
Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

629

SIMPLIFIED SCHEME FOR PERFORMANCE
AUGMENTATION OF WEB DATA EXTRACTION

1G.NAVEENSUNDAR, 2D.NARMADHA, 3DR.A.P.HARAN

1 Karunya University, Department of CSE, Coimbatore, 2Karunya University, Department of IT,
Coimbatore,

 2Park Engineering College, Aeronautical Engineering Department, Coimbatore
Email: 1naveensundar@karunya.edu , 2narmadha@karunya.edu , 3haran_pct@gmail.com

ABSTRACT:
Web mining is the application of data mining techniques to automatically discover and extract information
from Web data. Furthermore, it uses the data mining techniques to make the web more profitable and to
enhance the effectiveness of our interaction with the web. Users always expect maximum accurate results
from search engines. But, unfortunately most of the web pages contain more unnecessary information than
actual contents. The unnecessary information present in web pages is termed as templates. Template leads
to poor performance of search engines due to the retrieval of non-contents for users. Therefore the
performance of search engines can be improved by making web pages free of templates. Our method
focuses on detecting and extracting templates from web pages that are heterogeneous in nature by means of
an algorithm. Locality sensitive hashing algorithm finds the similarity between the input web documents
and provides good performance compared to Minimum Description Length(MDL) principle and hash
cluster process in terms of execution time.
Keywords:- Cluster, Non-Content Path, Template Detection, Locality Sensitive Hash, Minimum

Description Length

1. INTRODUCTION

In recent years the development of
World Wide Web exceeded all expectations.
Nowadays there are several billions of pictures,
HTML documents, and other multimedia files
available via internet and the amount is still
rising. But considering the striking variety of the
web, retrieving interesting content has become a
very daunting task. Web pages in the Websites
are constructed in such a way that almost 50% of
the data contains templates. This percentage is
still increasing as time goes. Templates are a
foundation on which actual content is built. From
a user point of view, presence of templates is
very much useful as they provide uniformity in
look and feel of web pages. At the same time,
presences of templates in very large amount in
web pages compromise the performance of
search engines. Also users are distracted from
actual contents and are forced to access
unimportant information from web sites. Hence
it is required that the templates should be
removed from web pages so that search engines
can give good performance in terms of providing
the most relevant information in response to user
queries.

Many of the existing systems were
based on the assumption that all the web pages

under consideration are built using the same type
of template. Such an assumption is not valid in
most cases as web pages are built using different
types of template structures. Hence this paper is
based on the assumption that web pages under
consideration are of different types. The structure
of templates is different in those pages. A
concept called clustering is proposed in this
paper, in which documents belonging to same
template structure are grouped in one cluster. A
new algorithm is proposed for the purpose of
clustering. A type of hashing may be performed
prior to clustering so that performance in terms
of execution time can be improved.

2. RELATED WORK

As per the method proposed by B.
Adelberg, NoDoSE[1] Northwestern Document
Structure Extractor (NoDose) is an interactive
tool for semi automatically determining the
structure of such documents and then extracts
their data. The approach is called semi-automatic
because it cooperates with the user to extract the
data. The input to the extractor is text file or
documents of same type. Using the GUI the user
hierarchically decomposes the file based on

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

630

DOM structure, outlining its interesting region
and describing their semantics. The performance
of system is fine for small files but it is not able
to deal with large files and extract templates.
Furthermore, there are different methods
available for template detection and extraction.
Many of the previous methods [2],[3],[4] were
based on the assumption that all the web pages

belong to a common template structure. The use
of factors like Tree-edit distance [3],[5] is very
much expensive. A typical web page contains a
title banner, list of links in right or left or both
for site navigation and advertisements, a footer
containing copyright statements, disclaimers or
navigational links[6]. Mostly, meaningful
content lies at the centre of the page. The design
of web page is not standard for all web pages,
consequently, a more robust and flexible content
extraction tool is essential. Recent web pages
have a cleaner architecture. They provide
separation among visual presentation, real
content and the interaction layers having
abandoned the use of old structural tags and
adopted an architecture that makes use of the
style sheets and div or span tags [6]. This reduces
the effectiveness of the old content extraction
techniques.

