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ABSTRACT 
 

Underutilization of hardware resources has always been a problem in single workload driven traditional OS 
environment. To improve resource utilization, virtualization of multiple VMs and workloads onto the same 
host with the aid of Hypervisor has been the recent trend. Its use cases such as server consolidation, live 
migration, performance isolation and on-demand server provisioning make it as a heart part of enterprise 
application cloud. Cloud is an on-demand, service provisioning technology, where performance plays a 
vital role for user acceptance. There are numerous virtualization technologies are available from full 
virtualization to paravirtualization, each has its strength and weakness. As performance study is an ongoing 
pursuit, hardware and software development getting matured day by day, it is desirable to do this sort of 
performance study in regular interval that often sheds new light on aspects of a work not fully explored in 
the previous publication. Hence, this paper focus performance behaviours of various full virtualization 
models such as hosted (VirtualBox) and bare metal (KVM) virtualization using variety of benchmarks from 
micro, macro and application level  in the cloud environment. We compare both virtualization solutions 
with a base system in terms of application performance, resource consumption, low-level system metrics 
like context switch, process creation, interprocess communication latency and virtualization-specific 
metrics like virtualization layer consumption. Experimental results yield that VirtualBox outperforms KVM 
in CPU and thread level parallelism and KVM outperforms in all other cases. Both are very reluctantly 
accepted for disk usages comparing with native system. 
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1. INTRODUCTION  

 
Virtualization provides an abstract way for 

different servers to co-exist on the same server 
machine and share resources, while the underlying 
virtualization layer offers isolation and performance 
guarantees. The building block of this abstraction is 
the virtual machine (VM), which can accommodate 
the whole server application or parts of it. Multiple 
different server applications, even running on 
heterogeneous operating systems can be hosted by 
the same physical machine. Hence server 
consolidation is defined as the process of 
encapsulating single server workload into VMs and 
running them in a shared hardware platform via, 
virtual machine monitor (VMM) or hypervisor. 
That simplifies load balancing, dealing with 
hardware failures and eases system scaling. In 
addition to share resources promises a more 
efficient usage of available hardware. 

Virtualization is the engine that drives cloud 
computing [1],[2] by turning the data center into 

self-managing, highly scalable, highly available, 
pool of easily consumable resources. Virtualization 
and, by extension, cloud computing provide greater 
automation opportunities that reduce administrative 
costs and increase the company’s ability to 
dynamically deploy solutions. By being able to 
abstract the physical layer away from the actual 
hardware, cloud computing creates the concept of a 
virtual data center, a construct that contains 
everything in physical data center. While there are 
currently a number of virtualization technologies 
available today, the virtualization technique of 
choice for most open platforms over the past years 
have typically been the Xen hypervisor because of 
its performance. Though paravirtualization 
performance was slightly better than full 
virtualization, full virtualizations strength on 
paravirtualization is superior security, it’s 
cleanliness diagram, heterogeneity OS support and 
hardware advancement get the attention of the 
enterprise to switch to the full virtualization.  
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The combination of new CPU architectures 
with embedded virtualization support and advances 
in hypervisor design have eliminated many of their 
performance overheads. Despite this, popular 
hypervisors still exhibit different levels of 
performance. To understand the relative strengths 
and weaknesses of different hypervisors, in this 
paper we perform an extensive performance 
comparison of two open source full virtualization 
platforms VirtualBox and KVM. Hence, this sort of 
performance study often sheds new light on aspects 
of a work, not fully explored in the previous 
publications[3].The objective of this research work 
is to figure out the following questions: a)The 
performance degradation of virtual machine against 
physical machine? b) How much difference 
between different virtualization technologies?       
c) What factors lead to the performance loss of 
virtualization systems? We limit our performance 
analysis to open-source full virtualization solutions 
with hardware support, as their user license allows 
us to publish the results without any restriction. The 
focus of our analysis is on the virtualization of 64-
bit guests over 64-bit hosts. Our study was 
motivated by the interests in using virtualization 
technology in both single and multiple virtual 
machine system. 

Our paper specifically make the following 
contributions: a) we’ve described tools to measure 
performance, ranging from the general to the 
specific, and from the hardware focused to the 
application oriented b) we present a detailed 
measurement based performance characterization of 
the typical server virtualization workloads. c) We 
show VM workload interactions and interference 
under different degrees of resource sharing.           
d) Based on the earlier observations, in this paper, 
we evaluate two representative full virtualization 
technologies, VirtualBox and KVM, in various 
configurations. We consolidate three more VM 
systems to drive the system with and without 
workload. We compare both technologies with a 
base system in terms of application performance, 
resource consumption, low-level system metrics 
like context switch, inter process communication 
latencies and virtualization-specific metrics like 
virtualization consumption. 

