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ABSTRACT 

This paper presents a comparison in the performance analysis between a newly developed mutation 
operator called Scaled Truncated Pareto Mutation (STPM) and an existing mutation operator called Log 
Logistic Mutation (LLM).  STPM is used with Laplace Crossover (LX) taken from literature to form a new 
generational RCGA called LX-STPM.  The performance of LX-STPM is compared with an existing RCGA 
called LX-LLM on a set of 10 benchmark global optimization test problems based on a few performance 
criterions to investigate the reliability, efficiency, accuracy and quality of solutions of both optimization 
algorithms.  The final outcomes show that LX-STPM is far superior than LX-LLM at all aspects.  

Keywords: Real Coded Genetic Algorithms, Mutation Operator, Crossover Operator, Global Optimization 

 
1. INTRODUCTION 

 In light of continuous optimization, the 
variables applied in the objective function can 
assume real numbers, as opposed to discrete or 
combinatorial optimization, in which the variables 
may be binary or integer. As such, continuous 
optimizations are compartmented into several 
paradigms with certain assumptions differing in the 
objective function, variables and constraints. In 
fact, many real life problems are modeled as 
continuous nonlinear optimization problems and 
this study seeks to find the optimal solution to these 
problems.  

A global optimization problem is defined as: 

given f : ℜn 
→ ℜ a continuous function and S ⊂ ℜn, 

find its global minimum f* = min { f (x): x ∈ S} 
and the set X* of all global minimizers  X*( f) = {x* 
∈ S: f(x*) = f*} [1]. 

 Global optimization algorithms are mainly 
categorized into deterministic and stochastic 

approaches.  A few common unconstrained 
deterministic techniques are like Simplex Method, 
Newton's Method, Quasi-Newton Methods and 
Conjugate Direction Methods.  These techniques 
employ a rigid mathematical tabulation with no 
irregular elements. Said algorithms primarily use 
linear algebra to compute the gradient and Hessian 
of the response variables. Most importantly, they 
ensure a theoretical guarantee of finding the global 
minimum if not the local minimum whose objective 
function value differs by at worst ℰ from the global 
one for a given ℰ > 0.   

  

Commonly used stochastic algorithms include 
Simulated Annealing, Particle Swarm 
Optimization, Game Theory-Based Optimization 
and Evolutionary Algorithms. Having said that, 
stochastic techniques offer only a guarantee in 
probability as it varies in the search procedure.  The 
use stochastic techniques are advantageous in that it 
is less mathematically intricate, capable of an in-
depth search of the design space, quicker in 
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tracking a global optimum, capable of performing 
on single and multi-objective optimization 
problems, and it is more well-suited to black-box 
formulations and glitch functions [2]. 

 Evolutionary algorithms (EAs) involve the 
investigation of associated fields such as 
developmental biology population ecology, co-
evolutionary biology and population genetics.  
Many resources have been published on the theory 
of evolution including Darwin [3], Huxley [4] and 
Futuyma [5].  Scientific book publications such as 
Dennett [6]  and Dawkins [7] are also available.  
Other seminal work by Koza [8] and Schwefel [9] 
deliberate on genetic programming and evolution 
strategies respectively.   

 Fogel [10] offers a comprehensive review of 
the history of research into the use of simulated 
evolutionary processes for problem solving. Two 
volumes of "Evolutionary Computation" by Bӓck, 
Fogel and Michalewics [11, 12] covers the major 
techniques, theory and application of the processes.  
Prominent authors such as De Jong [13], Fogel [10] 
and Eiben and Smith [14] are responsible for 
modern books on the unified field of Evolutionary 
Computation and Evolutionary Algorithms.  

 Evolutionary algorithms (EA) consist of three 
population based heuristic methodologies which are 
genetic algorithms (GA), evolutionary 
programming and evolutionary strategies.  GA is a 
programming method brought forth by Holland in 
the 1960s [15]. GA is a group of biologically 
motivated optimizations techniques that evolve a 
population of individuals who would thrive in the 
survival of the fittest going into the next generation.  
The central operations of GA are reproduction, 
crossover and mutation on populations.  The 
crossover operator takes two genotypes and 
combines them to form a new one either by 
merging or by exchanging the values of the genes.  
The mutation operator modifies one or multiple 
genes.  In short, GA works in three (3) steps:  

i)    Form the problem and encode them  into a set          
of binary strings;  

ii)  Create a new population through reproduction 
 and mating processes;  
iii)  Evaluate the fitness and select the new 
 generation. 
 
