
Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

556

A PERFORMANCE STUDY OF HARDWARE IMPACT ON
FULL VIRTUALIZATION FOR SERVER CONSOLIDATION

IN CLOUD ENVIRONMENT
1S.SURESH, 2M.KANNAN

1Associate Professor, Department of CSE, Adhiyamaan College of Engineering, Hosur-635109,Tamil Nadu
2Professor, Department of IT, Sri Ramakrishna Institute of Technology, Coimbatore-641 010,India

E-mail: 1ssuresh.siv.72@gmail.com, 2kannankrish68@yahoo.com

ABSTRACT

Underutilization of hardware resources has always been a problem in single workload driven traditional OS
environment. To improve resource utilization, virtualization of multiple VMs and workloads onto the same
host with the aid of Hypervisor has been the recent trend. Its use cases such as server consolidation, live
migration, performance isolation and on-demand server provisioning make it as a heart part of enterprise
application cloud. Cloud is an on-demand, service provisioning technology, where performance plays a
vital role for user acceptance. There are numerous virtualization technologies are available from full
virtualization to paravirtualization, each has its strength and weakness. As performance study is an ongoing
pursuit, hardware and software development getting matured day by day, it is desirable to do this sort of
performance study in regular interval that often sheds new light on aspects of a work not fully explored in
the previous publication. Hence, this paper focus performance behaviours of various full virtualization
models such as hosted (VirtualBox) and bare metal (KVM) virtualization using variety of benchmarks from
micro, macro and application level in the cloud environment. We compare both virtualization solutions
with a base system in terms of application performance, resource consumption, low-level system metrics
like context switch, process creation, interprocess communication latency and virtualization-specific
metrics like virtualization layer consumption. Experimental results yield that VirtualBox outperforms KVM
in CPU and thread level parallelism and KVM outperforms in all other cases. Both are very reluctantly
accepted for disk usages comparing with native system.

Keywords: Full Virtualization, VirtualBox, KVM, Server Consolidation, Performance

1. INTRODUCTION

Virtualization provides an abstract way for

different servers to co-exist on the same server
machine and share resources, while the underlying
virtualization layer offers isolation and performance
guarantees. The building block of this abstraction is
the virtual machine (VM), which can accommodate
the whole server application or parts of it. Multiple
different server applications, even running on
heterogeneous operating systems can be hosted by
the same physical machine. Hence server
consolidation is defined as the process of
encapsulating single server workload into VMs and
running them in a shared hardware platform via,
virtual machine monitor (VMM) or hypervisor.
That simplifies load balancing, dealing with
hardware failures and eases system scaling. In
addition to share resources promises a more
efficient usage of available hardware.

Virtualization is the engine that drives cloud
computing [1],[2] by turning the data center into

self-managing, highly scalable, highly available,
pool of easily consumable resources. Virtualization
and, by extension, cloud computing provide greater
automation opportunities that reduce administrative
costs and increase the company’s ability to
dynamically deploy solutions. By being able to
abstract the physical layer away from the actual
hardware, cloud computing creates the concept of a
virtual data center, a construct that contains
everything in physical data center. While there are
currently a number of virtualization technologies
available today, the virtualization technique of
choice for most open platforms over the past years
have typically been the Xen hypervisor because of
its performance. Though paravirtualization
performance was slightly better than full
virtualization, full virtualizations strength on
paravirtualization is superior security, it’s
cleanliness diagram, heterogeneity OS support and
hardware advancement get the attention of the
enterprise to switch to the full virtualization.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

557

The combination of new CPU architectures
with embedded virtualization support and advances
in hypervisor design have eliminated many of their
performance overheads. Despite this, popular
hypervisors still exhibit different levels of
performance. To understand the relative strengths
and weaknesses of different hypervisors, in this
paper we perform an extensive performance
comparison of two open source full virtualization
platforms VirtualBox and KVM. Hence, this sort of
performance study often sheds new light on aspects
of a work, not fully explored in the previous
publications[3].The objective of this research work
is to figure out the following questions: a)The
performance degradation of virtual machine against
physical machine? b) How much difference
between different virtualization technologies?
c) What factors lead to the performance loss of
virtualization systems? We limit our performance
analysis to open-source full virtualization solutions
with hardware support, as their user license allows
us to publish the results without any restriction. The
focus of our analysis is on the virtualization of 64-
bit guests over 64-bit hosts. Our study was
motivated by the interests in using virtualization
technology in both single and multiple virtual
machine system.

Our paper specifically make the following
contributions: a) we’ve described tools to measure
performance, ranging from the general to the
specific, and from the hardware focused to the
application oriented b) we present a detailed
measurement based performance characterization of
the typical server virtualization workloads. c) We
show VM workload interactions and interference
under different degrees of resource sharing.
d) Based on the earlier observations, in this paper,
we evaluate two representative full virtualization
technologies, VirtualBox and KVM, in various
configurations. We consolidate three more VM
systems to drive the system with and without
workload. We compare both technologies with a
base system in terms of application performance,
resource consumption, low-level system metrics
like context switch, inter process communication
latencies and virtualization-specific metrics like
virtualization consumption.

 We discuss the related research efforts in
Section 2. We provide background of full
virtualization technologies and hardware
enhancements in Section 3. Section 4 presents our
evaluation approach and findings of a
measurement-based study are reported in Section 5.
We conclude with a discussion of findings and
future directions of this work in Section 6.