 We discuss the related research efforts in 
Section 2. We provide background of full 
virtualization technologies and hardware 
enhancements in Section 3. Section 4 presents our 
evaluation approach and findings of a 
measurement-based study are reported in Section 5. 
We conclude with a discussion of findings and 
future directions of this work in Section 6. 

2. RELATED WORK 
 

There are lot of works are carried out in 
performance study in all aspects, ranging from 
performance study of single hypervisor or multiple 
hypervisor and reducing the overhead incurred by 
the virtualization layer and characterize and analyze 
the performance impact of various types of 
workloads on VMs.  

In [4] authors have compared performance of 
software VMM with new designed VMM that 
employs recent hardware extensions support. The 
experiments result different from the perception, 
hardware VMM fails to provide a certain 
performance enhancement. The reasons cause this 
situation is analyzed in the paper. Barham et al. [5] 
present a comprehensive introduction to the Xen 
hypervisor  and compare its performance to a native 
system, the VMware workstation  and a User-Mode 
Linux at a high level of abstraction. They show that 
the performance is practically equivalent to a native 
Linux system and state that the Xen hypervisor is 
very scalable. Deshane [6] presented an 
independent research describing the performance 
comparison between Xen and KVM, which 
evaluated the overall performance, security 
impacts, performance isolation and scalability of 
Xen and KVM. In [7], Menon et al. present a 
diagnosing performance overhead method about 
resource scheduling in the Xen virtual machine 
environment. In this method, a toolkit is used to 
analyze performance overheads incurred by 
networking applications running in Xen VMs. The 
toolkit enables coordinated profiling of multiple 
VMs in a system to obtain the distribution of 
hardware events such as clock cycles and cache and 
TLB misses. In [8], Ye et al. provide a framework 
to analyze the performance of virtual machines 
system, which is based on the queuing network 
models. In the framework, the virtual machines 
either do not run at all or just monitor the virtual 
machines instead of the hypervisor. Apparao et al. 
[9] analyze the performance characteristic of a 
server consolidation workload. Their results show 
that most of the performance loss of CPU intensive 
workloads is caused by cache and core 
interferences. However, since the publication of 
these results, the considered virtualization 
platforms have changed a lot (e.g., hardware 
support was introduced) which renders the results 
outdated. Hence, the results of these works must be 
revised especially to evaluate the influences of, e.g., 
hardware support.Tickoo et al. [10] identifies the 
challenges of modeling the contention of the visible 
and invisible resources and the hypervisor. In their 
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consecutive work based on measure and model the 
influences of VM shared resources. They show the 
importance of shared resource contention on virtual 
machine performance and model cache and core 
effects, but no other performance-influencing 
factors. In [11], authors have mentioned their clear 
procedure and result of benchmarking to analyze 
performance of openVZ, Xen and KVM 
hypervisors. In their research, a combine result of 
processor performance, network performance, 
database server performace, disk performance has 
reflected the overall system performance. Low-
level benchmarking like context switching has 
revealed the micro performance of system. Authors 
[12] have described benchmarking tools; Linpack, 
Lmbench and IOzone in their paper. They have 
provided a series of performance experiment during 
the testing of Xen and KVM hyprevisors. By doing 
CPU overhead analysis, memory bandwidth 
analysis, I/O operating analysis, they have tried to 
figure out main source of the total virtualization 
overhead. In this paper [13], author use the 
automated experimental analysis approach to 
evaluate its applicability to Citrix XenServer and 
VMware ESX. His aim is to build a generic model 
which enables the prediction of performance 
overheads on different virtualization platforms. In 
addition, they evaluate various performance 
influencing factors like scheduling parameters, 
different workload types and their mutual 
influences, and scalability and over commitment 
scenarios using passsmark and Iperf.In [14 ] author 
quantify, model and predict the virtualization 
performance overhead by capturing the 
performance relevant factors explicitly and focus on 
specific aspects using queueing network models. 
They claimed significant improvements in the 
prediction accuracy in their approach by evaluating 
for various scenarios based on the 
SPECjEnterprise2010 standard benchmark and 
XenServer. In [15] author has performed an 
extensive performance comparison using under 
hardware-assisted virtualization settings for 
different virtualization solutions, Hyper-V, KVM, 
vSphere and Xen. They use a component-based 
approach that isolates performance by resource 
such as CPU, memory, disk, and network. Further 
they study the level of performance isolation 
provided by each hypervisor to measure how 
competing VMs may interfere with each other and 
find that the overheads incurred by each hypervisor 
can vary significantly depending on the type of 
application and the resources assigned to it. 

 Still, none of the researchers are aware to 
address some major issues on virtualization 

performance collectively, such as consolidation 
issue (with and without workload), benchmark 
issue (ranging from system level, component level, 
application level from simple to multi threaded) and 
interference issue, etc., with the recent hardware 
and software advancements. Further, one can see a 
lot of papers on KVM and a few on VirtualBox 
virtualization solutions. 
 
