
Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

437

A HYBRID INDEXED TABLE AND QUASIGROUP
ENCRYPTION APPROACH FOR CODE SECURITY AGAINST

VARIOUS SOFTWARE THREATS

1Dr.N. SASIREKHA, 2Dr. M.HEMALATHA
1Assistant Professor and Head, Department of Computer Science, Rathinam College of Arts and Science,

Coimbatore, Tamilnadu, India
2Department of Computer Science, Karpagam University,Coimbatore,Tamilnadu, Inida

E-mail: 1nsasirekhaudt@gmail.com , 2hema.bioinf@gmail.com

ABSTRACT

Security is of fundamental importance in digital communication. The system should be secure against brute
force attacks and impersonation by the eavesdropper. Code and the sensitive data should only be accessed
and understood by legitimate user/authority. Software in recent scenario has been highly susceptible to
various attacks and threats. Reverse engineering is one of the key technique by which an intruder can
understand the inner working of the software. Most of the existing software protection techniques do not
provide reliable security against various attacks. Cryptographic approaches are observed to be very
efficient in providing security and authentication to the software. Encryption of the code in the software has
received much attention in the software engineering domain and various researches are being done in that
area. This paper proposes a novel hybrid software protection code encryption scheme based on the index
table. This approach uses a novel and efficient encryption technique for encryption the indexed table. The
encryption technique used is the quasigroup approach which provides least resemblance of the original data
when encrypted. The performance of the proposed approach is evaluated based on the time cost and space
cost and it is observed that the proposed approach provides significant results and performance.
Keywords: Cryptography, Decryption,Encryption, Quasigroup, Index Table, Reverse Engineering,

Software Protection.

1. INTRODUCTION

Software is a form of data and it as very much
susceptible to theft and misuse. Most of the
organizations have great concern about their
software security [1, 2]. A secret algorithm that is
mined and reused by an intruder can have major
consequences for software companies. Moreover
secret keys, confidential data or security related
code are very much susceptible to the attacks and
threats [3]. Even if legal actions like patenting and
cyber crime laws are available, software threats and
attacks still remains a substantial threat to software
developers and security experts. There have been
billions of dollars spent each year by the industries
especially for software piracy and digital media
piracy [4].

Protecting the reliability of software platforms,
particularly in unmanaged customer computing
systems is a tough task [5]. Attackers may try to
carry out buffer overflow attacks to look for the
right of entry to systems, steal secrets and patch on
the available binaries to hide detection. Software

protection has become one of the attractive domains
with high commercial interest [6].

Reverse engineering by obfuscation,
modification by software tamper resistance,
program-based attacks by software diversity and
BORE – break-once run everywhere – attacks by
architectural design [7] are the major attacks on the
software. Clearly, there is a considerable need for
developing more efficient approaches to protect
software. However, most of the existing approaches
utilized by software developers do not offer
significant protection, especially on recent
computing platforms [8]. For protecting and
securing data in networked systems, several
protection approaches such as cryptographic
controls, access controls, information flow controls,
inference controls were used by the researchers.
Among these techniques, cryptographic approaches
have received the greatest academic attention,
because of its classic mathematical data-
manipulation algorithms involving secret keys,
encryption algorithms for confidentiality and
Message Authentication Codes (MACs) and digital

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

438

signature algorithms for real-time authentication,
data origin authentication, integrity or non-
repudiation [9]. Therefore, Cryptography is
observed to be the technique that can be
incorporated in the software protection technique
for improved protection [10].

Software protection comprises of a wide range
of principles, approaches and techniques focused to
enhance software security, providing increased
protection against threats ranging from buffer
overflow attacks [11] to reverse engineering and
tampering [12]. For decades encryption has
provided the means to hide information. In this
research, the self-encrypting code is used as a
means of software protection [13]. In this research
work, the concept of efficient code encryption
techniques, which offers confidentiality and a
method to create code dependencies that implicitly
protect integrity need to be established.

This paper proposes an efficient code encryption
technique based on an index table. The encryption
technique used in this approach is the quasigroup
approach for encrypting the indexed table data to
make it tough for the intruder to hack the data.