 The traditional and most common 
representation in GAs is binary encodings which 
they can be easily manipulated by reproduction 

operators to almost any desired representation.  
However, there persist several drawbacks of binary 
genetic representations    [16].  Binary coded 
GAs (BCGA) are not proper for GAs searches and 
they are not able to assure that using GAs to solve 
problems of bounded complexity would be reliable 
and predictable [17].  Furthermore, BCGA was 
found to perform more effectively only on small 
and moderate size problems which detail precision 
in the solution are not critical.  BCGA may 
encounter certain intricacies dealing with 
continuous search space.  One difficulty which 
arises is the Hamming cliffs associated with certain 
strings, from which a transition to a neighboring 
solution (in real space) requires alteration of many 
bits.  Gray code can alleviate the Hamming cliff 
problem but it needs huge computations [18].      

 The limitations of binary encoding are the main 
reasons for developing algorithms using real 
encoding of chromosomes representations.  GAs 
which make use of real number vector 
representation of chromosomes are termed as Real 
Coded GA (RCGA).  RCGA is used in a lot of 
applications and is recommended for optimization 
problems where the parameter space is continuous 
[19].   

 Prior works on RCGA have been found to be 
some specific applications, such as for chemometric 
problems, for the use of metaoperators to find the 
most adequate parameters for a standard GA, for 
numerical optimization on constant domains, etc 
[19, 20, 21, 22].  A review related to RCGA is 
presented in [23].  Researches of RCGA in recent 
years for function optimization have proven to 
outperform traditional bit string based 
representation [23, 24]. 

 Many RCGA researchers are shifting their 
attention towards designing new crossover 
operators to improve the performance of function 
optimization [25].  There has also been studies 
conducted on the varieties of mutation techniques 
to improve the GAs performance [26].  

The paper is presented as such: 
 
Section 2  presents literature review on real coded 
      mutation operators.   
Section 3  describes the proposed STPM and other     
      operators used in this study   
Section 4   discusses the proposed new RCGAs.  
Section 5   provides the 10 benchmarking functions.   
Section 6   explains the experimental setup.  



Journal of Theoretical and Applied Information Technology 
 20th February 2014. Vol. 60 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
247 

 

Section 7 includes discussions and explanation of 
     results.   
Section 8  reaffirms previous notions with a   
    conclusion.    

2. LITERATURE REVIEW ON MUTATION 
 OPERATORS 

 Mutation operation functions to alter the 
offspring genes.  A mutator will escalate the 
diversity of the population and this inadvertently 
allow GAs to explore and exploit the search space 
[27].  Literature reviews on mutation operations 
reported in [28, 29] encompasses random (uniform) 
mutation, non-uniform mutation, breeder GA 
mutation, boundary mutation, continuous modal 
mutation, Gaussian mutation, pointed directed 
mutation, discrete modal mutation, principal 
component analysis mutation, polynomial mutation 
operator, Makinen, Periaux and Toivanen mutation 
and wavelet mutation.  Albayrak and Allahverdi 
[30] came up with a Greedy Sub Tour Mutation 
(GSTM) which employs classical and greedy 
techniques to find the shortest distance in the 
traveling salesman dilemma.    

 Several other forms of mutating operators 
found in the literature include mirror mutation, 
percentage mutation, edge mutation and tension 
vector mutation.  The operation of mirror mutation 
and the binary bit-flipping mutation are similar.  
The percentage mutation replaces a gene with a 
random percentage of its value within the interval 
[80%, 120%].  The edge mutation and the tension 
vector mutation are based on the breadth-first (BF) 
force-based and tension vector methods 
respectively [31].          