3. OVERVIEW OF FULL 

VIRTUALIZATION TECHNOLOGIES 
 

 Hardware virtualization means abstracting 
functionality from physical components. This 
principle is used for sharing hardware by multiple 
logical instances with the help of the virtual 
machine monitor / hypervisor. The hypervisor gives 
each guest domain a portion of the full physical 
machine resources. Multiple guests running on the 
same physical machine must share the available 
resources. Therefore, the hypervisor does not 
generally expose the full power of the underlying 
machine to any one guest. Instead, it allocates a 
portion of the resources to each guest domain. It 
can either attempt to partition resources evenly or 
in a biased fashion to favour some guests over 
others. It grants each guest a limited amount of 
memory and allows each guest only its fair share of 
the CPU. Similarly, it may not want all guests to 
have access to every physical device in the system 
and thus it only exposes the devices it wants each 
guest to see. Sometimes, it may even create virtual 
devices that have no corresponding underlying 
physical device—for example, a virtual network 
interface [16]. There are two forms of full 
virtualization available. 
 
3.1 Type 1 or Bare-metal Architecture 

In this architecture, virtual machine monitor is 
responsible for controlling the operating system 
environment by scheduling and allocating resources 
to all virtual machines running in the system. It is 
believed that this hypervisor delivers high 
performance and better scalability. 
3.1.1  KVM 

KVM (Kernel-based Virtual Machine) [17] is 
an open-source hypervisor using full virtualization 
capable of running heterogeneous VMs. As a kernel 
driver added into Linux, KVM enjoys all 
advantages of the standard Linux kernel and 
hardware-assisted virtualization KVM introduces 
virtualization capability by augmenting the 
traditional kernel and user modes of Linux with a 
new process mode named guest, which has its own 
kernel and user modes and answers for code 
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execution of guest operating systems.KVM 
comprises two components: one is the kernel 
module and another one is userspace. Kernel 
module (namely kvm.ko) is a device driver that 
presents the ability to manage virtual hardware and 
see the virtualization of memory through a 
character device /dev/kvm. With /dev/kvm, every 
virtual machine can have its own address space 
allocated by the Linux scheduler when being 
instantiated. The memory mapped for a virtual 
machine is actually virtual memory mapped into the 
corresponding process. Translation of memory 
address from guest to host is supported by a set of 
page tables.KVM can easily manage guest 
Operating systems with kill command and 
/dev/kvm.User-space takes charge of I/O 
operation‘s of virtualization. Further, it also 
provides a mechanism for user-space to inject 
interrupts into guest operating systems. User-space 
is a lightly modified QEMU, which exposes a 
platform virtualization solution to an entire PC 
environment including disks, graphic adapters and 
network devices. Any I/O requests of guest 
operating systems are intercepted and routed into 
user mode to be emulated by QEMU. 
 
3.2 Type 2 or Hosted Architecture 

The principle of this architecture is that virtual 
machine monitor runs on extended host under the 
host operating system, which means that hypervisor 
runs as an application on the host operating system 
and guest operating system runs inside hypervisor. 
In this approach, hypervisor has higher privilege 
level than guest OS kernel, and it separates the 
operating system from the hardware resource 
logically. In full virtualization technology, guest 
OS kernel does not need to modify, hence it not 
only reduces managing efforts but also allows 
creating virtual environment using operating 
systems of close-source type. Unlike 
paravirtualization, it facilitates modularization by 
separating hardware and/or software into functional 
components thus customization of VM’s setup is 
possible. Full-virtualization also offers secured 
migration and delivers perfect isolation of guest OS 
from the underlying hardware so that its instance 
can run on both virtualized and non-virtualized 
conditions. Unfortunately, its layered architecture 
possesses security management complexity and 
incurs performance penalty. Furthermore, it 
delivers high system overhead, as it is responsible 
for caring all the system activity through the 
hypervisor. 
 
 

3.2.1 VirtualBox 
Oracle VM VirtualBox [18] is an x86 cross 

platform open source virtualization software 
package. VirtualBox is a so-called "hosted" 
hypervisor, a software technology that can run 
without the hardware help but capable of using 
hardware extensions. The CPU extensions let it to 
run its guest OS, running in ring 1, is reconfigured 
to execute in ring 0 on the host hardware when OS 
request trap to VMM. As some code contains 
privileged instruction must be intercepted and 
rewritten to manipulate protected resources which 
cannot run natively in ring 1, VirtualBox employs a 
Code Scanning and Analysis Manager (CSAM) to 
scan the ring 0 code recursively before its first 
execution to identify problematic instructions and 
then calls the Patch Manager (PATM) to perform 
in-situ patching. This replaces the instruction with a 
jump to a VM-safe equivalent compiled code 
fragment in hypervisor memory. The guest user-
mode code, running in the ring 3, is generally run 
directly on the host hardware at ring 3. In hardware 
assisted emulation, it provides the option to enable 
hardware virtualization on a per virtual machine 
basis. On more recent CPU designs, VirtualBox is 
also able to make use of nesting paging tables, 
which can greatly accelerate hardware 
virtualization since these tasks no longer need to be 
performed by the virtualization software. 
 
