
Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

REAL CODED GENETIC ALGORITHM (RCGA): A NEW
RCGA MUTATOR CALLED SCALE TRUNCATED PARETO

MUTATION

*1SIEW MOOI LIM, 2MD. NASIR SULAIMAN, 3ABU BAKAR MD. SULTAN, 4NORWATI
MUSTAPHA, 5BIMO ARIO TEJO

1,2,3,4 Faculty Of Computer Science And Information Technology, Universiti Putra Malaysia, Malaysia
5 Centre For Infectious Diseases Research, Surya University, Indonesia

E-mail: *1limsm66@gmail.com, 2nasir@fsktm.upm.edu.my , 3abakar@fsktm.upm.edu.my ,

4norwati@fsktm.upm.edu.my, 5bimo.tejo@surya.ac.id
* Corresponding author

ABSTRACT

This paper presents a comparison in the performance analysis between a newly developed mutation
operator called Scaled Truncated Pareto Mutation (STPM) and an existing mutation operator called Log
Logistic Mutation (LLM). STPM is used with Laplace Crossover (LX) taken from literature to form a new
generational RCGA called LX-STPM. The performance of LX-STPM is compared with an existing RCGA
called LX-LLM on a set of 10 benchmark global optimization test problems based on a few performance
criterions to investigate the reliability, efficiency, accuracy and quality of solutions of both optimization
algorithms. The final outcomes show that LX-STPM is far superior than LX-LLM at all aspects.

Keywords: Real Coded Genetic Algorithms, Mutation Operator, Crossover Operator, Global Optimization

1. INTRODUCTION

 In light of continuous optimization, the
variables applied in the objective function can
assume real numbers, as opposed to discrete or
combinatorial optimization, in which the variables
may be binary or integer. As such, continuous
optimizations are compartmented into several
paradigms with certain assumptions differing in the
objective function, variables and constraints. In
fact, many real life problems are modeled as
continuous nonlinear optimization problems and
this study seeks to find the optimal solution to these
problems.

A global optimization problem is defined as:

given f : ℜn
→ ℜ a continuous function and S ⊂ ℜn,

find its global minimum f* = min { f (x): x ∈ S}
and the set X* of all global minimizers X*(f) = {x*
∈ S: f(x*) = f*} [1].

 Global optimization algorithms are mainly
categorized into deterministic and stochastic

approaches. A few common unconstrained
deterministic techniques are like Simplex Method,
Newton's Method, Quasi-Newton Methods and
Conjugate Direction Methods. These techniques
employ a rigid mathematical tabulation with no
irregular elements. Said algorithms primarily use
linear algebra to compute the gradient and Hessian
of the response variables. Most importantly, they
ensure a theoretical guarantee of finding the global
minimum if not the local minimum whose objective
function value differs by at worst ℰ from the global
one for a given ℰ > 0.

Commonly used stochastic algorithms include
Simulated Annealing, Particle Swarm
Optimization, Game Theory-Based Optimization
and Evolutionary Algorithms. Having said that,
stochastic techniques offer only a guarantee in
probability as it varies in the search procedure. The
use stochastic techniques are advantageous in that it
is less mathematically intricate, capable of an in-
depth search of the design space, quicker in

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

246

tracking a global optimum, capable of performing
on single and multi-objective optimization
problems, and it is more well-suited to black-box
formulations and glitch functions [2].

 Evolutionary algorithms (EAs) involve the
investigation of associated fields such as
developmental biology population ecology, co-
evolutionary biology and population genetics.
Many resources have been published on the theory
of evolution including Darwin [3], Huxley [4] and
Futuyma [5]. Scientific book publications such as
Dennett [6] and Dawkins [7] are also available.
Other seminal work by Koza [8] and Schwefel [9]
deliberate on genetic programming and evolution
strategies respectively.

 Fogel [10] offers a comprehensive review of
the history of research into the use of simulated
evolutionary processes for problem solving. Two
volumes of "Evolutionary Computation" by Bӓck,
Fogel and Michalewics [11, 12] covers the major
techniques, theory and application of the processes.
Prominent authors such as De Jong [13], Fogel [10]
and Eiben and Smith [14] are responsible for
modern books on the unified field of Evolutionary
Computation and Evolutionary Algorithms.