3. THE PROPOSED SCALED TRUNCATED 
 PARETO MUTATION (STPM) AND 
 OTHER  OPERATORS USED IN THIS 
 STUDY 

3.1 STPM 
 
 A Scaled Truncated Pareto Mutation operator 
is proposed.  This operator is built based on the 
formula to generate Pareto random variables.  The 
truncated Pareto distribution has three parameters α, 
L and H.  α determines the shape, L denotes the 
lower bound, and H denotes the higher (upper) 
bound of the evaluation function to be optimised. 
 
The probability density function is: 
 

��������
1 � ��

�
��  

where, � � � � 	, ��
	� � 0.   
Applying inverse transformation, the equation for U 
as uniformly distributed function is defined as: 

� � 1 � �
����

1 � ��
�
��  

Also, � is truncated Pareto distributed as: 

|�| � ���	
� � ��� �	�
	��� ���

� 

A  modulus, |	�| is used to eliminate the possible 
imaginary number produce by the algorithm.  To 
apply the Truncated Pareto Distribution as the 
mutation operator, an adjustable scale,	�  is 
introduced.  � is added to make sure that � is not 
over-weighted.  If � is over-weighted, there will be 
a chance of good chromosomes being alter in the 
process.  Thus, the newly mutated offspring m is 
defined as: 

��|�|� � ����	
����,			��	�������
����,			��	���  
 

 

where P is the parent, and � � �� � ��/�	 � ��, 
to determine the direction of the mutation.  By 
experiment, �  and α are best kept at 10��  and 3 
respectively.  Hence this mutation operator is 
known as Scaled Truncated Pareto Mutation. 

3.2. Laplace Crossover (LX)   

 Deep and Thakur [25] advocated a new parent 
centric real coded crossover operator, so named the 
Laplace crossover (LX) as described below: 

In LX, two offsprings C1 and C2 are generated from 
a pair of parents K1 and K2 obtained after selection: 

Generate a random number, � ∈ [0,1], 

if � ≤ 0.5;  

then  C1 = K1 + β х d 
         C2 = K2 + β х d 
 
else if  � > 0.5; 
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then  C1 = K1 - β х d 
         C2 = K2 - β х d 
 
3.3. Log Logistic Mutation (LLM)   

 Deep Kusum et al [32] suggested a distribution 
mutation according to Log Logistic distribution.  A 
mutated solution, S is created in the area near the 
solution Z as follows: 

Generate a random number, � ∈ [0,1], 

if �< T;  
       then S = Z - λ (Z - L) 
 
else if  � ≥ T;  

   then S = Z + λ (U - Z) 

Where λ is a random number following Log 

Logistic distribution, T = 
���

���
 , L and U are the 

lower and upper bounds of decision variable. 

4. THE PROPOSED NEW RCGAS 

 The objective of the present study is to 
introduce a newly designed mutation operator, 
STPM.  STPM will make use of an existing 
crossover found in the literature namely LX to form 
a new RCGA namely LX-STPM.  The performance 
of LX-STPM will be evaluated and compared with 
another RCGA from literature namely LX-LLM.  
Both of the RCGAs employ the same crossover, 
LX; therefore, a fair and unbiased comparison of 
performance between the two mutators can be 
made.  Figure 1 shows the flow chart of both 
RCGAs used in this comparative study.  

5. TEN (10) BENCHMARKING FUNCTIONS     

 This section presents 10 diverse and unbiased 
chosen set of standard benchmark functions which 
are used to examine the performance analysis of 
LX-STPM and LX-LLM.  These functions have 
diverse properties in terms of complexity and 
modality.  The dimension, problem domain size and 
optimal solution are denoted by D, L ≤ xi ≤ U and 
f(x*) = f(x1, x2, x3...xn) respectively.  L and U 
represent the lower and upper bound of the 
variables.  Function no. 1 to 5 are nonscalable and 
function no. 6 to 10 are scalable.  That said, in a 
scalable function, the number of decision variables 
can be increased or decreased as per users desired.  
The number of variables for all the scalable 
benchmarking functions is fixed at 30.  A 

multimodal function has many local optima, but 
only one global optimum.  When the 
dimensionality of a problem increases, the search 
space will increase exponentially to the difficulty of 
a problem.  As such, the potential for separation is a 
gauge of the difficulty of benchmark functions.  
The properties involved in such processes to 
determine the optimization level is elaborated in 
[33].     