Many existing approaches [2],[7],[8]
use frequency of words as similarity measure.
Template detection may be based on a threshold
value [5] for the frequency of text in documents.
Some of the previous approaches require large
human intervention for collecting training
examples[9] in order to distinguish between
actual content and templates. A page-level[10]
type of template detection detects templates on a
page by page basis. The latest approach uses
both frequency as well as a principle called MDL
(Minimum Description Length) as decisive
factors for detecting templates. MDLval is
calculated which indicates the lowest number of
bits required to represent a cluster. The cluster
with the least MDLval is selected as the best
cluster. The approach proposes an algorithm
called Extract Template for clustering.

3. REPRESENTATION OF WEB PAGES

 Web pages are usually represented as
HTML documents. HTML documents can be
represented in the form of DOM trees. Clustering
requires some similarity measures for grouping.
Existing systems use Tree-edit distance as a
similarity measure but it is expensive because of
its time complexity which is very much high.
Hence the current system represents documents
and templates with the help of paths of a DOM
tree. This reduces the difficulty of finding the
similarity of documents under consideration. The
algorithms proposed in this paper represent web
documents in the form of matrices.

Table 1: Paths and Pathno values
As an example consider two web

documents represented using HTML tags shown
in Table 2 and their corresponding paths and
pathno values are shown in Table 1. Pathno of a
path represents the number of documents in
which the path occurs.

Table 2: Sample Web Document

<html>
<body>
<h1>IT</h1>

</body>

</html>
<html>
<body>
<h1>Park
</h1>

Gate
</body>

4. IDENTIFYING NON-CONTENT PATHS

The web documents are given a
threshold value known as least pathno threshold
value. It is calculated as the mode of pathno
values of paths in each document. A path is said
to be a non-content path of a document, if the
path is present in that document and it has the
least pathno threshold value specified for the
document. The documents are given a threshold
value known as minimum support threshold
value. It is calculated as the mode of support
values of paths in each document. A path is said
to be an essential path of a document di, if the
path is contained in that document and it has the
minimum support threshold The non-content
path set of a document doci is represented as
NC(doci). A |PDOC| *|DOC| matrix MtNC with
values 0/1 are used to represent web documents

ID Path Pathno

P1
P2
P3
P4
P5
P6
P7

Document\<html>
Document\<html>\<body>
Document\<html>\<body>\<h1>
Document\<html>\<body>\

Document\<html>\<body>\Gate
Document\<html>\<body>\<h1>\IT
Document\<html>\<body>\<h1>Park

2
2
2
2
1
1
1

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

631

where PDOC is the path set and DOC is the
document set. A value of 1 at the ith row and jth
column indicates that the path, pathi is a non-
content path of document docj. A value of 0
indicates that the path is a content path.

5. CLUSTERING USING MDL

To find the best cluster, a principle is
used in this paper termed as Minimum
Description Length (MDL) principle. According
to MDL principle the cluster with lowest number
of bits used to represent it is identified as the best
cluster. It is termed as MDLval of the cluster.

5.1 MDLVAL Calculation

 For a cluster model CL, the MDL value
indicated as MDLval is represented as
MDv(CL). It is calculated as the sum of MDL
values of MtTEMP and MtDOC . The MDL
values of MtTEMP and MtDOC are calculated
as:

H(X) =Σ-P(x)log2P(x) (1)
 xϵ {0, 1,-1}
MDv(M t)=|Mt|.H(X) (2)
 where H(X) is the entropy of a random
variable X in the matrix, P(x) is the probability
of 1’s , -1’s and 0’s in the matrix. MDLval of a
clustering model CL is calculated as:

MDv(CL)=MDv(Mt TEMP)+MDv(MtDOC) (3)

where MDv(MtTEMP) is the MDLval of
matrix MtTEMP and MDv(MtDOC) is the
MDLval of matrix MtDOC. MDL principle states
that if 2 clustering models CL1 and CL2 are
considered, the cluster with the lowest MDL
value is taken as the best cluster. CL1 is taken as
the best cluster when compared to CL2 if and
only if MDv(CL1) is less than MDv(CL2).