3.3 Hardware virtualization 
      Recognizing the importance of virtualization, 
hardware vendors Intel[19],AMD [20] have added 
extensions to the x86 architecture that make 
virtualization much easier. Intel’s Virtualization 
Technology for x86 (VT-x) and AMD’s Secure 
Virtual Machine (SVM). Both provide a higher 
privilege mode than ring 0, in which a hypervisor 
can sit without having to evict the kernel from ring 
0. This separation is particularly important on x86-
64, because it means that the kernel does not have 
to run at the same privilege level as the 
applications, and so no tricks are required to allow 
it to poke around in their address spaces. These new 
processors allow trapping of sensitive events. This 
eliminates the need for binary translation and 
simplifies the hypervisor. The biggest difference 
between Intel’s VT-x and AMD’s SVM comes is, 
AMD moved the memory controller on-die, 
whereas Intel kept theirs in a discrete part. Hence, 
AMD was able to add some more advanced modes 
for handling memory. With VT-x, one simply set a 
flag that causes page table modifications to be 
trapped. SVM provides two hardware-assisted 
modes. The first, Shadow Page Tables allows the 
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hypervisor to trap whenever the guest OS attempts 
to modify its page tables and change the mapping 
itself. This is done, in simple terms, by marking the 
page tables as read only, and catching the resulting 
fault to the hypervisor, instead of the guest 
operating system kernel. The second mode is a little 
more complicated. Nested Page Tables allow a lot 
of this to be done in hardware. Nested page tables 
do exactly what their name implies; they add 
another layer of indirection to virtual memory. The 
MMU already handles virtual to physical 
translations as defined by the OS. Now, these 
“physical” addresses are translated to real physical 
addresses using another set of page tables defined 
by the hypervisor. Because the translation is done 
in hardware, it is almost as fast as normal virtual 
memory lookups. Memory handling and switching 
is also boosted by tagged Translation Lookaside 
Buffer (TLB) capabilities that map memory space 
to the individual VM. This reduces memory 
management and speeds up the switching process 
between VMs. The other additional feature of 
hardware extension to devices is that it specifies a 
Device Exclusion Vector interface. This masks the 
addresses that a device is allowed to write to, so a 
device can only write to a specific guest’s address 
space. Intel also introduced VT-d, which is Intel's 
technology for Direct IO. These extensions allow 
for devices to be assigned to virtual machines 
safely. VT-d also handles Direct Memory Access 
(DMA) remapping and the I/O translation look 
aside buffer (IOTLB). DMA remapping prevents a 
direct memory access from escaping the boundaries 
of the VM. IOTLB is a cache that improves 
performance. By comparison, the VT-d extensions 
add virtualization support to Intel chipsets that can 
assign specific I/O devices to specific VMs, while 
the VT -c extensions bring better virtualization 
support to I/O devices such as network 
switches.AMD also introduced a new technology to 
control access to I/O called I/O Memory 
Management Unit (IOMMU), which is analogous 
to Intel's VT-d technology. IOMMU is in charge of 
virtual machine I/O, including limiting DMA 
access to what is valid for the virtual machine, 
directly assigning real devices to VMs. 
 
4. EXPERIMENTAL METHODOLOGY 
 
4.1 Experimental Setup 
      All the experiments were conducted on physical 
hardware configured with ASUSTek computer Inc 
motherboard AMD64 780G chipset model 
M5A78L-M Lx V2 AMD Fx-8150 Eight-core 

desktop processor ,8 GB DDR3 RAM,L2 cache 
2048 Kbytes,L3 8Mbytes ,100Mbits network card. 
Both host and virtual machine is configured with 8 
VCPUs and 2 GB RAM, 60GB HDD with Ubuntu 
13.10 (Saucy Salamander). The virtualization 
solutions considered are KVM 76, VirtualBox 4.2. 
In all solutions we use hardware virtualization 
support to virtualize 64-bit guests over a 64-bit 
host. For the KVM and VirtualBox machines, 
virtual NICs are using the default bridged network 
driver. The cloud environment is emulated using 
Dummynet [21] and the experimental setup mimic 
as shown in the figure 1. Performance Baseline: 
For establishing a performance baseline, we use 
Ubuntu 13.10 Linux kernel without virtualization to 
run all benchmarks with one to eight threads to 
measure the scalability with respect to the number 
of threads. For baseline network I/O measurement, 
the client and server threads running on different 
hosts connected through (emulated) WAN is taken. 
The first sets of results represent the performance 
of various benchmarks. Each benchmark was run a 
total of 20 times, and the mean values taken with 
error bars represented using the standard deviation 
over the 20 runs. 
 