2. LITERATURE SURVEY

Collberg et al. [14] provided a compact outline
of the approaches to protect against these threats.
Software watermarking for instance focuses on
protecting software reactively against piracy. It
usually implants hidden, distinctive data into an
application in such a way that it can be guaranteed
that a particular software instance belongs to a
particular individual or company. When this data is
distinctive for each example, one can mark out
copied software to the source unless the watermark
is smashed. The second group, code obfuscation,
protects the software from reverse engineering
attacks. This approach comprises of one or more
program alterations that alter a program in such a
way that its functionality remains identical but
analyzing the internals of the program becomes
very tough. A third group of approaches focuses to
make software “tamper-proof”, also called tamper-
resistant.

Cappaert et al. [15] [22][23] presented a partial
encryption approach depending on a code
encryption approach. In order to utilize the partial
encryption approach, binary codes are partitioned
into small segments and encrypted. The encrypted
binary codes are decrypted at runtime by users.
Thus, the partial encryption overcomes the faults of
illuminating all of the binary code at once as only

the essential segments of the code are decrypted at
runtime.

Jung et al. [16][22][23] presented a code block
encryption approach to protect software using a key
chain. Jung’s approach uses a unit block, that is, a
fixed-size block, rather than a basic block, which is
a variable-size block. Basic blocks refer to the
segments of codes that are partitioned by control
transformation operations, such as “jump” and
“branch” commands, in assembly code. Jung’s
approach is very similar to Cappaert’s scheme.
Jung’s approach tries to solve the issue of
Cappaert’s approach. If a block is invoked by more
than two preceding blocks, the invoked block is
duplicated.

However, the above discussed schemes did not
meet the security requirements and moreover had
an efficiency problem. Moreover, time cost and
space cost should also be taken into consideration.
Thus, a novel cryptographic technique is proposed
in this approach.

3. METHODOLOGY

A code encryption scheme is proposed based
on an indexed table to protect software. The
indexed table can solve the problem of multiple
paths. Moreover, it solves such problems as loops,
recursions, and multiple calls.

Step 1: Compilation of source code. After this
step, the source code is compiled and outputs a
binary image.

Step 2: Construction of the indexed table. It is
the most important procedure of our scheme. We
describe the details of step 2 in Figure 1.
A. Construction of Index Table

The correct key chain is obtained by means of
the indexed table. The construction of the index
table follows the set of procedure [18].

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

439

Figure 1: Pseudo-code to Construct Indexed Table

Initially, the present address of the basic block is

stored, and the “jump” or “branch” command in the
basic block is examined by moving the pointer. The
commands consist of a block’s address, which will
be executed in the subsequent step. If the next
address refers to the present address of the basic
block, this shows a loop or recursion. When a loop
or a recursion takes place because of the “cmp”
command with the number of calls, the number of
calls is marked in the table. Similarly, if a current
address of a block is already stored in the table, this
shows multiple calls. The PK is created at this time
and stored in the binary image in a data section
[18].
 At this moment, random number r is created for
the secret key of D, and then it is encrypted with
IK. The result of the encryption is PK. The PK is

stored in executable images. Generic operating
systems, such as Windows or Linux, store variables
in the data section of an executable image. Thus,
the PK is stored in the data section of an executable
image. The indexed table consists of the number of
iterations and recursions. If this is not taken into
account, a basic block which has loops or/and
recursions will be decrypted several times. Thus, if
the number of loops and recursions in the table is
marked, this problem can be prevented. When a
basic block has been called, the number of calls is
minimized by one, and then if the number of calls
became zero, the block should be re-encrypted from
memory to prevent against a memory dump.

The second operand of the “cmp” command is
0Ah. It shows the block “loc_401006” will be
executed 10 (=0x0A) times, and that is the number
of loops or recursions. Moreover, an example of
constructing the indexed table is shown in Figure 2.
The example code consists of five basic blocks. The
basic blocks are partitioned by “jump” or “branch”
commands. In the beginning, initialization is
carried out to construct the indexed table (Sungkyu
Cho et al. 2011). 0x0040103E is set as the starting
point of the program. Then, the commands are
examined to discover the “jump” or “branch.” If the
command is “jump” or “branch,” store the operand
of the command in the table as it becomes the first
address of another block. In this example,
0x0040105A is stored in the table due to the
command “jne 0x0040105A,” which is
at0x0040104F. The next address of the command
becomes the first address of another block. So,
0x00401051 is stored in the indexed table. Thus,
0x0040106C and 0x00401060 are stored in order.
At 0x0040106A, the command “jmp 0x00401051”
is discovered. 0x00401051 has been stored already,
which shows that there are multiple paths taking
into account the address 0x00401051. Thus, the
block’s data should be updated, and the random
number should also be created. Thus, all the blocks
can be identified (Sungkyu Cho et al. 2011).