5.1.1Clustering using TEXT-MDL Algorithm

TEXT-MDL algorithm takes a set of
documents as input and produces a set of clusters
as output. The decisive factor used for clustering
is MDLcost. The TEXT-MDL algorithm is
shown below.
Algorithm Extract Template (DOC)
begin
1. CL:={cl1,cl2,….cln}with
cli=(NC(doci),{doci});
2. (cli,clj,clk):=FindBestCluster(CL);

3. While(cli,clj,clk) is not null do {
4. CL:=CL-{cli,clj}U{cl k};
5. (cli,clj,clk):=FindBestCluster(CL);}
6. return CL
End

procedure CalcMDLval(cli,clj,CL)
begin
1. DOCk:=DOCi U DOCj;
2.TEMPk:={pathx|ndoc(pathx,DOCk)>=|DOCk|+
1/2, pathxNCk};
3. clk:=(TEMPk,DOCk);
4. CL’:=CL-{cl i,clj}U{cl k};
5. MDL:= MDL value of CL’ ;
6. return(MDL,clk);
End
where CL indicates the whole clustering model,
cl1,cl2,…indicates individual clusters, NC(doci)
represents non-content path of doci,clk indicates
newly formed clusters, MDLvallowest represents
the lowest MDL value, TEMPk represents
template paths and ndoc (pathx, DOCk) indicates
number of documents in which pathx is a non-
content path. The algorithm is an agglomerative
hierarchical clustering algorithm in which
clusters are formed by grouping documents with
similar structures. A set of documents are given
as input to the algorithm. Initially each document
is considered as separate clusters. When two
clusters are clustered, there will be a change in
MDLval. If MDLval is reduced as a result of
merging two clusters, that cluster can be chosen
as a best cluster. Such a best cluster is found out
by the procedure FindBestCluster. MDLval is
calculated by a procedure CalcMDLval (cli, clj,
CL) where cli and clj are the clusters to be
merged and CL is the current clustering
present.ndoc (pathx, DOCk) indicates the number
of documents in which path, pathx is a non-
content path.

5.1.2 Clustering using minhash

A cluster is chosen as the best one if it’s
reduction of MDL cost is maximum. MinHash is
used to find the Jaccard’s coefficient. If the
coefficient is greater for some clusters then the
MDLcost reduction will also be greater. The
method helps in reducing the search space to a
great extent when compared to TEXT-MDL
approach. The procedures to find the best cluster
using MinHash is given below.
procedure: GetInitBestPair(C)
begin

1. Merge all clusters with the same
signature of MinHash;

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

632

2. MDL min:=∞;
3. For each ci in C do {
4. N :=clusters with the maximal

Jaccard’s coefficient with ci;
5. for each cj in N do {
6. (MDL tmp,ck):=

GetHashMDLcost(ci,cj,C);
7. If MDL tmp<MDLmin then {
8. MDL min:= MDL tmp;
9. (ci

B,cj
B,ck

B):=(ci,cj,ck);
10. }}
11. return(ci

B,cj
B,ck

B);
 end
procedure: GetHashBestPair(ck,C)
begin

1. (ci
B,cj

B):=the current best pair;
2. ck

B :=a cluster made by merging ci
B

and cj
B ;

3. MDL min:= the current best MDLcost;
4. N :=clusters with the maximal

Jaccard’s coefficient with ck;
5. for each cl in N do {
6. (MDL tmp,ctmp):=

GetHashMDLcost(ck,cl,C);
7. If MDL tmp<MDLmin then {
8. MDL min:= MDL tmp;
9. (ci

B,cj
B,ck

B):=(ck,cl,ctmp);
10. }}
11. return(ci

B,cj
B,ck

B);
 end
procedure: GetHashMDLcost(ci,cj,C)
begin

1. Dk :=Di U Dj, ck:=(Ø,Dk), C’={c i,cj} U
{ck};

2. for each Πq in Π do {
3. r (sigDk[q] :=min(r(sigDi[q]),r(sigDj[q]));
4. if (r(sigDi[q])== r(sigDj[q]) then
5. n (sigDk[q] :=n (sigDi[q]) + n (sigDj[q]);
6. else n (sigDk[q]) is from the less one}.
7. Calculate ε (Dk,l) ;
8. MDL :=MDLcost;
9. return(MDL,ck);

end
 In the MinHash algorithm, MDLcost is
calculated using the procedure
GetHashMDLcost. The signature values of input
documents are considered and the minimum
value is taken. The probability that a particular
path is present in certain number of documents is
then found out and based on that, the MDLcost is
calculated. MDLtmp the temporary MDLcost.