2. RELATED WORK

There are lot of works are carried out in
performance study in all aspects, ranging from
performance study of single hypervisor or multiple
hypervisor and reducing the overhead incurred by
the virtualization layer and characterize and analyze
the performance impact of various types of
workloads on VMs.

In [4] authors have compared performance of
software VMM with new designed VMM that
employs recent hardware extensions support. The
experiments result different from the perception,
hardware VMM fails to provide a certain
performance enhancement. The reasons cause this
situation is analyzed in the paper. Barham et al. [5]
present a comprehensive introduction to the Xen
hypervisor and compare its performance to a native
system, the VMware workstation and a User-Mode
Linux at a high level of abstraction. They show that
the performance is practically equivalent to a native
Linux system and state that the Xen hypervisor is
very scalable. Deshane [6] presented an
independent research describing the performance
comparison between Xen and KVM, which
evaluated the overall performance, security
impacts, performance isolation and scalability of
Xen and KVM. In [7], Menon et al. present a
diagnosing performance overhead method about
resource scheduling in the Xen virtual machine
environment. In this method, a toolkit is used to
analyze performance overheads incurred by
networking applications running in Xen VMs. The
toolkit enables coordinated profiling of multiple
VMs in a system to obtain the distribution of
hardware events such as clock cycles and cache and
TLB misses. In [8], Ye et al. provide a framework
to analyze the performance of virtual machines
system, which is based on the queuing network
models. In the framework, the virtual machines
either do not run at all or just monitor the virtual
machines instead of the hypervisor. Apparao et al.
[9] analyze the performance characteristic of a
server consolidation workload. Their results show
that most of the performance loss of CPU intensive
workloads is caused by cache and core
interferences. However, since the publication of
these results, the considered virtualization
platforms have changed a lot (e.g., hardware
support was introduced) which renders the results
outdated. Hence, the results of these works must be
revised especially to evaluate the influences of, e.g.,
hardware support.Tickoo et al. [10] identifies the
challenges of modeling the contention of the visible
and invisible resources and the hypervisor. In their

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

558

consecutive work based on measure and model the
influences of VM shared resources. They show the
importance of shared resource contention on virtual
machine performance and model cache and core
effects, but no other performance-influencing
factors. In [11], authors have mentioned their clear
procedure and result of benchmarking to analyze
performance of openVZ, Xen and KVM
hypervisors. In their research, a combine result of
processor performance, network performance,
database server performace, disk performance has
reflected the overall system performance. Low-
level benchmarking like context switching has
revealed the micro performance of system. Authors
[12] have described benchmarking tools; Linpack,
Lmbench and IOzone in their paper. They have
provided a series of performance experiment during
the testing of Xen and KVM hyprevisors. By doing
CPU overhead analysis, memory bandwidth
analysis, I/O operating analysis, they have tried to
figure out main source of the total virtualization
overhead. In this paper [13], author use the
automated experimental analysis approach to
evaluate its applicability to Citrix XenServer and
VMware ESX. His aim is to build a generic model
which enables the prediction of performance
overheads on different virtualization platforms. In
addition, they evaluate various performance
influencing factors like scheduling parameters,
different workload types and their mutual
influences, and scalability and over commitment
scenarios using passsmark and Iperf.In [14] author
quantify, model and predict the virtualization
performance overhead by capturing the
performance relevant factors explicitly and focus on
specific aspects using queueing network models.
They claimed significant improvements in the
prediction accuracy in their approach by evaluating
for various scenarios based on the
SPECjEnterprise2010 standard benchmark and
XenServer. In [15] author has performed an
extensive performance comparison using under
hardware-assisted virtualization settings for
different virtualization solutions, Hyper-V, KVM,
vSphere and Xen. They use a component-based
approach that isolates performance by resource
such as CPU, memory, disk, and network. Further
they study the level of performance isolation
provided by each hypervisor to measure how
competing VMs may interfere with each other and
find that the overheads incurred by each hypervisor
can vary significantly depending on the type of
application and the resources assigned to it.

 Still, none of the researchers are aware to
address some major issues on virtualization

performance collectively, such as consolidation
issue (with and without workload), benchmark
issue (ranging from system level, component level,
application level from simple to multi threaded) and
interference issue, etc., with the recent hardware
and software advancements. Further, one can see a
lot of papers on KVM and a few on VirtualBox
virtualization solutions.

3. OVERVIEW OF FULL

VIRTUALIZATION TECHNOLOGIES

 Hardware virtualization means abstracting
functionality from physical components. This
principle is used for sharing hardware by multiple
logical instances with the help of the virtual
machine monitor / hypervisor. The hypervisor gives
each guest domain a portion of the full physical
machine resources. Multiple guests running on the
same physical machine must share the available
resources. Therefore, the hypervisor does not
generally expose the full power of the underlying
machine to any one guest. Instead, it allocates a
portion of the resources to each guest domain. It
can either attempt to partition resources evenly or
in a biased fashion to favour some guests over
others. It grants each guest a limited amount of
memory and allows each guest only its fair share of
the CPU. Similarly, it may not want all guests to
have access to every physical device in the system
and thus it only exposes the devices it wants each
guest to see. Sometimes, it may even create virtual
devices that have no corresponding underlying
physical device—for example, a virtual network
interface [16]. There are two forms of full
virtualization available.