5.1. The Formulas And Features Of The Five (5) 
 Nonscalable Functions Are Given Below: 

1. Easom 2D (Unimodal) 
 
The global minimum has a small area relative to the 
search space. 
 
Min f (x) = -cos(x1)cos(x2)exp(-(x1-π)2-( x2-π)2) 
 
subject to -10 ≤ x1, x2 ≤ 10.  The global minimum is 
located at x* = f (π, π) and f (x*) = -1 
 
2. Becker and Lago  (Unimodal) 

Min f (x) = (|x1| - 5)2 + (|x2| - 5)2 
 
subject to -10 ≤ x1,  x2 ≤ 10.  The function has four 
minima located at x* = f (±5, ±5), all with f (x*) = 0 
 
3. Bohachevsky 1 (Continuous, differentiable, 
 separable, non-scalable, multimodal) 
 
Min f (x) = x1

2 + 2x2
2 - 0.3cos(3πx1) - 0.4cos(4πx2) + 

       0.7 
 
subject to -50 ≤ x1,  x2 ≤ 50.  The global minimum is 
located at x* = f (0, 0) and  f (x*) = 0 
 
4. Eggcrate (Continuous, separable, non-scalable) 
 
Min f (x) = x1

2 + x2
2 + 25(sin2x1 + sin2x2) 

 
subject to -2π ≤ x1,  x2 ≤ 2π.  The global minimum is 
located at x* = f (0, 0) and  f (x*) = 0 
  
5. Periodic (Separable) 
 
Min f (x) = 1 + sin2x1 + sin2x2 - 0.1exp(-x1

2 - x2
2) 

 
subject to -10 ≤ x1,  x2 ≤ 10.  The global minimum is 
located at x* = f (0, 0) and  f (x*) = 0.9 
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5.2 The Formulas And Features Of Five (5) 
 Scalable Functions Are Given Below: 
 
6. Sphere (Continuous, differentiable, separable,   

scalable, multimodal.  This function is easily 
converge to the global optimum) 

Min	��x� � 	 ���
n

i=1

    

subject to -5.12 ≤ xi ≤ 5.12.  The global minimum is 
located at x* = f (0, 0, ..., 0) and  f (x*) = 0 
 
7. Rosenbrock (Continuous, differentiable, non-

separable, scalable, unimodal) 
 

Min	��x� 	 	
�100�����	 �	����� �	��� � 1���
n-1

i=1

     

subject to -30 ≤ x1 ≤ 30.  The global minimum is 
located at x* = f (1, 1, 1, ..., 1) and  f (x*) = 0 
 
8. Rastrigin (Non-linear multimodal.  This function   

is fairly difficult due to the large search space and 
large number of local minima.) 

 

Min	��x� � 10n ! "��� � 10cos	�2'���(
n

i=1

     

subject to -5.12 ≤ xi ≤ 5.12, i = 1, ..., n.  The global 
minimum is located at x* = f (0, 0, ... , 0) and    f 
(x*) = 0   
 
9. Schewefel problem 3 (Continuous, differentiable, 

non-separable, scalable, unimodal) 
 

Min	��x� � |��| !)��
�

���

n

i=1

     

subject to -10 ≤ x1 ≤ 10.  The global minimum is 
located at x* = f (0, 0, ... , 0) and  f (x*) = 0 
 
10. Griewank (Continuous, differentiable, non-     

separable, scalable, multimodal) 
 

Min	��x� � 1 ! 14000 ��
� �)cos +x�√i- 	

�

���

n

i=1

     

 
subject to -600 ≤ xi ≤ 600.  The global minimum is 
located at x* = f (0, 0, ..., 0) and  f (x*) = 0 
 
 
 

6. EXPERIMENTAL SETUP 
 
 The primary setback of GA is its several tuning 
variables which require proper setting.  GAs major 
control parameters and operations which have 
significant impact on GA's solution quality includes 
population size, number of generations, crossover 
and mutation rates [34].  Both of the algorithms 
used tournament selection and both algorithms are 
elite preserving with elitism size one.  Elitism 
prevents losing the best found solution so it can 
very rapidly increase performance of GA.  A heavy 
experimentation study of various possible 
combinations of crossover probability, mutation 
rate and tournament size were carried out to 
determine the optimal parameter setting for both of 
the RCGAs.   