5.1.3 LSH algorithm

 The enhanced algorithm when the
hashing concept is included is given below. The
current algorithm is the same as the basic
approach with slight modifications.
Algorithm: TEXT-MDL(D)
 begin

1. C:= {c1,c2,….cn} with ci=(E(di),{d i});
2. (ci,cj,ck):=GetBestPair(C);
3. While(ci,cj,ck) is not empty do {
4. C:=C-{ci,cj}U{c k};
5. (ci,cj,ck):=GetBestPair(C);}
6. return C

end
procedure: GetBestPair(C)
begin

1. MDLcostmin:=∞;
2. For each pair(ci,cj) of clusters in C do {
3. (MDLcost,ck):=

GetLSHMDLcost(ci,cj,C);
4. If MDLcost<MDLcostmin then {
5. MDLcostmin:= MDLcost;
6. (ci

B,cj
B,ck

B):=(ci,cj,ck);
7. }}
8. return(ci

B,cj
B,ck

B);
end
procedure: GetLSHMDLcost(ci,cj,C)
begin

1. Dk:=Di U Dj, C’=C- {ci,cj} U ck;
2. Compute hash function.

3. Compare hash values of documents.
4. For any two points p and q that are

close to each other, there is a high
probability P1 that they fall into the
same bucket.

5. For any two points p and q that are far
apart, there is a low probability P2<P1
that they fall into the same bucket.

6. Compute Pr(1) and Pr(-1) in MT and MD
.

7. MDL:= MDLcost .
8. return (MDL,ck);

end
procedure: GetBestPair(ck ,C)
begin

1. (ci
B,cj

B):= the current best pair;
2. ck

B:= a cluster made by merging ci
B and

cj
B;

3. MDL min:=the current best MDLcost;
4. For each c in C do {
5. (MDL tmp,ctmp):=

GetLSHMDLcost(ck,cl,C);
6. If MDL tmp<MDLmin then {
7. MDL min:= MDL tmp;

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

633

8. (ci
B,cj

B,ck
B):=(ck,cl,ctmp);

9. }}
10. return(ci

B,cj
B,ck

B);
 end
Here MDLcost is calculated by a procedure
GetLSHMDLcost where, ci and cj are the clusters
to be merged and C is the current clustering
present. In GetLSHMDLcost, hash values are
computed corresponding to the documents using
hash function. The computed hash values are
then compared for the documents and thus
similarity is found out.

6. SIMPLIFIED DESIGN OF PROPOSED
APPROACH

Figure 1: Simplified Scheme of proposed Approach

The simplified scheme of the complete process is
shown in Figure 1. The input documents are read
and path sets are determined. A block diagram of
the whole process happening in the work is
shown in Figure 1. Data sets are taken from five
different web sites to ensure heterogeneity of the
templates. The web pages are read and parsed
using HTML parser. As a result of parsing, the
paths are extracted and the support of the paths is
determined. The Essential paths are the found out
and represented in the form of a matrix. The
process of clustering is then performed using
TEXT-MDL algorithm.As a result of clustering,
member documents and template paths in the
clusters are determined. As a fast approximation
of the above method, clustering is then
performed using the MinHash concept and the
corresponding clusters are determined. To
improve the performance, clustering is then
performed using the Locality Sensitive Hashing
method and finally the performances of all the
methods are compared.

7. EXPERIMENTAL ANALYSIS

The method proposed in this paper was
implemented by Java JDK and Microsoft SQL
Server 2000, and a personal computer with
Windows XP was used for the evaluation
experiments.