3.1 Type 1 or Bare-metal Architecture

In this architecture, virtual machine monitor is
responsible for controlling the operating system
environment by scheduling and allocating resources
to all virtual machines running in the system. It is
believed that this hypervisor delivers high
performance and better scalability.
3.1.1 KVM

KVM (Kernel-based Virtual Machine) [17] is
an open-source hypervisor using full virtualization
capable of running heterogeneous VMs. As a kernel
driver added into Linux, KVM enjoys all
advantages of the standard Linux kernel and
hardware-assisted virtualization KVM introduces
virtualization capability by augmenting the
traditional kernel and user modes of Linux with a
new process mode named guest, which has its own
kernel and user modes and answers for code

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

559

execution of guest operating systems.KVM
comprises two components: one is the kernel
module and another one is userspace. Kernel
module (namely kvm.ko) is a device driver that
presents the ability to manage virtual hardware and
see the virtualization of memory through a
character device /dev/kvm. With /dev/kvm, every
virtual machine can have its own address space
allocated by the Linux scheduler when being
instantiated. The memory mapped for a virtual
machine is actually virtual memory mapped into the
corresponding process. Translation of memory
address from guest to host is supported by a set of
page tables.KVM can easily manage guest
Operating systems with kill command and
/dev/kvm.User-space takes charge of I/O
operation‘s of virtualization. Further, it also
provides a mechanism for user-space to inject
interrupts into guest operating systems. User-space
is a lightly modified QEMU, which exposes a
platform virtualization solution to an entire PC
environment including disks, graphic adapters and
network devices. Any I/O requests of guest
operating systems are intercepted and routed into
user mode to be emulated by QEMU.

3.2 Type 2 or Hosted Architecture

The principle of this architecture is that virtual
machine monitor runs on extended host under the
host operating system, which means that hypervisor
runs as an application on the host operating system
and guest operating system runs inside hypervisor.
In this approach, hypervisor has higher privilege
level than guest OS kernel, and it separates the
operating system from the hardware resource
logically. In full virtualization technology, guest
OS kernel does not need to modify, hence it not
only reduces managing efforts but also allows
creating virtual environment using operating
systems of close-source type. Unlike
paravirtualization, it facilitates modularization by
separating hardware and/or software into functional
components thus customization of VM’s setup is
possible. Full-virtualization also offers secured
migration and delivers perfect isolation of guest OS
from the underlying hardware so that its instance
can run on both virtualized and non-virtualized
conditions. Unfortunately, its layered architecture
possesses security management complexity and
incurs performance penalty. Furthermore, it
delivers high system overhead, as it is responsible
for caring all the system activity through the
hypervisor.

3.2.1 VirtualBox
Oracle VM VirtualBox [18] is an x86 cross

platform open source virtualization software
package. VirtualBox is a so-called "hosted"
hypervisor, a software technology that can run
without the hardware help but capable of using
hardware extensions. The CPU extensions let it to
run its guest OS, running in ring 1, is reconfigured
to execute in ring 0 on the host hardware when OS
request trap to VMM. As some code contains
privileged instruction must be intercepted and
rewritten to manipulate protected resources which
cannot run natively in ring 1, VirtualBox employs a
Code Scanning and Analysis Manager (CSAM) to
scan the ring 0 code recursively before its first
execution to identify problematic instructions and
then calls the Patch Manager (PATM) to perform
in-situ patching. This replaces the instruction with a
jump to a VM-safe equivalent compiled code
fragment in hypervisor memory. The guest user-
mode code, running in the ring 3, is generally run
directly on the host hardware at ring 3. In hardware
assisted emulation, it provides the option to enable
hardware virtualization on a per virtual machine
basis. On more recent CPU designs, VirtualBox is
also able to make use of nesting paging tables,
which can greatly accelerate hardware
virtualization since these tasks no longer need to be
performed by the virtualization software.

3.3 Hardware virtualization
 Recognizing the importance of virtualization,
hardware vendors Intel[19],AMD [20] have added
extensions to the x86 architecture that make
virtualization much easier. Intel’s Virtualization
Technology for x86 (VT-x) and AMD’s Secure
Virtual Machine (SVM). Both provide a higher
privilege mode than ring 0, in which a hypervisor
can sit without having to evict the kernel from ring
0. This separation is particularly important on x86-
64, because it means that the kernel does not have
to run at the same privilege level as the
applications, and so no tricks are required to allow
it to poke around in their address spaces. These new
processors allow trapping of sensitive events. This
eliminates the need for binary translation and
simplifies the hypervisor. The biggest difference
between Intel’s VT-x and AMD’s SVM comes is,
AMD moved the memory controller on-die,
whereas Intel kept theirs in a discrete part. Hence,
AMD was able to add some more advanced modes
for handling memory. With VT-x, one simply set a
flag that causes page table modifications to be
trapped. SVM provides two hardware-assisted
modes. The first, Shadow Page Tables allows the