 Evolutionary algorithms (EA) consist of three
population based heuristic methodologies which are
genetic algorithms (GA), evolutionary
programming and evolutionary strategies. GA is a
programming method brought forth by Holland in
the 1960s [15]. GA is a group of biologically
motivated optimizations techniques that evolve a
population of individuals who would thrive in the
survival of the fittest going into the next generation.
The central operations of GA are reproduction,
crossover and mutation on populations. The
crossover operator takes two genotypes and
combines them to form a new one either by
merging or by exchanging the values of the genes.
The mutation operator modifies one or multiple
genes. In short, GA works in three (3) steps:

i) Form the problem and encode them into a set
of binary strings;

ii) Create a new population through reproduction
 and mating processes;
iii) Evaluate the fitness and select the new
 generation.

 The traditional and most common
representation in GAs is binary encodings which
they can be easily manipulated by reproduction

operators to almost any desired representation.
However, there persist several drawbacks of binary
genetic representations [16]. Binary coded
GAs (BCGA) are not proper for GAs searches and
they are not able to assure that using GAs to solve
problems of bounded complexity would be reliable
and predictable [17]. Furthermore, BCGA was
found to perform more effectively only on small
and moderate size problems which detail precision
in the solution are not critical. BCGA may
encounter certain intricacies dealing with
continuous search space. One difficulty which
arises is the Hamming cliffs associated with certain
strings, from which a transition to a neighboring
solution (in real space) requires alteration of many
bits. Gray code can alleviate the Hamming cliff
problem but it needs huge computations [18].

 The limitations of binary encoding are the main
reasons for developing algorithms using real
encoding of chromosomes representations. GAs
which make use of real number vector
representation of chromosomes are termed as Real
Coded GA (RCGA). RCGA is used in a lot of
applications and is recommended for optimization
problems where the parameter space is continuous
[19].

 Prior works on RCGA have been found to be
some specific applications, such as for chemometric
problems, for the use of metaoperators to find the
most adequate parameters for a standard GA, for
numerical optimization on constant domains, etc
[19, 20, 21, 22]. A review related to RCGA is
presented in [23]. Researches of RCGA in recent
years for function optimization have proven to
outperform traditional bit string based
representation [23, 24].

 Many RCGA researchers are shifting their
attention towards designing new crossover
operators to improve the performance of function
optimization [25]. There has also been studies
conducted on the varieties of mutation techniques
to improve the GAs performance [26].

The paper is presented as such:

Section 2 presents literature review on real coded
 mutation operators.
Section 3 describes the proposed STPM and other
 operators used in this study
Section 4 discusses the proposed new RCGAs.
Section 5 provides the 10 benchmarking functions.
Section 6 explains the experimental setup.

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

247

Section 7 includes discussions and explanation of
 results.
Section 8 reaffirms previous notions with a
 conclusion.

2. LITERATURE REVIEW ON MUTATION
 OPERATORS

 Mutation operation functions to alter the
offspring genes. A mutator will escalate the
diversity of the population and this inadvertently
allow GAs to explore and exploit the search space
[27]. Literature reviews on mutation operations
reported in [28, 29] encompasses random (uniform)
mutation, non-uniform mutation, breeder GA
mutation, boundary mutation, continuous modal
mutation, Gaussian mutation, pointed directed
mutation, discrete modal mutation, principal
component analysis mutation, polynomial mutation
operator, Makinen, Periaux and Toivanen mutation
and wavelet mutation. Albayrak and Allahverdi
[30] came up with a Greedy Sub Tour Mutation
(GSTM) which employs classical and greedy
techniques to find the shortest distance in the
traveling salesman dilemma.

 Several other forms of mutating operators
found in the literature include mirror mutation,
percentage mutation, edge mutation and tension
vector mutation. The operation of mirror mutation
and the binary bit-flipping mutation are similar.
The percentage mutation replaces a gene with a
random percentage of its value within the interval
[80%, 120%]. The edge mutation and the tension
vector mutation are based on the breadth-first (BF)
force-based and tension vector methods
respectively [31].