Procedure ConstructTable()
1. entrypoint ← Find_EntryPoint(); // store an address
of entry point
2. currentPointer ← entrypoint;

3. nextPointer ← currentPointer++;

4. index ← 0;
5.
6. while(File pointer is not end of file) {
7. if(Current_opcode == jump or Current_opcode ==
branch){
8. // branch or jump command is an unit of block
9. nextAddress ← operand;
10. // store an address of current address
11. if(currentAddress == nextAddress) {
12. // loop, or recursion
13. Tuple[index].Address ← currentAddress;

14. Tuple[index].Size ← sizeofBlock;

15. Tuple[index].Cnt ← prev_operand_2;

16. Tuple[index].flag ← 0;
17. //index, entry point address, size, number of calling,
and no protected key
18. StoreAttribute(Tuple[index]);
19. }
20. else{
21. if(FindAddress(Tuple[index].currentAddress) {
22. // repeated calling
23. GenerateProtectedKey();
24. StoretoDatasection();
25. Tuple[index].flag ← 1
26. }
27. }
28. }
29. nextBlock ← Get_NextBlock(currentAddress);
30. // Get next block’s address
31. currentAddress ← nextAddress;
32. Sort(Tuple);

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

440

Figure 2: Example of Constructing Indexed Table

Step 3: The above constructed index table is

given as input to the Quasi group encryption
technique.
B. Quasigroup Encryption for the Index Table

The encryption technique used in this approach
is the quasi group encryption technique (Maruti
Venkat Kartik Satti, 2007) shown in figure 3. The
quasigroup encryptor has very good data-
scrambling properties and thus, it has effectively
used in symmetric cryptography. The purpose of
the scrambler is to maximize the entropy at the
output, even in cases where the input is constant.
The great complexity connected with the task of
identifying the scrambling transformation assures

the effectiveness of the encryption process.
Quasigroup encryption is a development that has
permutation based scrambling (Kościenly, 2002) at
its basis.

Figure 3: Quasi Group Encryptor
Input data: d1, d2, d3,… dn
Output data: e1, e2, e3,…en

The two matrices: R, S
Multiplier Elements: q1, q2, q3,… qn
The indices: I1, I2, I3, … In
The encryptor is defined by QE (stands for Quasi-
Encryptor), and the decryptor is defined as QD
(stands for Quasi-Decryptor).

Encryption: It should be that if Q is a quasigroup
such that a1,a2, a3,... an belong to it then the
encryption operation QE, which is defined over the
defined elements, maps those elements to another
vector b�, b�, b�, … b� such that the elements of the
resultant vector also belong to the same quasigroup.
The mathematical equation used for encryption
(basic level) is defined by:

�����, ��, ��, … , ��� 		 	
�,
�,
�, …
�
(1)

where the output sequence is defined by:

�= a∗ ��

� 	
��� ∗ �� 	
where i increments from 2 to the number of
elements that have to be encrypted, and a is the
hidden key (leader in Markovski and Dimitrova
terminology (Dimitrova and Markovski, 2004).
Equation (1) describes a typical single level
quasigroup encryptor.

The workings of equation (1) are illustrated
with the help of Figure 4. It is assumed that the
initial input data given by the vector
a�, a�, a�, a	, a
, a�. It is mapped to the vector
b�, b�, b�, b	, b
, b� by equation (4). The following
steps are used during the process of encryption:

� 	 � ∗ �� 	 2 ∗ 2 	 1	

� 	
� ∗ �� 	 1 ∗ 4 	 1	

� 	
� ∗ �� 	 4 ∗ 1 	 4	

	 	
� ∗ �	 	 4 ∗ 2 	 5	

 	
	 ∗ �
 	 5 ∗ 3 	 1	

� 	

 ∗ �� 	 1 ∗ 3 	 2	

0040103E mov ecx, 64h
00401043 idiv eax, ecx
00401045 mov dword ptr [ebp-
0Ch], edx
00401048 cmp dword ptr [ebp-
10h], 8
0040104F jne 0040105a
00401051 mov edx, dword ptr
[ebp-10h]
00401054 add edx, 1
00401057 mov dword ptr [ebp-
10h], edx
0040105A cmp dword ptr [ebp-
10h], 5
0040105E jge 0040106c
00401060 mov eax, dword ptr
[ebp-4]
00401063 imul eax, dword ptr
[ebp-10h]