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

560

hypervisor to trap whenever the guest OS attempts
to modify its page tables and change the mapping
itself. This is done, in simple terms, by marking the
page tables as read only, and catching the resulting
fault to the hypervisor, instead of the guest
operating system kernel. The second mode is a little
more complicated. Nested Page Tables allow a lot
of this to be done in hardware. Nested page tables
do exactly what their name implies; they add
another layer of indirection to virtual memory. The
MMU already handles virtual to physical
translations as defined by the OS. Now, these
“physical” addresses are translated to real physical
addresses using another set of page tables defined
by the hypervisor. Because the translation is done
in hardware, it is almost as fast as normal virtual
memory lookups. Memory handling and switching
is also boosted by tagged Translation Lookaside
Buffer (TLB) capabilities that map memory space
to the individual VM. This reduces memory
management and speeds up the switching process
between VMs. The other additional feature of
hardware extension to devices is that it specifies a
Device Exclusion Vector interface. This masks the
addresses that a device is allowed to write to, so a
device can only write to a specific guest’s address
space. Intel also introduced VT-d, which is Intel's
technology for Direct IO. These extensions allow
for devices to be assigned to virtual machines
safely. VT-d also handles Direct Memory Access
(DMA) remapping and the I/O translation look
aside buffer (IOTLB). DMA remapping prevents a
direct memory access from escaping the boundaries
of the VM. IOTLB is a cache that improves
performance. By comparison, the VT-d extensions
add virtualization support to Intel chipsets that can
assign specific I/O devices to specific VMs, while
the VT -c extensions bring better virtualization
support to I/O devices such as network
switches.AMD also introduced a new technology to
control access to I/O called I/O Memory
Management Unit (IOMMU), which is analogous
to Intel's VT-d technology. IOMMU is in charge of
virtual machine I/O, including limiting DMA
access to what is valid for the virtual machine,
directly assigning real devices to VMs.

4. EXPERIMENTAL METHODOLOGY

4.1 Experimental Setup
 All the experiments were conducted on physical
hardware configured with ASUSTek computer Inc
motherboard AMD64 780G chipset model
M5A78L-M Lx V2 AMD Fx-8150 Eight-core

desktop processor ,8 GB DDR3 RAM,L2 cache
2048 Kbytes,L3 8Mbytes ,100Mbits network card.
Both host and virtual machine is configured with 8
VCPUs and 2 GB RAM, 60GB HDD with Ubuntu
13.10 (Saucy Salamander). The virtualization
solutions considered are KVM 76, VirtualBox 4.2.
In all solutions we use hardware virtualization
support to virtualize 64-bit guests over a 64-bit
host. For the KVM and VirtualBox machines,
virtual NICs are using the default bridged network
driver. The cloud environment is emulated using
Dummynet [21] and the experimental setup mimic
as shown in the figure 1. Performance Baseline:
For establishing a performance baseline, we use
Ubuntu 13.10 Linux kernel without virtualization to
run all benchmarks with one to eight threads to
measure the scalability with respect to the number
of threads. For baseline network I/O measurement,
the client and server threads running on different
hosts connected through (emulated) WAN is taken.
The first sets of results represent the performance
of various benchmarks. Each benchmark was run a
total of 20 times, and the mean values taken with
error bars represented using the standard deviation
over the 20 runs.

4.2 Benchmarks

 We do micro, macro and application level
experimental studies to get idea on the behavioral
performance of full virtualization hypervisors in the
hardware experiments. In the first approach, the
system was considered as white-box for analyzing
its micro-performance by determining bandwidths
and latencies of system operations, such as process
latencies, IPC latencies, IPC bandwidth and context
switching etc.,. In next phase, the system was
considered as black box for analyzing its macro-
performance based on the memory, processor, disk
and network virtualization. Having tested the
effectiveness of VM, in order to discover how well
the VM performs when serving applications,
application benchmarking is carried out as it
measures computer system performance as a whole.
Our study was motivated by the interests in using
virtualization technology in both single multiple
virtual machine system. Hence micro benchmark
and macro benchmark is carried out in a single
virtual machine and application benchmark is
carried out in a multiple virtual machine system
(server consolidation) with and without workload.

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

561

Figure 1: Conceptual Diagram Of Cloud Computing.

4.3 Micro Benchmarks

 The benchmarks included in LMbench [22]
measure various operating system routines such as
context switching, local communications, memory
bandwidth, and file operations. Process benchmarks
are used to measure the basic process primitives,
such as creating a new process, running a different
program, and context switching. Process creation
benchmarks are of particular interest in distributed
systems since many remote operations include the
creation of a remote process to shepherd the remote
operation to complete. Context switching is
important for the same reasons. Interprocess
communication latency is important because many
operations control messages are to another process
(frequently to another system). The time to tell the
remote process to do something is pure overhead
and is frequently in the critical path of important
functions such as distributed applications (e.g.,
databases, network servers). From the micro-
performance data (table 1 and figure 2), we can find
that the latencies of process create and context
switch in virtualized environment fall behind native
environment with huge degree, which implies two
main factors that baffle the performance of
virtualization systems. Therefore, we may
preliminarily determine hardware page table
update, interrupt request and I/O are three main
performance bottlenecks for common virtualization
systems. As most high-cost operations involve
them, it’s critical for researcher and developer to
optimize the handle mechanism of hardware page
table update, interrupt request and I/O, etc.

4.3.1 Forkwait
 To magnify the differences between the two
VMMs, we use the familiar UNIX kernel
microbenchmark Forkwait, which stresses process
creation and destruction. Forkwait focuses intensely
on virtualization-sensitive operations, resulting in
low performance relative to native execution.
Measuring forkwait, our host required 94 seconds

to create and destroy 40000 processes. The KVM
on the other hand, took 232 seconds, while the
VirtualBox consumed a sobering 624 seconds.
Forkwait effectively magnifies the difference
between the two VMMs, the VirtualBox inducing
approximately 2.69 times greater overhead than the
KVM. Still, this program stresses many divergent
paths through both VMMs, such as system calls,
context switching, creation of address spaces,
modification of traced page table entries, and
injection of page faults.