3. THE PROPOSED SCALED TRUNCATED
 PARETO MUTATION (STPM) AND
 OTHER OPERATORS USED IN THIS
 STUDY

3.1 STPM

 A Scaled Truncated Pareto Mutation operator
is proposed. This operator is built based on the
formula to generate Pareto random variables. The
truncated Pareto distribution has three parameters α,
L and H. α determines the shape, L denotes the
lower bound, and H denotes the higher (upper)
bound of the evaluation function to be optimised.

The probability density function is:

��������
1 � ��

�
��

where, � � � � 	, ��
	� � 0.
Applying inverse transformation, the equation for U
as uniformly distributed function is defined as:

� � 1 � �
����

1 � ��
�
��

Also, � is truncated Pareto distributed as:

|�| � ���	
� � ��� �	�
	��� ���

�

A modulus, |	�| is used to eliminate the possible
imaginary number produce by the algorithm. To
apply the Truncated Pareto Distribution as the
mutation operator, an adjustable scale,	� is
introduced. � is added to make sure that � is not
over-weighted. If � is over-weighted, there will be
a chance of good chromosomes being alter in the
process. Thus, the newly mutated offspring m is
defined as:

��|�|� � ����	
����,			��	�������
����,			��	���

where P is the parent, and � � �� � ��/�	 � ��,
to determine the direction of the mutation. By
experiment, � and α are best kept at 10�� and 3
respectively. Hence this mutation operator is
known as Scaled Truncated Pareto Mutation.

3.2. Laplace Crossover (LX)

 Deep and Thakur [25] advocated a new parent
centric real coded crossover operator, so named the
Laplace crossover (LX) as described below:

In LX, two offsprings C1 and C2 are generated from
a pair of parents K1 and K2 obtained after selection:

Generate a random number, � ∈ [0,1],

if � ≤ 0.5;

then C1 = K1 + β х d
 C2 = K2 + β х d

else if � > 0.5;

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

248

then C1 = K1 - β х d
 C2 = K2 - β х d

3.3. Log Logistic Mutation (LLM)

 Deep Kusum et al [32] suggested a distribution
mutation according to Log Logistic distribution. A
mutated solution, S is created in the area near the
solution Z as follows:

Generate a random number, � ∈ [0,1],

if �< T;
 then S = Z - λ (Z - L)

else if � ≥ T;

 then S = Z + λ (U - Z)

Where λ is a random number following Log

Logistic distribution, T =
���

���
 , L and U are the

lower and upper bounds of decision variable.

4. THE PROPOSED NEW RCGAS

 The objective of the present study is to
introduce a newly designed mutation operator,
STPM. STPM will make use of an existing
crossover found in the literature namely LX to form
a new RCGA namely LX-STPM. The performance
of LX-STPM will be evaluated and compared with
another RCGA from literature namely LX-LLM.
Both of the RCGAs employ the same crossover,
LX; therefore, a fair and unbiased comparison of
performance between the two mutators can be
made. Figure 1 shows the flow chart of both
RCGAs used in this comparative study.

5. TEN (10) BENCHMARKING FUNCTIONS

 This section presents 10 diverse and unbiased
chosen set of standard benchmark functions which
are used to examine the performance analysis of
LX-STPM and LX-LLM. These functions have
diverse properties in terms of complexity and
modality. The dimension, problem domain size and
optimal solution are denoted by D, L ≤ xi ≤ U and
f(x*) = f(x1, x2, x3...xn) respectively. L and U
represent the lower and upper bound of the
variables. Function no. 1 to 5 are nonscalable and
function no. 6 to 10 are scalable. That said, in a
scalable function, the number of decision variables
can be increased or decreased as per users desired.
The number of variables for all the scalable
benchmarking functions is fixed at 30. A

multimodal function has many local optima, but
only one global optimum. When the
dimensionality of a problem increases, the search
space will increase exponentially to the difficulty of
a problem. As such, the potential for separation is a
gauge of the difficulty of benchmark functions.
The properties involved in such processes to
determine the optimization level is elaborated in
[33].