4.2 Benchmarks 
 
       We do micro, macro and application level 
experimental studies to get idea on the behavioral 
performance of full virtualization hypervisors in the 
hardware experiments. In the first approach, the 
system was considered as white-box for analyzing 
its micro-performance by determining bandwidths 
and latencies of system operations, such as process 
latencies, IPC latencies, IPC bandwidth and context 
switching etc.,. In next phase, the system was 
considered as black box for analyzing its macro-
performance based on the memory, processor, disk 
and network virtualization. Having tested the 
effectiveness of VM, in order to discover how well 
the VM performs when serving applications, 
application benchmarking is carried out as it 
measures computer system performance as a whole. 
Our study was motivated by the interests in using 
virtualization technology in both single multiple 
virtual machine system. Hence micro benchmark 
and macro benchmark is carried out in a single 
virtual machine and application benchmark is 
carried out in a multiple virtual machine system 
(server consolidation) with and without workload.  
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Figure 1: Conceptual Diagram Of Cloud Computing. 

 
4.3  Micro Benchmarks 
 
      The benchmarks included in LMbench [22] 
measure various operating system routines such as 
context switching, local communications, memory 
bandwidth, and file operations. Process benchmarks 
are used to measure the basic process primitives, 
such as creating a new process, running a different 
program, and context switching. Process creation 
benchmarks are of particular interest in distributed 
systems since many remote operations include the 
creation of a remote process to shepherd the remote 
operation to complete. Context switching is 
important for the same reasons. Interprocess 
communication latency is important because many 
operations control messages are to another process 
(frequently to another system). The time to tell the 
remote process to do something is pure overhead 
and is frequently in the critical path of important 
functions such as distributed applications (e.g., 
databases, network servers). From the micro-
performance data (table 1 and figure 2), we can find 
that the latencies of process create and context 
switch in virtualized environment fall behind native 
environment with huge degree, which implies two 
main factors that baffle the performance of 
virtualization systems. Therefore, we may 
preliminarily determine hardware page table 
update, interrupt request and I/O are three main 
performance bottlenecks for common virtualization 
systems. As most high-cost operations involve 
them, it’s critical for researcher and developer to 
optimize the handle mechanism of hardware page 
table update, interrupt request and I/O, etc. 
 
4.3.1  Forkwait  
     To magnify the differences between the two 
VMMs, we use the familiar UNIX kernel 
microbenchmark Forkwait, which stresses process 
creation and destruction. Forkwait focuses intensely 
on virtualization-sensitive operations, resulting in 
low performance relative to native execution. 
Measuring forkwait, our host required 94 seconds 

to create and destroy 40000 processes. The KVM 
on the other hand, took 232 seconds, while the 
VirtualBox consumed a sobering 624 seconds. 
Forkwait effectively magnifies the difference 
between the two VMMs, the VirtualBox inducing 
approximately 2.69 times greater overhead than the 
KVM. Still, this program stresses many divergent 
paths through both VMMs, such as system calls, 
context switching, creation of address spaces, 
modification of traced page table entries, and 
injection of page faults.  

 
Table 1: Kernel Operations Time (Micro Seconds) 

 Ubuntu KVM VirtualBox 

syscall 0.0537 0.0541 0.0596 

read 0.1031 0.1056 0.1075 

write 0.1251 0.1258 0.1457 

stat 0.2484 0.2797 0.2920 

fstat 0.0826 0.0929 0.1013 

open/close 0.2282 0.2314 0.2532 

sigl inst 0.1041 0.1193 0.1247 

sigl hndl 0.8588 0.8393 0.8790 

pipe 3.4782 3.49 16.4372 

fork+exit 287.00 656.875 1785.0564 

fork+exec 439.76 690.75 1819.6630 

fork+sh 2917.00 4442.72 9057.9412 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Context Switch Latency (Micro Seconds) 

 



Journal of Theoretical and Applied Information Technology 
 28th February 2014. Vol. 60 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
562 

 

4.4  Macro Benchmarks 
The methodology to performance comparison 

of hypervisors is to drill down each resource 
component one by one with a specific benchmark 
workload. The components include CPU, memory, 
disk I/O, and network I/O. Each component has 
different virtualization requirements that need to be 
tested with different workloads. We follow this 
with a set of more general workloads representative 
of higher-level applications.  