Table 1: Kernel Operations Time (Micro Seconds)

 Ubuntu KVM VirtualBox

syscall 0.0537 0.0541 0.0596

read 0.1031 0.1056 0.1075

write 0.1251 0.1258 0.1457

stat 0.2484 0.2797 0.2920

fstat 0.0826 0.0929 0.1013

open/close 0.2282 0.2314 0.2532

sigl inst 0.1041 0.1193 0.1247

sigl hndl 0.8588 0.8393 0.8790

pipe 3.4782 3.49 16.4372

fork+exit 287.00 656.875 1785.0564

fork+exec 439.76 690.75 1819.6630

fork+sh 2917.00 4442.72 9057.9412

Figure 2: Context Switch Latency (Micro Seconds)

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

562

4.4 Macro Benchmarks
The methodology to performance comparison

of hypervisors is to drill down each resource
component one by one with a specific benchmark
workload. The components include CPU, memory,
disk I/O, and network I/O. Each component has
different virtualization requirements that need to be
tested with different workloads. We follow this
with a set of more general workloads representative
of higher-level applications.

4.4.1 Linux Kernel Compile

The kernel-build benchmark unarchieved the
Linux kernel source archieve, and build a particular
configuration. It heavily used the disk and CPU.
It executed many processes, exercising
fork(),exec(),the normal page fault handling code,
and thus stressing the memory subsystem; and
accessed many files and used pipes, thus stressing
the system-call interface. When running on Linux
3.6.5 on x86_64, the benchmark created around
4050 new processes, generated around 24k address
space switches (of which 20.4 k were process
switches), 4.65M system calls, 3.4M page faults,
and between 3.8k and 5.3k device interrupts.
We measured and compared benchmark duration
and CPU utilization and the result is shown in
figure 3 for various numbers of cores. For the
single core, KVM completes the job shortly over
VirtualBox and for 8 cores there isn’t huge
difference in completion time.

4.4.2 Bonnie++

One of the major factors in a machine’s overall
performance is its disk subsystem. By exercising its
hard drives, we can get a useful metric to compare
VMM instances with, say, virtual Box and KVM
guests. Bonnie++ [24] is a disk IO benchmarking
tool that can be utilized to simulate a wide variety
of different disk access patterns, usually more
efficient to define the workload characteristics such
as file size, I/O size, and access pattern, simulate a
targeted workload profile precisely.

Figure 3: Linux Compile Workloads

 Bonnie++ writes one or multiple files of variable
size using variable block sizes, attempts to measure
both random and sequential disk performance and
does a good job simulating real-world loads. Using
Bonnie++ to measure the random read, random
write and random readwrite performance of a given
disk subsystem for a file of 5 GB size at 32 KB I/O
size (these characteristics model a simple database)
would look as shown in figure 4. In all cases, both
VMMs reluctantly accepted in disk usages
comparing with native system.

4.4.3 Stream

A simple synthetic benchmark program that
measures sustainable memory bandwidth (in MB/s)
and the corresponding computation rate for simple
vector kernel. The stream [23] benchmark has four
operating modes: COPY a=b, SCALE a=q*b, SUM
a=b+c and TRIAD a=b+q*c. In this test, only the
copy mode rely more heavily on the CPU to do
some computations on the data being before writing
it to memory. This is in contrast to others which
measures transfer rates without doing any
additional arithmetic; it instead copies a large array
from one location to another. The benchmark
specifies the array so that it is larger than the cache
of the machine and structured so that data reuse is
not possible. Table 2 shows the memory
performance of two virtual machines for various
thread levels. We find the performance of both full
virtualizations is very close to the native which
means the memory virtualization efficiency is not
the bottleneck affecting the performance of cloud
applications.

4.4.4 Netperf

Netperf [25] is a network benchmark tool
measures the network throughput via TCP and UDP
protocols using various packet sizes. The primary
foci are bulk (aka unidirectional) data transfer and
request/response performance using either TCP or
UDP and the Berkeley Sockets interface.

Figure 4: Bandwidth Of Three Disk I/O Operations In

Bonnie++

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

563

Table 2: The Performance Comparison Of STREAM For Various Numbers Of Cores(Higher Values Are Better)
 2 Threads 4 Threads 8 Threads

Ubuntu VirtualBox KVM Ubuntu VirtualBox KVM Ubuntu VirtualBox KVM
Copy 11040.1 10470.3 9152.0 12476.7 11830.1 11429.1 12061.8 11396.2 10724.1
Scale 10581.0 9935.5 8628.4 12435.6 11821.0 11462.3 12046.9 11426.9 10649.8
Add 13919.2 13006.6 11664.0 13911.0 13412.5 12690.3 13478.4 12884.0 12435.1
Traid 13363.9 12432.3 10190.0 13971.8 13331.8 12420.5 13511.6 12804.8 12252.9

A test is based on the netperf TCP_STREAM

test that simulates large file transfer such as
multimedia streaming and FTP data
transfer.Without defining Message Size and
SocketSize, the maximum throughput per second is
measured from the client using emulated WAN
link, where the machines are connected via a
100Mbit connection, and netperf list an actual
throughput of 95.13, 91.61, 93.08 Mbits/sec for
Ubuntu, VirtualBox and KVM respectively.
Whereas, when the experiments are conducted for
inter VM communication for VirtualBox and KVM
the throughput is 453.29 and 528.64 Mbits/sec
respectively. The network throughput of KVM is
more than that of VirtualBox in all cases because of
QEMU. VirtualBox may have more overhead due
to the network transmission using the default
bridged network driver located in VMM. As, this
requires more levels of indirection compared to
KVM hypervisors, which in turn affects overall
throughput.