 The termination principles and populations size 
were taken from [32].  The termination principles 
depends on either an optimum solution found by 
the algorithm lies within the specified accuracy 
(0.01) of known optimum or the predetermined 
maximum number of generations (3,000) is 
reached, or whichever occurs earlier.  Population 
size is assumed as ten (10) times the number of 
variables.  Each GA has been run 100 times using 
same initial populations; each run is initiated using 
a different set of initial population. 

 Table 1 shows the final parameter settings; Pc, 
Pm and Ts represent crossover and mutation rate and 
tournament size respectively.  We recommend these 
parameter settings for the present study based on 
the positive results obtained for majority problems.  
However, these parameters may not be suitable for 
other problems in general.  According to [35] there 
has been no general conclusion drawn in relation to 
the optimum parameterization of operators.  Both 
of the algorithms are implemented in MATLAB 
2012 and the experiments are done on a Core i5 
Processor with 2.40GHz speed and 4.00GB RAM 
under Windows 7 platform.   
 
7. RESULTS AND DISCUSSIONS 

 The present study is aimed at measuring the 
performance of the newly designed mutator, STPM 
for the criterions of accuracy, efficiency, reliability 
(robustness) and quality of solutions found.  In this 
case, accuracy is measured by the degree of 
precision in locating global minima.  Efficiency is 
measured by the number of function evaluations 
needed.  Reliability (robustness) is measured by the 
number of successes in finding the global 
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minimum, or at least approaching it sufficiently 
closely.  All the performance evaluation criteria are 
calculated based on success run only and they are 
logged for each algorithm and benchmark function. 

When  f (x)FoundOpt - f (x)KnownOpt  ≤ 0.01, it is defined 
as a success run, where f(x)FoundOpt is the optimum 
value found when the algorithm terminates and 
f(x)KnownOpt is the known global minimum of the 
problem.       

Success rate (SR) = 
����� 	!�	"�##�""��$	 ��"

�!%&$	����� 	!�	 ��"
 x 100 

Average error (AE) = 
∑ 
�
��������	
	�	�
��������	
��

�
 

where, n is the total number of runs. 

Average number of function evaluations (AFE). 

 Table 2 shows the results of AFE and SR of all 
the ten (10) problems for both of the algorithms.  It 
is observed that both algorithms are able to solve all 
the ten (10) problems.  LX-STPM requires less 
function evaluation except function no 3.  Both 
algorithms achieved 100% success rate for seven 
(7) of the problems (function no. 1, 2, 3, 4, 6, 8, 
10).  For the remaining three (3) problems (function 
no. 5, 7 and 9), LX-STPM achieved higher success 
rate.  In 9 out of 10 problems, LX-STPM totally 
outperforms LX-LLM on both of the criterions.  It 
proved that LX-STPM to be a more reliable and 
efficient algorithm. 

 Table 3 shows the results of mean, standard 
deviation and AE of all the ten (10) problems for 
both algorithms.  Mean and standard deviation of 
the objective functions are to compare the quality 
of the solutions found.  All the mean objective 
function values and the corresponding standard 
deviations achieved by LX-STPM are lower than 
LX-LLM except function no 9.  Furthermore, LX-
STPM produced lower average error for all the 
problems, except function no. 3.  In 8 out of 10 
problems, LX-STPM totally outperforms LX-LLM 
on all three criterions.  It proved that LX-STPM to 
be a more accurate algorithm.  