 
4.4.1  Linux Kernel Compile 

The kernel-build benchmark unarchieved the 
Linux kernel source archieve, and build a particular 
configuration. It heavily used the disk and CPU.    
It executed many processes, exercising 
fork(),exec(),the normal page fault handling code, 
and thus stressing the memory subsystem; and 
accessed many files and used pipes, thus stressing  
the system-call interface. When running on Linux 
3.6.5 on x86_64, the benchmark created around 
4050 new processes, generated around 24k address 
space switches (of which 20.4 k were process 
switches), 4.65M system calls, 3.4M page faults, 
and between 3.8k and 5.3k device interrupts.       
We measured and compared benchmark duration 
and CPU utilization and the result is shown in 
figure 3 for various numbers of cores. For the 
single core, KVM completes the job shortly over 
VirtualBox and for 8 cores there isn’t huge 
difference in completion time. 

 
4.4.2  Bonnie++ 

One of the major factors in a machine’s overall 
performance is its disk subsystem. By exercising its 
hard drives, we can get a useful metric to compare 
VMM instances with, say, virtual Box and KVM 
guests. Bonnie++ [24] is a disk IO benchmarking 
tool that can be utilized to simulate a wide variety 
of different disk access patterns, usually more 
efficient to define the workload characteristics such 
as file size, I/O size, and access pattern, simulate a 
targeted workload profile precisely.  

 
Figure 3: Linux Compile Workloads 

     Bonnie++ writes one or multiple files of variable 
size using variable block sizes, attempts to measure 
both random and sequential disk performance and 
does a good job simulating real-world loads. Using 
Bonnie++ to measure the random read, random 
write and random readwrite performance of a given 
disk subsystem for a file of 5 GB size at 32 KB I/O 
size (these characteristics model a simple database) 
would look as shown in figure 4. In all cases, both 
VMMs reluctantly accepted in disk usages 
comparing with native system. 
 
4.4.3  Stream  

A simple synthetic benchmark program that 
measures sustainable memory bandwidth (in MB/s) 
and the corresponding computation rate for simple 
vector kernel. The stream [23] benchmark has four 
operating modes: COPY a=b, SCALE a=q*b, SUM 
a=b+c and TRIAD a=b+q*c. In this test, only the 
copy mode rely more heavily on the CPU to do 
some computations on the data being before writing 
it to memory. This is in contrast to others which 
measures transfer rates without doing any 
additional arithmetic; it instead copies a large array 
from one location to another. The benchmark 
specifies the array so that it is larger than the cache 
of the machine and structured so that data reuse is 
not possible. Table 2 shows the memory 
performance of two virtual machines for various 
thread levels. We find the performance of both full 
virtualizations is very close to the native which 
means the memory virtualization efficiency is not 
the bottleneck affecting the performance of cloud 
applications. 

 
4.4.4  Netperf 

Netperf [25] is a network benchmark tool 
measures the network throughput via TCP and UDP 
protocols using various packet sizes. The primary 
foci are bulk (aka unidirectional) data transfer and 
request/response performance using either TCP or 
UDP and the Berkeley Sockets interface. 

 
Figure 4: Bandwidth Of Three Disk I/O Operations In 

Bonnie++ 
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Table 2: The Performance Comparison Of STREAM For Various Numbers Of Cores(Higher Values Are Better) 
 2 Threads 4 Threads 8 Threads 

Ubuntu VirtualBox KVM Ubuntu VirtualBox KVM Ubuntu VirtualBox KVM 
Copy 11040.1 10470.3 9152.0 12476.7 11830.1 11429.1 12061.8 11396.2 10724.1 
Scale 10581.0 9935.5 8628.4 12435.6 11821.0 11462.3 12046.9 11426.9 10649.8 
Add 13919.2 13006.6 11664.0 13911.0 13412.5 12690.3 13478.4 12884.0 12435.1 
Traid 13363.9 12432.3 10190.0 13971.8 13331.8 12420.5 13511.6 12804.8 12252.9 

 
A test is based on the netperf TCP_STREAM 

test that simulates large file transfer such as 
multimedia streaming and FTP data 
transfer.Without defining Message Size and 
SocketSize, the maximum throughput per second is 
measured from the client using emulated WAN 
link, where the machines are connected via a 
100Mbit connection, and netperf list an actual 
throughput of 95.13, 91.61, 93.08 Mbits/sec for 
Ubuntu, VirtualBox and KVM respectively. 
Whereas, when the experiments are conducted for 
inter VM communication for VirtualBox  and KVM 
the throughput is 453.29 and 528.64 Mbits/sec 
respectively. The network throughput of KVM is 
more than that of VirtualBox in all cases because of 
QEMU. VirtualBox may have more overhead due 
to the network transmission using the default 
bridged network driver located in VMM. As, this 
requires more levels of indirection compared to 
KVM hypervisors, which in turn affects overall 
throughput.  
 