Basic block
A

B

C

D

E

Address
(offset)

Block
size

Number
of Calls

Flag

0x0040103E 19 1 0

0x00401051 9 2 1

0x0040105A 6 2 1

0X00401060 12 1 0

0X0040106C 8 2 1

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

441

Figure 4: Quasigroup Mapping Using An Order 3

Quasigroup
The sequence attained is given as an input to

another level of the encryptor. This process is
repeated several times. Multiple levels of mapping
assure lesser resemblance of the output data to that

of the input data. This makes the decryption of the
original data very tough.
In certain implementation, the multiplier element is
varied. The multipliers are constructed by a special
algorithm called “MEG1” that constructs the
multiplier elements depending on the index
numbers, Nonce, r and s given by the following
equations (Dimitrova and Markovski, 2004):

���,��,��….��		���, ��, �� …���

	 ��, ��, ��, . . . ��		
(2)

where
�� 	 � ∗ ��	���	�� 	 �� � 1 ∗ ��

In the above equation, the incoming data is first
mapped through the first multiplier element h� then
the resultant data is mapped taking into account the
second multiplier element h�. This process
continues till all the multiplier elements are
exhausted.

� 	 �� ∗ ��; 	
� 	
� ∗ ��; … 	
�
	 	
� � 1 ∗ ��	�3�	

�� 	 �� ∗
�; 	�� 	 �� ∗
�; . . . �� 	 �� � 1 ∗ 	
�	 .

.

.

�1 	 �� ∗ �1; 	�2	 	 �1 ∗ ��; … �� 	 ���� ∗ ��
where the vector (��,	��,	��,… ��)comprises of all
the multiplier elements. In this approach, this
encryption key is transmitted along with the
quasigroup (this key is itself summarized by
another layer of encryption). It is to be observed
that in the above two techniques another reliable
encryption approach is necessary to preserve the
secrecy of the encryption. Moreover, it is necessary
to transmit the quasigroup that is being used for
encryption, which is one of the main limitations of
the above technique. If the eavesdropper breaks the
encapsulating cipher, it is possible to get access to
the quasigroup used for the encryption and all the
other needed data to get the data.

This paper uses the index based approach
where the given data is encrypted through a number
of levels of encryption. The second level
encryption, the input vector is mapped to the
sequence which has symbols ranging from 1 to the
order of the second matrix. Thus, if an index key is
present which references the matrices stored in the
memory of the reception device, the intruder would
not know which matrix is stored at a given index. In
order to further enhance the efficiency of this
quasigroup encryptor, another function can be
included that arranges the quasigroups according to
the Nonce and this makes the encryption more time
dependent and it can be observed that at any given
point of time the output of the encryptor is different
even if the same set of indices are given to the

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

442

technique. The Multi Level Indexed encryptor is
denoted as

��
��,��,….,��

��,�� (��, ��, ��… , ��� 	

��, ��, ��, … , ��
(4)

where ��, ��, ��… , ��is the input data and
��, ��, ��, . . . �� is the output vector �� and �� are
called indices that are arrays which have the indices
of quasigroups having corresponding order. The
vector (��,��, … . , ��) is the Hidden key or the
Secret key. It is the output of the MEG-1 algorithm.

Decryption : This process is highly alike the
process of encryption which has just been
discussed. The key point to be considered is the
construction of the inverse matrix. The left inverse
‘\’ is used for the quasigroup decryption as
described in the Figure 5. The fundamental
equation for encryption is:

����, ��, �� … , ��� 	 ��, ��, ��, … , �� (5)

where

��=
�

��
 and �� 	

����

��

Figure 5: Determination of Left Division and the
Complete Process of Encryption and Decryption

In order to carry out the process of decryption,

the inverse matrix of a given quasigroup has to be
constructed and execute mapping procedure as
described in the previous section, equation (4) has
to be used instead of (1). The decryptor for a
multilevel indexed based algorithm may be defined
as follows:

��
��,��,….,��

��,�� (��, ��, ��, … , ��� 	

��, ��, �� … , ��
(6)

In Figure 4, the elements in the quasigroup
(marked as 1) are labeled as w, the indices along the
horizontal are labeled v and the indices along the
vertical are labeled u.
The elements of the inverse (left-inverse) of
quasigroup (labeled as 2) are labeled as v the
indices along the horizontal are labeled w and the

indices along the vertical are labeled u-� .