5.1. The Formulas And Features Of The Five (5)
 Nonscalable Functions Are Given Below:

1. Easom 2D (Unimodal)

The global minimum has a small area relative to the
search space.

Min f (x) = -cos(x1)cos(x2)exp(-(x1-π)2-(x2-π)2)

subject to -10 ≤ x1, x2 ≤ 10. The global minimum is
located at x* = f (π, π) and f (x*) = -1

2. Becker and Lago (Unimodal)

Min f (x) = (|x1| - 5)2 + (|x2| - 5)2

subject to -10 ≤ x1, x2 ≤ 10. The function has four
minima located at x* = f (±5, ±5), all with f (x*) = 0

3. Bohachevsky 1 (Continuous, differentiable,
 separable, non-scalable, multimodal)

Min f (x) = x1

2 + 2x2
2 - 0.3cos(3πx1) - 0.4cos(4πx2) +

 0.7

subject to -50 ≤ x1, x2 ≤ 50. The global minimum is
located at x* = f (0, 0) and f (x*) = 0

4. Eggcrate (Continuous, separable, non-scalable)

Min f (x) = x1

2 + x2
2 + 25(sin2x1 + sin2x2)

subject to -2π ≤ x1, x2 ≤ 2π. The global minimum is
located at x* = f (0, 0) and f (x*) = 0

5. Periodic (Separable)

Min f (x) = 1 + sin2x1 + sin2x2 - 0.1exp(-x1

2 - x2
2)

subject to -10 ≤ x1, x2 ≤ 10. The global minimum is
located at x* = f (0, 0) and f (x*) = 0.9

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

249

5.2 The Formulas And Features Of Five (5)
 Scalable Functions Are Given Below:

6. Sphere (Continuous, differentiable, separable,

scalable, multimodal. This function is easily
converge to the global optimum)

Min	��x� � 	 ���
n

i=1

subject to -5.12 ≤ xi ≤ 5.12. The global minimum is
located at x* = f (0, 0, ..., 0) and f (x*) = 0

7. Rosenbrock (Continuous, differentiable, non-

separable, scalable, unimodal)

Min	��x� 	 	
�100�����	 �	����� �	��� � 1���
n-1

i=1

subject to -30 ≤ x1 ≤ 30. The global minimum is
located at x* = f (1, 1, 1, ..., 1) and f (x*) = 0

8. Rastrigin (Non-linear multimodal. This function

is fairly difficult due to the large search space and
large number of local minima.)

Min	��x� � 10n ! "��� � 10cos	�2'���(
n

i=1

subject to -5.12 ≤ xi ≤ 5.12, i = 1, ..., n. The global
minimum is located at x* = f (0, 0, ... , 0) and f
(x*) = 0

9. Schewefel problem 3 (Continuous, differentiable,

non-separable, scalable, unimodal)

Min	��x� � |��| !)��
�

���

n

i=1

subject to -10 ≤ x1 ≤ 10. The global minimum is
located at x* = f (0, 0, ... , 0) and f (x*) = 0

10. Griewank (Continuous, differentiable, non-

separable, scalable, multimodal)

Min	��x� � 1 ! 14000 ��
� �)cos +x�√i- 	

�

���

n

i=1

subject to -600 ≤ xi ≤ 600. The global minimum is
located at x* = f (0, 0, ..., 0) and f (x*) = 0

6. EXPERIMENTAL SETUP

 The primary setback of GA is its several tuning
variables which require proper setting. GAs major
control parameters and operations which have
significant impact on GA's solution quality includes
population size, number of generations, crossover
and mutation rates [34]. Both of the algorithms
used tournament selection and both algorithms are
elite preserving with elitism size one. Elitism
prevents losing the best found solution so it can
very rapidly increase performance of GA. A heavy
experimentation study of various possible
combinations of crossover probability, mutation
rate and tournament size were carried out to
determine the optimal parameter setting for both of
the RCGAs.