7.1 Data Sources and Results

Performance of the implemented
methods is considered for analysis. The
parameters used for performance analysis
include execution time taken in seconds and the
usage of memory. When compared with
previous methods like RTDM, TEXT-MDL
requires less execution time. When the fast
approximation of TEXT-MDL which is TEXT-
HASH is considered, it requires still less
execution time. The memory needed for storage
is also less for TEXT-HASH when compared
with TEXT-MDL. In the case of Locality
Sensitive Hashing approach, the execution time
taken as well as the memory usage is observed to
be again less than TEXT-HASH. Hence a very
good improvement in performance is achieved.
To perform analysis, a set of five documents are
taken and their results are analysed as shown in
Table 3. As shown in the table, execution time
taken is five seconds for TEXT-MDL, three
seconds for TEXT-HASH and one second for
Locality Sensitive Hashing for an input set of
five documents. The memory required is 5232

Collect
data
sets

Determine
path set and
support of

Essential path
Matrix

representation

Read HTML
documents

Clustering
using TEXT-

MDL algorithm

Performance
comparison

Clustering
using MinHash

Enhancement
using Locality

Sensitive
Hashing

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

634

bytes for TEXT-MDL and 3223 bytes for TEXT-
HASH and 1242 bytes for Locality Sensitive
Hashing for the same set of input documents.

7.2 Comparison between TEXT-MDL and
TEXT-HASH

The results are analysed for different
number of inputs including ten. In the case of
TEXT-MDL, clusters are formed only on the
basis of MDL principle. There is no measure of
similarity in TEXT-MDL. While in the case of
TEXT-HASH, hash values are used as a measure
of similarity for finding the similarity of
documents and then the clustering is performed
based on the MDL principle. The time
comparison graph is shown in Figure 2. As
shown in Figure 2, the TEXT-MDL approach
takes more execution time than TEXT-HASH for
each and every input. It is mainly due to the fact
that, the search space is reduced in the case of
TEXT-HASH as the similarity between input
documents are found out based on the hash
values

Table 3: Performance Analysis

Method No of
documents

Execution time
in seconds

Memory

TEXT-
MDL

5
10
3
4

5
8
6
5

5232
8324
6452
5124

TEXT-
HASH

5
10
3
4

3
6
2
3

3223
6452
2334
3452

Locality
Sensitive
Hashing

5
10
3
4

1
3
1
2

1242
3124
1234
2124

The comparison between memory usage

of TEXT-MDL and TEXT-HASH is shown in
Fig 3.

Figure 2 Time Comparison between MDL and Hash

As in the case of execution time, the

memory usage is also less for TEXT-HASH than
TEXT-MDL. The calculation of similarity
between input documents helps in the storage of
only less number of documents for clustering.
The documents that are similar in hash values are
stored and therefore, the number of documents
which are getting stored for clustering will be
less when compared to the number of documents
that are getting stored in the case of TEXT-
MDL, which considers each and every document
for clustering. As a result, the total memory used
by TEXT-HASH is very much less when
compared to TEXT-MDL, which does not use
any similarity measure to calculate the similarity
between documents. Hence the performance of
TEXT-HASH is very much better when
compared to TEXT-MDL.

Figure 3 Memory Comparison between MDL and
Hash

7.3 Comparison between Text-HASH and
LSH

In the case of TEXT-HASH, similarity
between the documents is found out first based

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

635

on the similarity in hash values of documents. As
a result, only similar documents are considered
for clustering as opposed to TEXT-MDL in
which, each and every documents are clustered
and tested based on least MDLcost. Hence the
search space is reduced for TEXT-HASH.
Therefore a drastic reduction in execution time
and memory is observed in TEXT-HASH.

In the case of Locality Sensitive
Hashing also, similarity between documents are
found out first based on similarity between hash
values of documents. As a result, the similar
documents are considered for clustering as in the
case of TEXT-HASH. Hence the search space is
reduced in this type of approach.

Figure 4 Time Comparison between MDL, HASH and

LSH
The memory comparison graph is

shown in Figure 5.A drastic reduction in memory
usage is observed in Locality Sensitive Hashing
when compared to TEXT-MDL and TEXT-
HASH. The performance of TEXT-HASH lies in
between TEXT-MDL and Locality Sensitive
Hashing.

Figure 5 Memory Comparison between
MDL,HASH,LSH

8. CONCLUSION AND FUTURE WORK

The current work involves extracting
templates from web pages automatically. The
implementation of the work is divided into six
modules and it is successfully completed. As a
continuation of the implementation process, an
approach termed as Locality Sensitive Hashing is
also proposed and it is implemented successfully
with a very high improvement in performance.
The proposed approach can detect and extract
templates from heterogeneous web pages. The
algorithms proposed in this work will be able to
extract templates and make web pages free of
such irrelevant information. Search engines will
be able to retrieve the best pages for the users
based on their queries.