4. EXPERIMENTAL RESULTS AND

DISCUSSION

This experimental result section mainly focuses

on the security analysis and performance analysis
of the proposed approach. The performance of the
proposed approach is compared with standard
software schemes.
A. Security Analysis

In order to enhance the security, the indexed
table approach is adopted based on a quasi group
encryption scheme. The performance of the
proposed approach is compared with Cappaert’s
scheme and indexed table based self encryption
code by (Sungkyu Cho et al. 2011).
The main focus of the software protection is to
secure the original binary code from various attacks
by remaining confidential. The proposed approach
uses the quasi group encryption technique that has
very significant data-scrambling properties and thus
it has significant uses in symmetric cryptography.
The main aim of the scrambler is to increase the
entropy at the output, even if the input is constant.
The enormous complexity connected with the task
of identifying the scrambling transformation
assures the effectiveness of the encryption process.
Cappaert’s scheme did not satisfy the correct key
chain requirement.
B. Experimental Set up and Result

The implementation of the proposed approach
is based on certain set up. The operating system
used for the proposed approach is Windows XP and
is implemented using Microsoft Visual Basic.Net.
The cryptographic library and CPU used is Win32
OpenSSL version 0.9.8 and Intel Core2Duo CPU
E7200 respectively. PEDasm version 0.33 is
referred for this experiment which is an open
source disassembler. In order to evaluate the
performance, three small default executable files in
Windows XP are chosen. A stream cipher, quasi
group is used as a cryptographic algorithm to
encrypt and decrypt the code. Initially, the
executable file is entered, disassembled, and
partitioned into basic blocks. Then, the program
executes table indexing and code encryption
through the partitioned basic block. The

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

443

performance of the proposed approach is compared
with the (Sungkyu Cho et al. 2011) code encryption
scheme. For instance, if a program P and its
modified version P' is available. Then, the time cost
C� and the space cost C� is defined as

!��", "
′� 	

#�"′�

#�"�
 (7)

!��", "
′� 	

$�"′�

$�"�
 (8)

where T(X) is the execution time of program X, and
S(X) is its size. The Encryption process, indexed
table generation process is implemented and shown
in figure 6 whereas figure 7 displays the decryption
process.

Figure 6: Encryption Process-Index table generation

Figure 7: Decryption Process

The encryption time and decryption time of

two programs are evaluated. At the moment,
external libraries such as “.dll” files are eliminated
as they are implemented externally to the
executable file. The results are shown in Table 1
and figures 8, 9 and 10.

Figure 8: Comparison of Decryption and Re-Encryption

Time

Figure 9: Comparison of Time Cost Ct

Figure 10: Comparison of Space Cost Cs

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

444

Table 1:Results Comparison

5. CONCLUSION AND FUTURE WORK

Confidentiality and data authenticity are

mainly focused in assuring efficient security.
Several techniques are available in the literature for
providing security to the software. However, most
of the schemes do not meet the security
requirements for code encryption schemes, and
also had efficiency problems. Recently, encryption
has provided the means to hide information. This
paper presented and discussed code encryption
schemes for protecting software against various
attacks like reverse engineering, tampering etc. A
new code encryption approach based on an indexed
table to guarantee secure key management and
efficiency is proposed in this paper. Efficient Quasi
group encryption technique is used in this paper.
The performance of the proposed approach is
evaluated based on the time cost and space cost. It
is observed that the proposed approach shows good
performance when compared with the Sungkyu
Cho et al., Code Encryption Scheme. In future,
result comparison can be extended for complex
programs. Further the obtained results can be
extended to several open source programs and can
be compared with the existing scheme. Statistical
based data scrambling techniques can be used to
meet the security requirements for code encryption.

REFERENCES:

[1] Howard, M., LeBlanc, D.C., 2002. “Writing

Secure Code”, 2nd ed., Microsoft Press
[2] Viega, J, McGraw, G., 2001. “Building

Secure Software”, Addison Wesley
[3] Eilam, E., 2005. “Reversing: Secrets of

Reverse Engineering”, Wiley Publishing,
Inc.,

[4] Hongxia Jin, Lotspiech, J., 2003. “Forensic
analysis for tamper resistant software”, 14th
International Symposium on Software
Reliability Engineering.