 The termination principles and populations size
were taken from [32]. The termination principles
depends on either an optimum solution found by
the algorithm lies within the specified accuracy
(0.01) of known optimum or the predetermined
maximum number of generations (3,000) is
reached, or whichever occurs earlier. Population
size is assumed as ten (10) times the number of
variables. Each GA has been run 100 times using
same initial populations; each run is initiated using
a different set of initial population.

 Table 1 shows the final parameter settings; Pc,
Pm and Ts represent crossover and mutation rate and
tournament size respectively. We recommend these
parameter settings for the present study based on
the positive results obtained for majority problems.
However, these parameters may not be suitable for
other problems in general. According to [35] there
has been no general conclusion drawn in relation to
the optimum parameterization of operators. Both
of the algorithms are implemented in MATLAB
2012 and the experiments are done on a Core i5
Processor with 2.40GHz speed and 4.00GB RAM
under Windows 7 platform.

7. RESULTS AND DISCUSSIONS

 The present study is aimed at measuring the
performance of the newly designed mutator, STPM
for the criterions of accuracy, efficiency, reliability
(robustness) and quality of solutions found. In this
case, accuracy is measured by the degree of
precision in locating global minima. Efficiency is
measured by the number of function evaluations
needed. Reliability (robustness) is measured by the
number of successes in finding the global

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

250

minimum, or at least approaching it sufficiently
closely. All the performance evaluation criteria are
calculated based on success run only and they are
logged for each algorithm and benchmark function.

When f (x)FoundOpt - f (x)KnownOpt ≤ 0.01, it is defined
as a success run, where f(x)FoundOpt is the optimum
value found when the algorithm terminates and
f(x)KnownOpt is the known global minimum of the
problem.

Success rate (SR) =
����� 	!�	"�##�""��$	 ��"

�!%&$	����� 	!�	 ��"
 x 100

Average error (AE) =
∑
�
��������	
	�	�
��������	
��

�

where, n is the total number of runs.

Average number of function evaluations (AFE).

 Table 2 shows the results of AFE and SR of all
the ten (10) problems for both of the algorithms. It
is observed that both algorithms are able to solve all
the ten (10) problems. LX-STPM requires less
function evaluation except function no 3. Both
algorithms achieved 100% success rate for seven
(7) of the problems (function no. 1, 2, 3, 4, 6, 8,
10). For the remaining three (3) problems (function
no. 5, 7 and 9), LX-STPM achieved higher success
rate. In 9 out of 10 problems, LX-STPM totally
outperforms LX-LLM on both of the criterions. It
proved that LX-STPM to be a more reliable and
efficient algorithm.

 Table 3 shows the results of mean, standard
deviation and AE of all the ten (10) problems for
both algorithms. Mean and standard deviation of
the objective functions are to compare the quality
of the solutions found. All the mean objective
function values and the corresponding standard
deviations achieved by LX-STPM are lower than
LX-LLM except function no 9. Furthermore, LX-
STPM produced lower average error for all the
problems, except function no. 3. In 8 out of 10
problems, LX-STPM totally outperforms LX-LLM
on all three criterions. It proved that LX-STPM to
be a more accurate algorithm.

8. CONCLUSIONS

 In this paper, a real coded mutation operator
called Scale Truncated Pareto Mutation (STPM) is
proposed. This operator is implemented based on
the formula to generate Pareto random variables.
The performance of STPM is compared with an
existing real coded mutation called Log Logistic

Mutation (LLM). In order to have a fair
comparison, both of the mutating operators made
use of the same crossover called Laplace Crossover
(LX) adapted from the literature. The performance
of the two real coded genetic algorithms (RCGAs)
which are LX-STPM and LX-LLM are tested on a
set of 10 benchmark global optimization test
problems. Optimal parameters were set up for both
of the RCGAs to run the experiments. Numerical
results presented in Table 2 shows that LX-STPM
outperformed LX-LLM in all aspects and proved its
reliability (robustness) and efficiency through the
evaluation performance of success rate (SR) and
average number of function evaluations (AFE)
respectively. In the same light, numerical results in
Table 3 shows that LX-STPM outperforms LX-
LLM in all aspects and proved its accuracy through
the evaluation performance of average error, mean
of objective function and its corresponding standard
deviation.