4.5 Application Benchmark Performance

Analysis

 Having tested the effectiveness of hypervisor,
we have to discover how well the VM performs
when serving applications. Application
benchmarking is a better way of measuring
computer system performance as it can present
overall system performance by testing the
contribution of each component of that system.
Hence, we want to be able to benchmark
VirtualBox versus KVM virtualization solutions (or
bare hardware) for various workloads because each
has its strengths and weaknesses compared to
another. These application benchmarks will help to
determine the best match of the VMM for
application. As a single application benchmarks
may not be a suitable workload to reveal a VM’s
ability in cloud infrastructures, we choose variety
of application like httperf[27] for web application,
MySQL-SysBench[28] for database workload and
POV-RAY[29] for rendering scene workload.

While our previous tests have only considered
a single VM running in isolation, it is far more
common for each server to run multiple VMs
simultaneously. As virtualization platforms attempt

to minimize the interference between these VMs,
multiplexing inevitably leads to some level of
resource contention. That is, if there is more than
one virtual machine which tries to use the same
hardware resource, the performance of one virtual
machine can be affected by other virtual machines.
Even though the schedulers in hypervisors mainly
isolate each virtual machine within the amount of
assigned hardware resources, interference still
remains in most of hypervisors. Hence application
benchmarks are conducted in single virtual
environment and server consolidated environment.
In server consolidated environment the experiment
is conducted in VM1 with all other virtual
machines are running with and without the
workload.The workload is generated using stress
[26] workload generated tool to determine how the
performance degrades as the host's load increases
for the various benchmarks. We performed an
experiment with single VM as the base case, to
check how reactively the algorithms behave
towards consolidation with or without workload.

There are three VMs -VM1, VM2 and VM3:
VM1 runs as a server (i.e., web server or database
server) is being accessed by a client through
emulated WAN link, and the other two are used for
interference generators using stress tool. The
experiment is divided into four phases: first a single
VM only runs; In the second phase, all VMs are
running with no workload; In the third phase, all
VMs are running with VM2 and VM3 ,are the
average workload generator, followed by the heavy
workload.

4.5.1 Httperf

Httperf [27] is a tool for measuring web server
performance that generates HTTP requests and
summarizes performance statistics. It supports
HTTP and SSL protocols and offers a variety of
workload generators. It is designed to run as a
single-threaded process using non-blocking I/O to
communicate with the server and with one process
per client machine, useful to figure out how many
users web server can handle before it goes casters-
up. It runs on client machines and generates
specified number of requests for web-servers in the
form of requests per second. The performance
characteristics of servers are measured in the form

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

564

of statistics associated with average response time
to a request. By varying the generated workloads,
we analyze the server physical resource usage,
response time and the comparative result is shown
in figure 5. From the figure 5 one can observe, for
the various test conditions both VirtualBox and
KVM moderately differs and for high workload
KVM response time abruptly increasing comparing
with VirtualBox.

4.5.2 MySQL-SysBench

SysBench [28] is a modular, cross-platform and
multi-threaded benchmark tool for evaluating OS
parameters that are important for a system to run a
MySQL database under intensive load to evaluate
the performance. The idea of this benchmark suite
is to quickly get an impression about system
performance without setting up complex database
benchmarks or even without installing a database at
all. SysBench, which was run on a separate client
machine, was configured to send multiple
simultaneous queries to the MySQL database with
zero think time. We used a simple database that fit
entirely in memory. As a result, these workloads
both saturated the virtual CPU and generated
network activity,with little disk I/O.For various
number of threads the experiment is conducted and
the comparative result of both are given in table 3.
KVM works good and equivalent to VirtualBox in
many cases, whereas VirtualBox dominates KVM
in high load condition. This is because KVM
depends on CPU extension whereas VirtualBox
doesn’t and utilizes the CPU cores well.

4.5.3 POV-RAY
 Persistence of Vision Ray-Tracer [29] creates
three-dimensional, photorealistic images using a
rendering technique called ray-tracing. This renders

a standard scene (povray -benchmark) and gives a
large number of statistics, ending with an overall
summary and rendering time in seconds. The non-
virtualized Ubuntu base linux took 830 seconds to
render the scence and the comparative result of
VirtualBox and KVM is given in table 4. As the
load increases both VirtualBox and KVM time
taken to render the scene is increasing gradually
and KVM works best in this case.

5. RESULTS AND DISCUSSIONS

 Our experimental results give a difficult image
about the relative performance of these two
hypervisors. Clearly, there is no ideal hypervisor
that is always the best choice; diverse applications
will benefit from different hypervisors depending
on their performance needs and the specific features
they require. Overall, KVM performs the best in
our tests, not surprisingly since KVM is bare-metal
architecture and designed based on the hardware
virtualization. However, VirtualBox outperforms
KVM in certain cases like thread level parallelism
and CPU related benchmarks (i.e., using all cores
and high load conditions). In general, we find that
CPU and memory related tasks experience the
lowest levels of overhead, although KVM
experiences CPU overheads when all of the
system’s cores are active. Performance diverges
more strongly for disk activities, where both exhibit
high overheads when performing all type of disk
operations. KVM also suffers in network
throughput, but performs much better than
VirtualBox. It is worth noting that we test KVM
using hardware-assisted full virtualization, whereas
the VirtualBox was originally developed for full
virtualization.

