and Sim presented
Cloudle, a search engine that carries three main
functionalities, which are query processing,
similarity reasoning and rating. Cloudle is based on
the same principle seen in [21] as it consults a
Cloud ontology to compute the similarity between
Cloud services and returns a list of results sorted by
aggregated similarity.

Han and Sim [23] built a Cloud Service
Discovery System (CSDS) that consults a Cloud
ontology to compute the similarity between Cloud
services and return a list of results matching the
user’s query.

Yoo et al. [24] present a resource selection
service based on Cloud ontology. Its main objective
is to search and select virtualized resources that
answer users’ requirements. The resource selection
service uses a Cloud ontology to virtualize physical
resources and generate new Virtual Ontologies
(VOns). These VOns are combined into new
resources for which a degree of similarity is
computed to determine the ones that meet best the
user’s requirements.

Zeng et al. [25] propose a service matching
algorithm and a service composition algorithm to
search through Cloud services and compute the
semantic similarity between them, the main goal
being to determine whether two given Cloud
services are interoperable. The resulting Cloud
services are ranked based on QoS information.

Although these works have tackled the
question of research and selection of Cloud

services, most of them chose to use similarity [27]
to determine which Cloud service is the most
similar to the user’s quest.

Similarity is used to determine the degree to
which two Cloud services are alike by decomposing
them into concepts and comparing these concepts
among them [28]. A Cloud service may be
represented as a node having many children nodes,
which are the concepts. These concepts have also
many children nodes. Thereby, to determine the
similarity between two concepts, we calculate the
number of parent nodes they have in common [23].

Furthermore, these works allow users to
specify the requirements they want the Cloud
services to match. However, we think that these
requirements, especially the technical ones, need to
be split into two categories: fixed (OS, Provider…)
and variable (CPU, Memory, storage space...).
When a user searches for a Cloud service, they
usually would like to have the best possible value
of the variable technical requirement (such as the
maximum memory) with the minimum cost. That is
why, instead of using them as fixed requirements,
we optimize them by using them as dimensions in
the Skyline.

There’s also the need to specify, for each
cloud service, which industry it is meant for
(Education, Enterprise, Healthcare, Legal,
Finance…) and under which category it falls
(Email, CRM, Human Resources…). This helps the
search to be more relevant.

Another concern is, since there are no Cloud
computing standards yet, especially regarding
ontology, each work uses its own defined ontology.
The main risk is that of having to rebuild the
systems presented if/when a standard unified
ontology is adopted [29].

The research and selection of a Cloud service
among a set of Cloud services is a preference
problem. To deal with this problem, we propose, in
this paper, a new approach based on the principle of
the Skyline [26]. Using the Skyline allows the user
to specify the criteria they want to optimize and to
get the Cloud services that are not dominated by
any other Cloud service, that is to say Cloud
services for which there exists no better Cloud
service for all the criteria specified. We present
hereafter some principles of the Skyline.

3. SKYLINE

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

640

The Skyline [26] was introduced to meet the
needs of users desiring to select a set of points that
optimize their requirements from a large set of data.
Each point contained in the Skyline is not
dominated by any other point, thus being better
than all the points not contained in the Skyline for
at least one criterion, and being equal to or better
than them for all the other criteria. A criterion used
by the Skyline is called dimension.

For example, if the user is looking to rent a car
at the minimum price with the maximum engine
power, the Skyline will contain all the cars that are
not dominated by any car outside of the Skyline. In
other words, for each car returned in the Skyline,
there is no car outside the Skyline that is better than
it in both dimensions. Thus, a user will find their
favorite car in the Skyline, no matter how they
weight their preferences toward the dimensions.

There are two major ways to compute the
Skyline [26]. One is to extend existing database
systems with the logical Skyline operator [26]. The
other is to use algorithms.

The extension of existing databases is, we
think, an intuitive way to compute the Skyline. It
consists of using standard SQL instructions and
extending them with a new clause, SKYLINE OF
[26], which can be translated into nested loops, as
shown in Figure 1.

SELECT * FROM carsTable as table1

WHERE carsTable.constructor = ‘Constructor 1’
AND NOT EXISTS

(SELECT * FROM carsTable as
table2 WHERE table2.price <= table1.price

AND table2.enginePower >=
table1.enginePower

AND (table2.price < table1.price
OR table2.enginePower > table1.enginePower))

Figure 1: Example of SQL queries to compute the
Skyline.

This method, although simple, has the
inconvenience of using loops, which leads to
having very complex SQL queries, especially when
the number of Skyline’s dimensions is high. This
complexity results in a poor performance and an
additional computational cost.