4.5 Application Benchmark Performance 

Analysis 
    
      Having tested the effectiveness of hypervisor, 
we have to discover how well the VM performs 
when serving applications. Application 
benchmarking is a better way of measuring 
computer system performance as it can present 
overall system performance by testing the 
contribution of each component of that system. 
Hence, we want to be able to benchmark 
VirtualBox versus KVM virtualization solutions (or 
bare hardware) for various workloads because each 
has its strengths and weaknesses compared to 
another. These application benchmarks will help to 
determine the best match of the VMM for 
application. As a single application benchmarks 
may not be a suitable workload to reveal a VM’s 
ability in cloud infrastructures, we choose variety 
of application like httperf[27] for web application, 
MySQL-SysBench[28] for database workload and 
POV-RAY[29] for rendering scene workload.  

While our previous tests have only considered 
a single VM running in isolation, it is far more 
common for each server to run multiple VMs 
simultaneously. As virtualization platforms attempt 

to minimize the interference between these VMs, 
multiplexing inevitably leads to some level of 
resource contention. That is, if there is more than 
one virtual machine which tries to use the same 
hardware resource, the performance of one virtual 
machine can be affected by other virtual machines. 
Even though the schedulers in hypervisors mainly 
isolate each virtual machine within the amount of 
assigned hardware resources, interference still 
remains in most of hypervisors. Hence application 
benchmarks are conducted in single virtual 
environment and server consolidated environment. 
In server consolidated environment the experiment 
is conducted in VM1 with all other virtual 
machines are running with and without the 
workload.The workload is generated using stress 
[26] workload generated tool to determine how the 
performance degrades as the host's load increases 
for the various benchmarks. We performed an 
experiment with single VM as the base case, to 
check how reactively the algorithms behave 
towards consolidation with or without workload.  

There are three VMs -VM1, VM2 and VM3: 
VM1 runs as a server (i.e., web server or database 
server) is being accessed by a client through 
emulated WAN link, and the other two are used for 
interference generators using stress tool. The 
experiment is divided into four phases: first a single 
VM only runs; In the second phase, all VMs are 
running with no workload; In the third phase, all 
VMs are running with VM2 and VM3 ,are the 
average workload generator, followed by the heavy 
workload. 

 
4.5.1  Httperf 

Httperf [27] is a tool for measuring web server 
performance that generates HTTP requests and 
summarizes performance statistics. It supports 
HTTP and SSL protocols and offers a variety of 
workload generators. It is designed to run as a 
single-threaded process using non-blocking I/O to 
communicate with the server and with one process 
per client machine, useful to figure out how many 
users web server can handle before it goes casters-
up. It runs on client machines and generates 
specified number of requests for web-servers in the 
form of requests per second. The performance 
characteristics of servers are measured in the form 
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of statistics associated with average response time 
to a request. By varying the generated workloads, 
we analyze the server physical resource usage, 
response time and the comparative result is shown 
in figure 5. From the figure 5 one can observe, for 
the various test conditions both VirtualBox and 
KVM moderately differs and for high workload 
KVM response time abruptly increasing comparing 
with VirtualBox. 

 
4.5.2 MySQL-SysBench 

SysBench [28] is a modular, cross-platform and 
multi-threaded benchmark tool for evaluating OS 
parameters that are important for a system to run a 
MySQL database under intensive load to evaluate 
the performance. The idea of this benchmark suite 
is to quickly get an impression about system 
performance without setting up complex database 
benchmarks or even without installing a database at 
all. SysBench, which was run on a separate client 
machine, was configured to send multiple 
simultaneous queries to the MySQL database with 
zero think time. We used a simple database that fit 
entirely in memory. As a result, these workloads 
both saturated the virtual CPU and generated 
network activity,with little disk I/O.For various 
number of threads the experiment is conducted and 
the comparative result of both are given in table 3. 
KVM works good and equivalent to VirtualBox in 
many cases, whereas VirtualBox dominates KVM 
in high load condition. This is because KVM 
depends on CPU extension whereas VirtualBox 
doesn’t and utilizes the CPU cores well. 
 
4.5.3 POV-RAY 
      Persistence of Vision Ray-Tracer [29] creates 
three-dimensional, photorealistic images using a 
rendering technique called ray-tracing. This renders 

a standard scene (povray -benchmark) and gives a 
large number of statistics, ending with an overall 
summary and rendering time in seconds. The non-
virtualized Ubuntu base linux took 830 seconds to 
render the scence and the comparative result of 
VirtualBox and KVM is given in table 4. As the 
load increases both VirtualBox and KVM time 
taken to render the scene is increasing gradually 
and KVM works best in this case.  
 