Figure 5: Response time characteristics

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

565

Table 3: Mysql-Sysbench Transactions Rate / Second For Server Consolidation With And

Without Workload (Higher Values Are Better)
 2 threads 4 Threads 8 Threads

VirtualBox KVM VirtualBox KVM VirtualBox KVM
VM1 200.37 215.22 329.06 349.12 137.74 531.56
VM1+VM2+VM3 201.20 217.13 326.57 356.91 137.23 544.71
Avg.Load 164.85 213.55 190.27 277.17 126.23 308.51
High Load 89.05 85.24 105.13 101.60 78.72 82.81

Table 4: POV-RAY Rendering Time (Seconds) For
Server Consolidation With And Without Workload

 Virtual
Box KVM

VM1 878 817
VM1+VM2+VM3 896 836

Avg. Load 1119 980
High load 1530 1276

 Our application level tests match these results,
with different hypervisors exhibiting dissimilar
overheads depending on the application and the
number of cores assigned to them. All of this
dissimilarity suggests that properly matching an
application to the right hypervisor is complicated,
but may well be worth the effort since performance
variation is high. We consider that future
management systems should be designed to take
advantage of this variety. To do so, works needed
to overcome the inherent challenges in managing
multiple systems with different APIs, and the
difficulty in determining what hypervisor best
matches an application’s needs. Virtual Machine
interference also remains a challenge for all of the
VMM tested, and is another area where properly
designed management systems may be able to help.
While we have taken every effort to configure the
physical systems and VMs running on them
identically, it is true that the performance of each
VMM can vary significantly depending on how it is
configured. However, this implies that there may be
even greater potential for variability between
hypervisors if they are configured away from their
default settings. Thus the aim of our work is not to
definitively show one hypervisor to be better than
the others, but to show that each have their own
strengths and weaknesses.

6. CONCLUSION AND FUTURE WORK

 The primary purpose of this research work was
to make the comparison between VirtualBox and
KVM. The secondary purpose was to compare the
performance of virtualized and non virtualized
guests. In the case of a virtualized environment, the
abstraction layer between hardware resources and
OS is obviously affecting the performance of the

virtual guest. VirtualBox and KVM are both
different technologies for full virtualization and
KVM uses OS layer or paravirtualization approach
whereas the VirtualBox uses the hardware layer
virtualization. This different approach of
virtualization might have created the difference in
performance. Experimental results show that:
1) Disk I/O is a performance bottleneck and the
latencies of process create and context switch are
two main factors that perplex the performance of
virtual machine system; 2) The optimized network
I/O processing mechanism in KVM can achieve
better efficiency compared to VirtualBox since the
I/O mechanism of bare metal hardware full
virtualization can cause fewer traps than emulated
I/O mechanism of VirtualBox ,which performs
better performance in inter-domain communication;
3) Different forms of communication overheads
(MPI communication, network communication,
etc.,) in multiple virtual machine system are the
main bottleneck for VirtualBox, which cause huge
L2 cache miss rate. Hence one can conclude that
different virtualization solution can be implemented
within a cloud; The usage of virtualization
introduces a degradation of performances because it
introduces additional overhead. Virtualization
affects CPU usage, network, memory and storage
performances as well as applications performances.
Within virtualization great performances depend
essentially of the tasks scheduling and the workload
on the system.
 As full virtualizations credit is in running
heterogeneous OS environments, we have planned
to extend this performance study in various OS.
Additionally, the server consolidation experimental
works can be carried out with CPU, input/output,
Hard Disk Drive and network intensive workload.
Further it can be analyzed with various benchmarks

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

566

and configuration settings, (e.g., KVM only tested
using full virtualization I/O mechanism).

REFERENCES:

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM,
Vol. 53, No. 4,2010, pp. 50–58.

[2] L. Wang, G. von Laszewski, A. J. Younge, X.
He, M. Kunze, and J. Tao, “Cloud Computing:
a Perspective Study,” New Generation
Computing, Vol. 28, Mar 2010, pp. 63–69.
[Online]. Available:
http://cyberaide.googlecode.com/svn/trunk/pap
ers/08-lizhe-ngc/08-ngc.pdf.

[3] B. Clark, T. Deshane, E. Dow, S. Evanchik, M.
Finlayson, J. Herne and J. Matthews, “Xen and
the Art of Repeated Research”, Proceedings of
the USENIX 2004 Annual Technical
Conference, FREENIX Track, June 2004,pp.
135-144.

[4] Keith Adams and Ole Agesen,” A comparison
of software and hardware techniques for x86
virtualization”, In ASPLOS-XII: Proceedings of
the 12th international conference on
Architectural support for programming
languages and operating systems,New York,
NY, USA, 2006, pp.2–13.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.
L. Harris, A. Ho,R. Neugebauer, I. Pratt, and
A. Warfield, “Xen and the art of
virtualization”, in Proceedings of the 19th
ACM Symposium on Operating Systems
Principles, New York, U. S. A., Oct. 2003, pp.
164–177.