Another way to compute the Skyline is by using
algorithms. The advantage of using algorithms is
that they can be applied to compute any Skyline, no
matter how many dimensions it has. Many
algorithms may be used such as the Block-Nested
Loops algorithm (BNL) [26], the Divide and
Conquer algorithm (D&C) [30, 31], B-Tree [32],
etc.

In our approach, we used the BNL algorithm.
We think that it is the best in our case. The BNL
algorithm consists of comparing tuples among them
to determine the ones that are not dominated by any
other. It is done by keeping dominating tuples in
the main memory and by comparing each new tuple
to them. In each iteration, a new tuple is read from
the input list of tuples. If the new tuple is
dominated by one of them, it is eliminated. If it
dominates a tuple in the list, the dominated tuple is
eliminated, and the new tuple is added to the list to
be compared to future tuples. If the new tuple is
incomparable, which means that it is neither
dominated by nor dominating any tuple in the main
memory, it is added to the list.

At the end of all iterations, only tuples that are
not dominated by any other tuple are kept in the
main memory. These tuples are part of the Skyline.

The BNL algorithm has a high performance,
especially if the Skyline is small. Its complexity
[33] varies between O(n) in the best case and O(n2)
in the worst case, n being the length of the input
tuples’ list.

Our approach is based on this algorithm. It
involves the introduction of several agents. These
agents represent a prototype of a Cloud Service
Research and Selection System consisting of a user
interface, a user's query processing agent, a pre-
processing Skyline agent, a cloud services research
and selection agent and a database. We present this
prototype in the next section.

4. A CLOUD SERVICE RESEARCH AND
SELECTION SYSTEM (CSRSS)

As mentioned above, the prototype of the
Cloud Service Research and Selection System
consists of a user interface, a user’s query
processing agent, a pre-Skyline processing agent, a
Cloud services research and selection agent and a
database. It is illustrated in Figure 2.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

641

Figure 2: A schema representing the Cloud Service

Research and Selection System

The user’s interface allows users to interact with
the system by selecting the requirements the Cloud
services must meet and view the returned results. It
also allows the users to add Cloud services by
filling in their attributes such as the name, the
provider, the bandwidth, the OS, etc. We think that
these requirements are the common ground to
existing and upcoming Cloud ontologies [22, 23,
24, 29, 34].

The user’s query processing agent extracts the
requirements contained in the user’s request and
sets them into two categories (see tables 1 and 2):

− Requirements that are fixed, such as the
provider’s name, the service model, the
OS…;

− Requirements that are to be optimized,
such as the price (to be minimized) and the
bandwidth (to be maximized). These
requirements will be used as the Skyline’s
dimensions.

The Cloud Services Research and Selection
Agent (CSRSA) connects to the database and
executes a SQL query, which predicates are the
fixed requirements returned as a result by the user’s
query processing, to select all the Cloud services
that meet these fixed requirements.

Requirement Value

Provider
Microsoft
IBM
Amazon…

Service Model
IaaS
PaaS
SaaS

OS Serie
Windows
Mac
Unix…

OS Distribution

Windows XP
Windows Vista
Windows 7
Linux…

CPU Manufacturer
Intel
IBM
AMD…

CPU Gamme
Pentium
Intel 64…

Industry
General
Education
Healthcare…

Category
General
CRM
E-procurement…

Table 1: Example of fixed requirements

The Pre-Skyline Processing Agent (PSPA)

prepares the results extracted from the database by
the CSRSA for the running of the Skyline operator.
The Cloud services returned and their dimensions
are stored as tuples. The dimensions used are the
user’s requirements that are not “fixed”, and thus
are to be optimized, such as the price (to be
minimized), the bandwidth (to be maximized), the
network latency (to be minimized)…

Table 2: Value range of the dimensions used in the

Skyline
Dimension Range Value

Storage space 0.14 – 3999.98

Memory 128 – 16000

Bandwidth 0 – 10

Latency 0 – 10000

Price 1 – 2000

CPU speed 50 – 3060

The CSRSA uses the Skyline, on the set of
tuples returned by the PSPA, to determine which
Cloud services are in the Skyline and meet the

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

642

user’s preferences. We present hereafter the
algorithm.

5. ALGORITHM

As seen previously, the CSRSA uses the
Skyline, on the set of tuples returned by the PSPA,
to determine which Cloud services are in the
Skyline and meet the user’s preferences. To do so,
the agent uses the BNL algorithm as showed in
Figure 3. Every tuple p is an n-dimension tuple.
The dimensions are stored in the list LD in the same
order they compose the tuples. For each dimension,
an indication is given whether it is to be minimized,
maximized or different.