REFERENCES
[1] Lavor C, Maculan N. A function to test methods
 applied to global minimization of potential
 energy of molecules. Numerical Algorithms
 2004; 35: 287-300
[2] Liberti L, Kucherenko S. Comparison of
 deterministic and stochastic approaches to
 global optimization. International Transactions
 in Operational Research 2005; 12: 263-285
[3] Darwin C, Bynum WF. The origin of species by

 means of natural selection: or, the preservation

 of favored races in the struggle for life: AL

 Burt. 2009

[4] Huxley J. Evolution. The Modern Synthesis.
 Evolution.The Modern Synthesis. 1942
[5] D. Futuyma. Evolution: Sinauer Associates Inc.
 2009
[6] Dennett D. Darwin’s Dangerous Idea Simon &
 Schuster. New York 1995
[7] Dawkins R. The selfish gene: Oxford university
 press. 2006
[8] Koza JR. Genetic Programming: On the
 programming of computers by means of natural
 selection: MIT press. 1992
[9] Schwefel H. Numerical optimization of
 computer models: John Wiley & Sons, Inc. 1981
[10] Fogel DB. Evolutionary computation: toward
 a new philosophy of machine intelligence:
 Wiley-IEEE Press. 2006
[11] T. Back, D. B. Fogel and Z. Michalewics,
 editors. Evolutionary Computation 1: Basic
 Algorithms and Operator: IoP. 2000
[12] T. Back, D. B. Fogel and Z. Michalewics, e
 ditors. Evolutionary Computation 2:

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

251

 Advanced Algorithms and Operations: IoP.
 2000
[13] De Jong KA. Genetic Algorithms are NOT
 Function Optimizers. 1992: 5-17

[14] Eiben AE, Smith JE. Introduction to
 evolutionary computing: Springer Berlin.
 2010
[15] Holland JH. Adaption in Natural and
 Artificial Systems: University of Michigan
 press. 1975
[16] J. Antonisse. A new interpretation of schema
 notation that overturns the binary encoding
 constraint, in J.David Schaffer (Ed.) 1989, pp.
 86-91
[17] Liang Y, Leung K, Xu Z. A novel
 splicing/decomposable binary encoding and
 its operators for genetic and evolutionary
 algorithms.. Applied mathematics and
 computation 2007; 190: 887-904
[18] Jin J, Yang X, Ding J. An improved simple
 genetic algorithm—accelerating genetic
 algorithm. Theory and Practice of System
 Engineering 2001; 4: 8-13
[19] Z. Michalewicz. Genetic algorithms + data
 structures = evolution programs: Springer.
 1996
[20] Lucasius CB, Kateman G. Application of
 genetic algorithms in chemometrics 1989:
 170-176
[21] Davis L. Adapting operator probabilities in
 genetic algorithms 1989: 61-69
[22] Wright AH. Genetic Algorithms for Real
 Parameter Qptimization, in: G.J.E. Rawlins
 (Ed.). Foundations of Genetic algorithms I,
 1990: 205-218
[23]Herrera F, Lozano M, Verdegay JL. Tackling
 real-coded genetic algorithms: Operators and
 tools for behavioural analysis. Artificial
 Intelligence Review 1998; 12: 265-319
[24] Ono I, Satoh H, Kobayashi S. A real-coded
 genetic algorithm for function optimization
 using the unimodal normal distribution
 crossover. Transactions of the Japanese Society
 for Artificial Intelligence 1999; 14: 1146-1155
[25] Deep K, Thakur M. A new crossover operator
 for real coded genetic algorithms. Applied
 Mathematics and Computation 2007; 188: 895-
 911
[26] Tang P, Tseng M. Adaptive directed mutation
 for real-coded genetic algorithms. Applied Soft
 Computing 2012
[27] I. Korejo, S.Yang, C. Li. A directed mutation
 operator for real coded genetic algorithms, in:

 C. Di Chio, et al. (Eds.). Evo Applications, Part
 I, LNCS 6024 2010: 491-500
[28] Deep K, Thakur M. A new mutation operator
 for real coded genetic algorithms. Applied
 mathematics and Computation 2007; 193: 211-
 230
[29] D.K. Pratihar. . Soft Computing, Alpha
 Science Internatioanl Ltd., Oxford, UK 2008
[30] Albayrak M, Allahverdi N. Development a
 new mutation operator to solve the Traveling
 Salesman Problem by aid of Genetic
 Algorithms. Expert Systems with Applications
 2011; 38: 1313-1320
[31] Vrajitoru D, DeBoni J. Hybrid real-coded
 mutation for genetic algorithms applied to
 graph layouts 2005: 1563-1564
[32] Deep K, Katiyar V. A new real coded genetic
 algorithm operator: log logistic mutation
 2012: 193-200

[33] Jamil M, Yang X. A literature survey of
 benchmark functions for global optimisation
 problems. International Journal of
 Mathematical Modelling and Numerical
 Optimisation 2013; 4: 150-194
[34] Kolahan F, Doughabadi MH. The effects of
 parameter settings on the performance of
 Genetic Algorithm through experimental
 design and statistical analysis. Advanced
 Materials Research 2012; 433: 5994-5999
[35] Digalakis J, Margaritis K. On benchmarking
 functions for genetic algorithms. International
 journal of computer mathematics 2001; 77:
 481-506

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

252

Begin

(Initialization)
Initialize population
Set Generation = 0

(Evaluation)
Evaluate the fitness for each individual

 (Termination check) Yes Stop
 Termination criteria satisfied?

 No

(Assign fitness)
Select individual using Tournament

selection to build a mating pool

(Crossover)
Crossover the population in mating pool

with optimum crossover probability

(Mutation and replacement)
Mutate the current population

with optimum mutation probability and
apply elitism with size one

(Evaluation)
Evaluate the best fitness and

final optimal individual
Generation = Generation + 1

Figure 1: Flow Chart Of Both RCGAs Used For Comparative Study

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

253

Table 1: Parameter Setting For LX-STPM And LX-LLM

GA name Nonscalable Scalable
 Pc Pm Ts Pc Pm Ts
LX-STPM 0.65 0.02 3 0.7 0.003 5
LX-LLM 0.70 0.02 3 0.65 0.003 4

Table 2: Computational Results Of Average Function Evaluation And Success Rate For All Ten (10) Problems

Function
number

Average Function Evaluation Success Rate
LX-STPM LX-LLM LX-STPM LX-LLM

F1 129 325 100 100
F2 183 282 100 100
F3 636 528 100 100
F4 249 452 100 100
F5 103 883 80 64
F6 29,036 35,357 100 100
F7 152,254 183,475 85 72
F8 111,848 170,659 100 100
F9 40,573 50,598 95 86
F10 60,392 85,923 100 100

Table 3: Computational Results Of Mean Of Objective Function And Its Corresponding Standard Deviation And
 Average Error For All Ten (10) Problems.

Function
number

Mean Standard deviation Average Error
LX-STPM LX-LLM LX-STPM LX-LLM LX-STPM LX-LLM

F1 -9.98719E-01 -9.91523E-01 3.32749E-03 3.85425E-03 0.00528 0.00531
F2 6.17831E-03 8.18410E-03 2.87192E-03 5.04177E-03 0.00418 0.00556
F3 4.10057E-03 5.23552E-03 2.89004E-03 3.55337E-03 0.00610 0.00521
F4 3.06635E-03 4.46216E-03 1.51638E-03 3.19989E-03 0.00446 0.00583
F5 9.00470E-01 9.05827E-01 1.68268E-03 2.57211E-03 0.00047 0.01331
F6 5.65324E-03 5.72380E-03 3.53404E-03 4.07646E-03 0.00565 0.00731
F7 6.38204E-03 9.43741E-03 2.95392E-03 4.29061E-03 0.00638 0.01892
F8 7.44700E-03 8.56542E-03 1.55854E-03 2.99504E-03 0.00545 0.00621
F9 6.53018E-03 4.87891-E03 2.17720E-03 1.48336E-03 0.00653 0.00712
F10 7.92909E-03 9.71529-E03 5.16224E-05 9.12719E-05 0.00921 0.00997