8. CONCLUSIONS 

 In this paper, a real coded mutation operator 
called Scale Truncated Pareto Mutation (STPM) is 
proposed.  This operator is implemented based on 
the formula to generate Pareto random variables.  
The performance of STPM is compared with an 
existing real coded mutation called Log Logistic 

Mutation (LLM).  In order to have a fair 
comparison, both of the mutating operators made 
use of the same crossover called Laplace Crossover 
(LX) adapted from the literature.  The performance 
of the two real coded genetic algorithms (RCGAs) 
which are LX-STPM and LX-LLM are tested on a 
set of 10 benchmark global optimization test 
problems.  Optimal parameters were set up for both 
of the RCGAs to run the experiments.  Numerical 
results presented in Table 2 shows that LX-STPM 
outperformed LX-LLM in all aspects and proved its 
reliability (robustness) and efficiency through the 
evaluation performance of success rate (SR) and 
average number of function evaluations (AFE) 
respectively.  In the same light, numerical results in 
Table 3 shows that LX-STPM outperforms LX-
LLM in all aspects and proved its accuracy through 
the evaluation performance of average error, mean 
of objective function and its corresponding standard 
deviation.   
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Begin 

 
 
 

(Initialization) 
Initialize population 
Set Generation = 0 

 
 
 

(Evaluation) 
Evaluate the fitness for each individual 

 
 
 
 
                                           

                                                     (Termination check)                      Yes            Stop 
   Termination criteria satisfied? 

 
 

                                                                               No 
                                                                           

(Assign fitness) 
Select individual using Tournament 

selection to build a mating pool 
 
 
 

(Crossover) 
Crossover the population in mating pool 

with optimum crossover probability 
 
 
 
 

(Mutation and replacement) 
Mutate the current population 

with optimum mutation probability and 
apply elitism with size one 

 
 
 

(Evaluation) 
Evaluate the best fitness and 

final optimal individual 
Generation = Generation + 1 

 

Figure 1: Flow Chart Of Both RCGAs Used For Comparative Study 
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Table 1: Parameter Setting For LX-STPM And LX-LLM 

GA name Nonscalable Scalable 
 Pc Pm Ts Pc Pm Ts 
LX-STPM 0.65 0.02 3 0.7 0.003 5 
LX-LLM 0.70 0.02 3 0.65 0.003 4 

 

Table 2: Computational Results Of Average Function Evaluation And Success Rate For All Ten (10) Problems 

Function 
number 

Average Function Evaluation Success Rate 
LX-STPM LX-LLM LX-STPM LX-LLM 

F1 129 325 100 100 
F2 183 282 100 100 
F3 636 528 100 100 
F4 249 452 100 100 
F5 103 883 80 64 
F6 29,036 35,357 100 100 
F7 152,254 183,475 85 72 
F8 111,848 170,659 100 100 
F9 40,573 50,598 95 86 
F10 60,392 85,923 100 100 

 

Table 3: Computational Results Of Mean Of Objective Function And Its Corresponding Standard Deviation And   
       Average Error For All Ten (10) Problems. 

Function 
number 

Mean Standard deviation Average Error 
LX-STPM LX-LLM LX-STPM LX-LLM LX-STPM LX-LLM 

F1 -9.98719E-01 -9.91523E-01 3.32749E-03 3.85425E-03 0.00528 0.00531 
F2 6.17831E-03 8.18410E-03 2.87192E-03 5.04177E-03 0.00418 0.00556 
F3 4.10057E-03 5.23552E-03 2.89004E-03 3.55337E-03 0.00610 0.00521 
F4 3.06635E-03 4.46216E-03 1.51638E-03 3.19989E-03 0.00446 0.00583 
F5 9.00470E-01 9.05827E-01 1.68268E-03 2.57211E-03 0.00047 0.01331 
F6 5.65324E-03 5.72380E-03 3.53404E-03 4.07646E-03 0.00565 0.00731 
F7 6.38204E-03 9.43741E-03 2.95392E-03 4.29061E-03 0.00638 0.01892 
F8 7.44700E-03 8.56542E-03 1.55854E-03 2.99504E-03 0.00545 0.00621 
F9 6.53018E-03 4.87891-E03 2.17720E-03 1.48336E-03 0.00653 0.00712 
F10 7.92909E-03 9.71529-E03 5.16224E-05 9.12719E-05 0.00921 0.00997 

 