− LP : input list of tuples for which the Skyline is
to be computed

− LD: input list of dimensions
− p, q: tuples
− LS : output list of the tuples forming the

Skyline

Function ComputeSkyline
 Foreach p in LP do

 If LS = Then

 LS = {p}
Else
 Foreach q in LS – {p} do
 result = Compare (p, q, LD)
 If result = count (LD) then
 LS = LS + {p} – {q}
 Elseif result # 0 and q is the last
 tuple in Ls then
 LS = LS + {p}
 Else

 Goto (*)
 End IF

 End Foreach
 (*) End If
 End Foreach
 Return LS
End Function

Figure 3. The algorithm used to compute the
Skyline

The function Compare (p, q, LD) is the core of

the algorithm. It compares the tuples p and q in all
the dimensions in the list LD. The result returned
varies between 0 (when q dominates p) and n (when
p dominates q), n being the number of dimensions.
Any other result in this range means that p and q
are not comparable. In the next section, we present
the implementation of the algorithm and its
performance.

6. EXPERIMENTATION AND RESULTS

The platform we used for the experiments is an
HP workstation with a 3.30 GHz processor, 4 GB
of main memory, Windows Server 2007 as
operating system and MS SQL Server 2008 as
DBMS. The algorithm is implemented using
ASP.net to obtain a web-based system that can be
accessed from any web client anytime the user is
connected to the Internet.

6.1 CSRSS Interface

The CSRSS start page, as shown in Figure 4,
allows the user to either add a new Cloud service to
the database or search for Cloud services that match
their requirements.

If the user chooses to add a new Cloud Service,

they are taken to another page where they first enter
the name of the Cloud service in question so a
search can be made to make sure that it doesn’t
already exist in the database. Afterwards, the user
enters the different information such as the Cloud
service’s provider, model (IaaS, PaaS or SaaS),
industry, memory, price... This insert page is shown
in Figure 5.

If the user checks the second option (Search

through available Cloud Services like shown in
figure 4), they are taken to the CSRSS page that
allows to make an advanced search through the
database and to compute the Skyline of the returned
results.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

643

Figure 4: The CSRA start page

Figure 5: The CSRA page to add a new Cloud service

The user can fill out one or many information
about the Cloud service(s) they are searching for,
such as illustrated in Figure 6. For information such
as price, memory, storage space, bandwidth... they
can either give a specific value or specify that they

are the dimensions to be used when computing the
Skyline. For each dimension, the user specifies if it
is to be minimized, maximized or different. The
results are returned in a table as shown in Figure 7.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

644

Figure 6: The CSRA Search And/Or Computation Of The Skyline Page

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

645

Figure 7: The table of results returned by the CSRA

6.2 Performance

We generated over 50000 Cloud services with
random values for each dimension within the
ranges specified in section 4. We executed our
program varying the size of the input from 100 to
50000 cloud services, and the number of
dimensions from 1 to 6. We then measured the
execution time and the size of the Skyline. The
results are represented in Figure 8 and Figure 9.

The execution time doesn’t vary much when
the number of dimensions is less than 3 or the size
of the input is less than 10000. The maximum
execution time is 25 s when computing a 6-
dimensional Skyline for 50000 Cloud services. As
for the Skyline size, it is rather small compared to
the input size and tends to converge for all sizes
once the number of dimensions is more than 5.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

646

Figure 8: Execution Time / Number Of Dimensions For Different Input Sizes

Figure 9: Skyline's Size / Number Of Dimensions For Different Input Sizes

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

647

7. CONCLUSION

In this work, we have developed an algorithm
which allows searching and selecting Cloud
services that meet the user’s requirements. Our
approach is based on the BNL Skyline algorithm.
The experimental results show that with our method
we can process a large volume of data Skyline in
less than 25 s. We can conclude that our approach
gives very promising results. Note that our
algorithm is general and can be adapted to any
similar problem.