[6] T. Deshane, Z. Shepherd, J. Matthews, M.
Ben-Yehuda, A. Shah, and B. Rao,
“Quantitative comparison of Xen and KVM,”
Xen Summit,Boston, MA, USA, 2008, pp. 1–2.

[7] Menon, J. R. Santos, Y. Turner, G. J.
Janakiraman, and W.Zwaenepoel, “Diagnosing
Performance Overheads in the Xen Virtual
Machine Environment”, Proceedings of the 1st
International Conference on Virtual Execution
Environments (VEE 2005), June 2005, pp.13-
23.

[8] D. S. Ye, Q. M. He, H. Chen, and J. H. Che,
“A Framework to Evaluate and Predict
Performances in Virtual Machines
Environment”, IEEE/IFIP International
Conference on Embedded and Ubiquitous
Computing, 2008. EUC '08. Dec. 2008, Vol. 2,
pp.375-380.

[9] P.Apparao, R.Iyer,X.Zhang,D.Newell, and
Adelmeyer, “Characterization & Analysis of a
Server Consolidation Benchmark”, In VEE,
2008.

[10] O.Tickoo., R.Iyer., R.Illikkal., and D. Newell,
”Modeling virtual machine performance:
Challenges and approaches”, In HotMetrics,
2009.

[11] Jianhua Che, Congcong Shi, Yong Yu,Weimin
Lin, “A Synthetical Performance Evaluation of
OpenVZ, Xen and KVM”, IEEE Asia-Pacific
Services Computing Conference, China, 2010,
pp.587-594.

[12] Dawei Huang, Jianhua Che, Qinming He,
Qinghua Gao, “Performance Measuring and
Comparing of Virtual Machine Monitors”,
IEEE/IFIP International Conference on
Embedded and Ubiquitous Computing,
2008,pp.381-386.

[13] N. Huber, M. von Quast, M. Hauck, and S.
Kounev, ”Evaluating and Modeling
Virtualization Performance Overhead for
Cloud Environments”, In Proceedings of the
International Conference on Cloud Computing
and Services Science (CLOSER 2011),
Noordwijkerhout, The Netherlands, May 7-9,
2011,pp.563 -573..

[14] F. Brosig, F. Gorsler, N. Huber, and S.
Kounev, ”Evaluating Approaches for
Performance Prediction in Virtualized
Environments”, In Proceedings of the IEEE
21st International Symposium on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS 2013),
San Francisco, USA, 2013.

[15] J.Hwang, S.Zeng, F.Wu, and T.Wood, “A
component-based performance comparison of
four hypervisors”, Integrated Network
Management (IM 2013),2013 IFIP/IEEE
International Symposium,2013, pp.269– 276.

[16] J E. Smith and R. Nair, “The Architecture of
Virtual Machines,” Computer, Vol. 38, No. 5,
2005, pp. 32–38.

[17] J. Watson, “Virtualbox: bits and bytes
masquerading as machines,” Linux Journal,
Vol. 2008, No. 166, 2008, pp.1.

[18] Kivity, Y. Kamay, D. Laor, U. Lublin, and A.
Liguori, “kvm: the Linux virtual machine
monitor,” in Proceedings of the Linux
Symposium, Vol.1, July. 2007, pp. 225–230.

[19] G. Neiger, A. Santoni, F. Leung, D.
Rodgers,R. Uhlig, “Intel(r) virtualization
technology: Hardware support for efficient
processor virtualization”, Intel Technology

Journal of Theoretical and Applied Information Technology
 28th February 2014. Vol. 60 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

567

Journal, Vol.10,No.3, August 2006, pp.167 -
178.

[20] AMD: AMD64 Architecture Programmer's
Manual Volume 2: System Programming,
September 2007.

[21] L. Rizzo, "Dummynet: a simple approach to
the evaluation of network protocols", ACM
SIGCOMM Computer Communication Review,
Vol.27, No.1, Jan. 1997, pp. 31-41.

[22] L. McVoy, C. Staelin, “lmbench: Portable
Tools for Perfor-mance Analysis,” Proceedings
of the 1996 USENIX Technical Conference,
San Diego, CA, January 1996, pp.279–295.

[23] McCalpin, D.John., "Memory Bandwidth and
Machine Balance in Current High Performance
Computers", IEEE Computer Society Technical
Committee on Computer Architecture (TCCA)
Newsletter, December 1995. [Online].
Available:
"http://www.cs.virginia.edu/stream/".

[24] Bonnie++, “Disk I/O and file system
benchmark”, [Online]. Available:
http://www.coker.com.au/bonnie++/

[25] Hewlett-Packard Company, "Netperf: A
Network Performance Benchmark," February
1995. [Online]. Available:
http://www.netperf.org/netperf/training/Netperf
.html.

[26] Stress tool. [Online]. Available:
http://weather.ou.edu/_apw/projects/stress/

[27] D. Mosberger and T. Jin, “httperf-a tool for
measuring web server performance,”
SIGMETRICS Perform. Eval. Rev., Vol. 26,
No. 3, Dec. 1998, pp.31–37. [Online].
Available:
http://doi.acm.org/10.1145/306225.306235

[28] A.Kopytov,Sysbench, [Online]. Available:
http://sysbench.sourceforge.net/.

[29] Andrew S. Glassner, “An Introduction to Ray
tracing”, Academic Press 1989, ISBN 0-12-
286160-4.