[5] Jan Memon, Asma Khan, Amber Baig and
Asadullah Shah, 2007. “A Study of Software
Protection Techniques,” Innovations Adv.
Techniques Computer Inf. Sci. Engin., pp.
249-253

[6] Stytz, M.R, Whittaker, J.A, 2003. “Software
Protection: Security’s Last Stand,” IEEE
Security Privacy, vol. 1, no. 1, pp. 95-98.

[7] Ogiso, T., Sakabe, U., Soshi, M., Miyaji, A.,
2002. “Software Tamper Resistance Based
on the Difficulty of Interprocedural
Analysis”, 3rd Workshop on Information
Security Applications (WISA 2002), Korea.

[8] Kent, S., 1980. “Protecting Externally
Supplied Software in Small Computers”,
Ph.D. thesis, M.I.T.,

[9] Denning, D., 1982. “Cryptography and Data
Security”, Addison Wesley.

[10] Nicol, D.M., Okhravi, H., 2005.
“Performance analysis of binary code
protection”, Proceedings of the Winter
Simulation Conference

[11] Wilander, J., Kamkar, M., 2003. “A
Comparison of Publicly Available Tools for
Dynamic Buffer Overflow Prevention”,
pp.149-162, Proc. of NDSS’03 (Internet
Society): Network and Distributed System
Security Symp.,

[12] Chang, H., Atallah M., 2002. “Protecting
Software Code by Guards”, pp.160–175,
Proc. 1st ACM Workshop on DRM (DRM
2001), Springer-Verlag LNCS 2320

[13] Jan Cappaert, Nessim Kisserli, Dries
Schellekens, and Bart Preneel, 2006.l “Self-
encrypting Code to Protect Against Analysis
and Tampering”, 1st Benelux Workshop Inf.
Syst. Security.

[14] Collberg, C.S., Thomborson, C., 2002.
“Watermarking, tamper-proofing, and
obfuscation - tools for software protection”,
IEEE Transactions on Software Engineering,
Volume: 28 , Issue: 8, Page(s): 735 – 746,

[15] Jan Cappaert, Nessim Kisserli, Dries
Schellekens, and Bart Preneel, 2008.
“Toward Tamper Resistant Code Encryption:
Practice and Experience,” LNCS, vol. 4991,
pp. 86-100.

[16] Jung, D.W., Kim, H.S., Park, J.G., 2008. “A
Code Block Cipher Method to Protect
Application Programs From Reverse
Engineering,”J. Korea Inst. Inf. Security

Features

Sungkyu Cho et
al., Code

Encryption
Scheme

Indexed Table based
Quasigroup
Approach

Pgm1.
exe

Pgm2
.exe

Pgm1
.exe

Pgm2
.exe

Original file
size (B)

3584 4096 3584 3584

Number of
blocks

12 26 12 26

Decryption
and re-

encryption
time (s)

0.001
6

0.0032 0.0012 0.0024

�� 6.680 6.119 5.985 5.845

�� 1.027 1.674 0.925 0.942

Journal of Theoretical and Applied Information Technology
 20th February 2014. Vol. 60 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

445

Cryptology, vol. 18, no. 2, pp. 85-96 (in
Korean)

[17] Gutmann, P., 2000. “An Open-source
Cryptographic Co-processor”, Proc. 2000
USENIX Security Symposium.

[18] Sungkyu Cho, Donghwi Shin, Heasuk Jo,
Donghyun Choi, Dongho Won, and
Seungjoo Kim, 2011. “Secure and Efficient
Code Encryption Scheme based on Indexed
Table”, ETRI Journal, Volume 33, Number
1.

[19] Maruti Venkat Kartik Satti, 2007. “Quasi
Group based Crypto-System”, A Thesis.

[20] Kościenly, C. 2002. Generating quasi groups
for cryptographic applications. Int. J. Appl.
Math. Comput. Sci., vol.12, No.4, 559–569.

[21] Dimitrova, V., Markovski J., 2004, On
Quasigroup Sequence Random Generator.
Proceedings of the 1st Balkan Conference in
Informatics, Y. Manolopoulos and E.
Spirakis, Eds., 21-23, Thessaloniki, Greece,
pp. 393 – 401.

[22] Sasirekha, N., & Hemalatha, M. 2012. A
Thorough Investigation on Software
Protection Techniques against Various
Attacks. Bonfring Int. J of Software
Engineering and Soft Computing, 2(3), pp.
10-15.

[23] Hemalatha, M., & Sasirekha, N. 2012. A
Survey on Software Protection Techniques
against Various Attacks. Global Journal of
Computer Science and Technology, 12(1).