REFERENCES

[1] “Gartner’s top 10 Strategic Technology Trends
for 2013”, Gartner, October 2012

[2] Amazon, http://aws.amazon.com/fr/ec2/
[3] Google, https://appengine.google.com
[4] IBM, http://www.ibm.com/cloud-computing
[5] I. Foster, Y. Zhao, I. Raicu and S. Lu, “Cloud

Computing and Grid Computing 360-Degree
Compared”, IEEE Grid Computing
Environments Workshop, IEEE Press, 2008

[6] I. Foster, “There's Grid in them thar Clouds”,
January 2008,
http://ianfoster.typepad.com/blog/2008/01/there
s-grid-in.html

[7] P. Mell and T. Grance, “The NIST definition of
cloud computing”, NIST special publication,
2011

[8] A.Fox, G. Rean, A. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin,
and I. Stoica, “Above the clouds: A Berkeley
view of cloud computing”, Dept. Electrical Eng.
and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS 28, 2009

[9] L. Vaquero, L. Rodero-Merino, J. Caceres and
M. Lindner, “A Break in the Clouds: Towards a
Cloud Definition”, ACM SIGCOMM Computer
Communication Review, Vol. 39, Number 1,
January 2009

[10] Google Drive, https://drive.google.com/
[11] Salesforce, http://www.salesforce.com/
[12] D. Cheng, “PaaS-onomics: A CIO’s Guide to

using Platform-as-a-Service to Lower Costs of
Application Initiatives While Improving the
Business Value of IT”, Tech. rep., LongJump,
2008

[13] Force, http://www.force.com
[14] Google App Engine,

https://appengine.google.com/

[15] Windows Azure,
http://www.windowsazure.com

[16] L. Karadsheh, “Applying security policies and
service level agreement to IaaS service model to
enhance security and transition”, Computers &
Security, Vol. 31, Issue 3, May 2012, pp. 315-
326

[17] S. Radack, “Cloud Computing: A Review of
Features, Benefits, and Risks, and
Recommendations for Secure, Efficient
Implementations”, NIST, ITL Bulletin, June
2012.

[18] S. Rao, N. Rao and E. Kusuma Kumari,
“Cloud Computing: An Overview”, Journal of
Theoretical and Applied Information
Technology, Vol. 9, No. 1, November 2009

[19] K. Sims, “IBM Blue Cloud Initiative Advances
Enterprise Cloud Computing”, 2009

[20] K. Jeffery and B. Neidecker-Lutz, “The future
of Cloud Computing”, European Commission,
Information Society and Media

[21] J. Kang and K. M. Sim, “A Cloud Portal with a
Cloud Service Search Engine”, International
Conference on Information and Intelligent
Computing IPCSIT, Vol.18, 2011

[22] J. Kang and K. M. Sim, “Cloudle : An Agent-
based Cloud Search Engine that Consults a
Cloud Ontology”, Cloud Computing and
Virtualization Conference, 2010

[23] T. Han and K. M. Sim, “An Ontology-
enhanced Cloud Service Discovery System”,
IMECS 2010 Vol. 1, March 17 – 19 2010, Hong
Kong

[24] H. Yoo, C. Hur, S. Kim, and Y. Kim, “An
Ontology-based Resource Selection Service on
Science Cloud”, International Journal of Grid
and Distributed Computing, Vol. 2, No. 4,
December 2009

[25] C. Zeng, X. Guo, W. Ou and D. Han, “Cloud
Computing Service Composition and Search
Based on Semantic”, Cloud Computing, Vol.
5931, 2009, pp. 290-300

[26] S. Börzsönyi, D. Kossmann, and K. Stocker,
“The Skyline operator”, International
Conference on Data Engineering (ICDE), 2001

[27] P. Resnik, “Semantic similarity in a taxonomy:
an information-based measure and its
application to problem of ambiguity in natural
language”, Journal of Artificial Intelligence
Research, Vol. 11, 1999

[28] T. Andreasen, H. Bulskov and R. Kanppe,
“From Ontology over Similarity to Query
Evaluation”, 2nd International Conference on
Ontologies, Databases, and Applications of
Semantics for Large Scale Information Systems

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

648

(ODBASE), 3-7 November 2003, Catania,
Sicily, Italy

[29] L. Youseff, L. Butrico and M. Da Silva,
“Toward a Unified Ontology of Cloud
Computing”, Grid Computing Environments
Workshop, November 2008

[30] H. Kung, F. Luccio, and F. Preparata, “On
finding the maxima of a set of vectors”, Journal
of the ACM, Vol. 22, Issue 4, October 1975

[31] F. Preparata and M. Shamos, “Computational
Geometry: An Introduction”, Springer-Verlag,
New York, Berlin, etc., 1985

[32] D. Comer, “The Ubiquitous B-Tree”, ACM
Computing Surveys, Volume 11, June 1979

[33] L. Haas, M. Carey, M. Livny, and A. Shukla
“Seeking the truth about ad hoc join costs”, The
VLDB Journal, 1997

[34] D. Androcec, N. Vrcek and J. Seva, “Cloud
Computing Ontologies: A Systematic Review”,
MOPAS 2012, The Third International
Conference on Models and Ontology-based
Design of Protocols, Architectures and Services,
2012, pp. 9-14.