5. RESULTS AND DISCUSSIONS 
 
     Our experimental results give a difficult image 
about the relative performance of these two 
hypervisors. Clearly, there is no ideal hypervisor 
that is always the best choice; diverse applications 
will benefit from different hypervisors depending 
on their performance needs and the specific features 
they require. Overall, KVM performs the best in 
our tests, not surprisingly since KVM is bare-metal 
architecture and designed based on the hardware 
virtualization. However, VirtualBox outperforms 
KVM in certain cases like thread level parallelism 
and CPU related benchmarks (i.e., using all cores 
and high load conditions). In general, we find that 
CPU and memory related tasks experience the 
lowest levels of overhead, although KVM 
experiences CPU overheads when all of the 
system’s cores are active. Performance diverges 
more strongly for disk activities, where both exhibit 
high overheads when performing all type of disk 
operations. KVM also suffers in network 
throughput, but performs much better than 
VirtualBox. It is worth noting that we test KVM 
using hardware-assisted full virtualization, whereas 
the VirtualBox was originally developed for full 
virtualization. 

 
Figure 5: Response time characteristics 
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Table 3: Mysql-Sysbench Transactions Rate / Second  For Server Consolidation With And 

Without Workload (Higher Values Are Better) 
 2 threads 4 Threads 8 Threads 

VirtualBox KVM VirtualBox KVM VirtualBox KVM 
VM1 200.37 215.22 329.06 349.12 137.74 531.56 
VM1+VM2+VM3 201.20 217.13 326.57 356.91 137.23 544.71 
Avg.Load 164.85 213.55 190.27 277.17 126.23 308.51 
High Load 89.05 85.24 105.13 101.60 78.72 82.81 

 
Table 4: POV-RAY Rendering Time (Seconds) For 
Server Consolidation With And Without Workload 

 Virtual 
Box KVM 

VM1 878 817 
VM1+VM2+VM3 896 836 

Avg. Load 1119 980 
High load 1530 1276 

 
       Our application level tests match these results, 
with different hypervisors exhibiting dissimilar 
overheads depending on the application and the 
number of cores assigned to them. All of this 
dissimilarity suggests that properly matching an 
application to the right hypervisor is complicated, 
but may well be worth the effort since performance 
variation is high. We consider that future 
management systems should be designed to take 
advantage of this variety. To do so, works needed 
to overcome the inherent challenges in managing 
multiple systems with different APIs, and the 
difficulty in determining what hypervisor best 
matches an application’s needs. Virtual Machine 
interference also remains a challenge for all of the 
VMM tested, and is another area where properly 
designed management systems may be able to help. 
While we have taken every effort to configure the 
physical systems and VMs running on them 
identically, it is true that the performance of each 
VMM can vary significantly depending on how it is 
configured. However, this implies that there may be 
even greater potential for variability between 
hypervisors if they are configured away from their 
default settings. Thus the aim of our work is not to 
definitively show one hypervisor to be better than 
the others, but to show that each have their own 
strengths and weaknesses. 

 
6.  CONCLUSION AND FUTURE WORK 
 
       The primary purpose of this research work was 
to make the comparison between VirtualBox and 
KVM. The secondary purpose was to compare the 
performance of virtualized and non virtualized 
guests. In the case of a virtualized environment, the 
abstraction layer between hardware resources and 
OS is obviously affecting the performance of the 

virtual guest. VirtualBox and KVM are both 
different technologies for full virtualization and 
KVM uses OS layer or paravirtualization approach 
whereas the VirtualBox uses the hardware layer 
virtualization. This different approach of 
virtualization might have created the difference in 
performance. Experimental results show that:        
1) Disk I/O is a performance bottleneck and the 
latencies of process create and context switch are 
two main factors that perplex the performance of  
virtual machine system; 2) The optimized network 
I/O processing mechanism in KVM can achieve 
better efficiency compared to VirtualBox  since the 
I/O mechanism of bare metal hardware full 
virtualization can cause fewer traps than emulated 
I/O mechanism of VirtualBox ,which performs 
better performance in inter-domain communication; 
3) Different forms of communication overheads 
(MPI communication, network communication, 
etc.,) in multiple virtual machine system are the 
main bottleneck for VirtualBox, which cause huge 
L2 cache miss rate. Hence one can conclude that 
different virtualization solution can be implemented 
within a cloud; The usage of virtualization 
introduces a degradation of performances because it 
introduces additional overhead. Virtualization 
affects CPU usage, network, memory and storage 
performances as well as applications performances. 
Within virtualization great performances depend 
essentially of the tasks scheduling and the workload 
on the system.  
      As full virtualizations credit is in running 
heterogeneous OS environments, we have planned 
to extend this performance study in various OS. 
Additionally, the server consolidation experimental 
works can be carried out with CPU, input/output, 
Hard Disk Drive and network intensive workload. 
Further it can be analyzed with various benchmarks 
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and configuration settings, (e.g., KVM only tested 
using full virtualization I/O mechanism).  
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