The web pages taken as input are taken
from different web sites and they are static in the
current work. Therefore as a future work, the
web pages can be made dynamic and the
clustering process can then be performed on
those pages thereby extracting template paths
from them.

REFERENCES:

[1] B. Adelberg,“NoDoSE – a tool for semi
automatically extracting structured and
semistructureddata from text documents”,
SIGMOD Rec.27 (1998), 283–294.

[2] Z. Bar-Yossef and S.Rajagopalan, “Template
Detection via Data Mining and Its
Applications”, Proc.11th Int’l Conf. World
Wide Web(WWW), 2002.

[3] K. Vieira, A.S. da Silva, N. Pinto, E.S.de
Moura, J.M.B. Cavalcanti and J. Friere, “A
Fast and Robust Method for Web Page
Template Detection and Removal’,
Proc.15th ACM Int’l Conf. Information and
Knowledge Mgmt. (CIKM), 2006.

[4] L.Yi, B. Liu and X. Li, “Eliminating noisy
information in Web Pages for Data
Mining”, In Proceedings of the
International ACM Conference on
Knowledge Discovery and Data Mining,
2003

[5] L. Ma, N. Goharian, A. Chowdhury and M.
Chung, “Extracting Unstructured Data from
Template Generated Web Documents”,
Proc. CIKM, pp 512-515, 2003.

[6] T. Weninger, T., W.H.Hsu and J. Han,
“CETR: content extraction via tag
ratios”, Proceedings of the 19th
International Conference on World Wide

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

636

Web, ACM, New York, NY, USA, pp. 971–
980, 2010.

[7] A. Arasu and H.Garcia-Molina, “Extracting
Structured Data from Web Pages”,
Proc.ACM SIGMOD, 2003.

[8] Liang Chen, Shaozhi Ye, Xing Li, “Template
Detection for large scale search engines”,
Proc.ACM Symposium, pp. 1094-1098,
2006.

[9] Jushmerick. N, “Learning To Remove Internet
Advertisements”, AGENT-99, 1999.

[10] Yu Wang, Bingxing Fang, Xueqi Cheng, Li
Guo and Hongvo Xu, “Incremental Web
Page Template Detection”, Proc.17th Int’l
Conf. World Wide Web(WWW), pp. 1247-
1248, 2008

[11] M. De Castro Reis,P.B. Golgher, A.S.da
Silva and A.H.F. Laender, “Automatic Web
News Extraction Using Tree Edit
Distance”, Proc.13th Int’l Conf. World
Wide Web(WWW), 2004.

[12] Sandip Debnath, Prasenjit Mitra, C. Lee
Giles, “Automatic Extraction of
Informative Blocks from Web Pages”,
Proc. ACM Symposium, pp. 1722-1726,
2005.

[13] S. Zheng, D. Wu, R. Song, J-R. Wen,“Joint
Optimization of Wrapper Generation and
Template Detection”, Proc. ACM
SIGKDD, 2007.

[14] V. Crescenzi, P. Merialdo, P.
Missier,“Clustering Web Pages Based on
Their Structure”, Data and Knowledge
Eng., vol. 54, 2005, pp. 279-299.

[15] H. Zhao, W. Meng, C. Yu,“Automatic
Extraction of Dynamic Record Sections
from Search Engine Result Pages”, Proc.
32nd Int’lConf. Very Large Data Bases
(VLDB), 2006.

[16] D. Gibson, K. Punera, A. Tomkins,“The
Volume and Evolution of Web Page
Templates”, Proc. 14th Int’l Conf. World
Wide Web (WWW), 2005.

[17] A. Kolcz, W. Yih,“Site-Independent
Template Block Detection,” Proc.KDD,
Vol. 4702, 2007, pp. 152-163.

[18] Malcolm Slaney, Michael Casey,“Locality-
Sensitive hashing for Finding Nearest
Neighbors”, IEEE Signal Processing
magazine, March 2008.

[19] Y. Zhai, B. Liu,“Web Data Extraction Based
on Partial Tree Alignment”, Proc.14th Int’l
Conf. World Wide Web(WWW), 2005.

