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LIGHT POLARIZATION IN AN ANISOTROPIC MEDIUM IN 
TERMS OF ROTATIONS 

 
 
 
 
 
 

 

ABSTRACT 
 

Stokes vector evolution in a homogeneous birefringent medium is treated in terms of Cayley-Klein 
parameters inside 8D space of geometric Clifford algebra. Scaled to unity, Stokes parameters are compared 
with directional cosines of a unit vector in geometric algebra and with a unit magnetization vector in NMR. 
The unusual interpretation of Cayley-Klein parameters in matrix optics is regarded as a stimulus to revise 
4D entities in geometric algebra. 
Keywords: Polarization, Stokes vector, Mathematical methods in physics, Quantum optics. 

1. INTRODUCTION 

 
The idea to treat simplicity as pretty organized 

complexity has deep roots in optics. It can be easily 
traced from the simple laws of geometric optics. 
Actually, it is well known that in specular 
reflection, the angle of incidence equals the angle 
of reflection for all wavelengths of light. Knowing 
that the specular mirror is composed of two 
complementary gratings the removal of any one of 
them turns reflection into diffraction. This 
phenomenon is more complicated than the first one. 
Laws of wave optics have to be used to describe it. 
Note, that nothing was added, but something was 
removed to sophisticate the phenomenon. 

 
 Recombination of two complementary gratings 

into the specular mirror turns the superposition of 
two diffraction patterns into simple specular 
reflection pattern again. So simple specular 
reflection can be treated as a proper superposition 
of diffraction patterns from two complementary 
gratings. 

 
This idea, applied to a unit scalar,  , inside 

geometric Clifford algebra   [1], reveals an 
existence of two new 4D entities complementary 
idempotent paravectors, and, for any arbitrary unit 
vector  with a positive square,  . Paravectors   are 
related to the unit scalar,  , in the same way as 
complementary gratings are related to the specular 
mirror. They are 4D objects of mixed grade, 
hermitian and invariant to multiplication by 

themselves (idempotents). Their linear 
independence, treated as a new kind of 
`orthogonality', gives way to a fourth dimension  

 
within a 3D Euclidean vector space. In one-sided 
products idempotent paravectors behave as 
projectors. They project all algebra elements into 
four conjugated spinor ideals [2]. This approach 
provides a new insight onto the meaning of   
matrices, their parts, raws and columns, single 
matrix elements and their coefficients [3],[ 4], and 
it gives some restrictions on their usage. Here we 
apply these results to revise matrix representations 
of light polarization and to compare scaled to unity 
Stokes parameters with directional cosines of a unit 
vector in geometric algebra and with a unit 
magnetization vector in NMR. The comparison is 
made in terms of Cayley-Klein parameters which 
are commonly used to describe spatial rotations. 

2. STOKES VECTOR AND STOKES 

PARAMETERS 

 
Stokes vector is a simple way to describe the 

polarization state of light. For a light beam 
propagating in 

3êz  direction and decomposed into 

two components polarized along the orthogonal 
directions 

1̂e  and 
2ê  the electric field is given by 

  
..)ˆˆ(=),( 2211 cceeetz tiikz ++ − ωααE                        (1) 

  
the four Stokes parameters characterizing such a 

beam are defined by [5] 
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which lead to the representation of light 
polarization by a point on the Poincaré sphere.  
 

All points of equator line in the 
21ˆˆ ee  plane 

represent states of linear polarization, whereas 
north and south poles represent states of circular 
polarization. All other points on Poincaré sphere 
represent states of elliptic polarization. 
 

It is supposed, that 
1α  and 

2α  are instantaneous 

amplitudes of two transversely-spaced electric field 
components, Ex and Ey. They oscillate along 

1̂e  and 

2ê  directions, at the same frequency ω with a 

possible phase shift δ=ϕ1-ϕ2 among them. This 
model describes Stokes vector as a vector in 

21ˆˆ ee  

plane in terms of intensities of these simple 
oscillations, which are real for linear polarization, 
imaginary for a circular one, and complex for an 
elliptical one. 

 
As in matrix optics [5] and in geometric algebra 

[6] unit vectors of the Cartesian frame of reference 

1̂e , 2ê , 3ê  are associated with Pauli matrices 

1 2 3

0 1 0 1 0
; ; .

1 0 0 0 1

i

i
σ σ σ

−     
= = =     −     

                 (3) (3) 

 
In matrix optics the choice is  
 

.=ˆ,=ˆ,=ˆ 231231 σσσ eee                       (4)     

 
It helps to associate basis vectors 

1̂e  and 2ê  in the 

transverse plane of the light beam with real 
matrices σ3 and σ1. While it is good for the simple 
plane model described above, it seems 
unsatisfactory in more complicated phenomena, 
such as photon echo [7] or light propagation 
through a homogeneous birefringent medium, 
where light is regarded in a 3D Euclidean vector 
space. 

 
In geometric algebra and its applications to 

magnetic resonance [2], the choice1 is  
 

e1=σ1, e2=σ2,e3=σ3,                                            (5) 
 

It is made to associate the direction, e3, of static 
magnetic field in 3D Euclidean space with the 
unique properties of Pauli matrix σ3. 

3. UNIT VECTOR IN GEOMETRIC 

ALGEBRA  

 
In a given frame of reference, {e1, e2, e3}, spatial 

orientation of a unit vector m is usually described 
by its directional cosines (m1, m2, m3,) as  

3 1 2
1 1 2 2 3 3

1 2 3

.
m m im

m e m e m e
m im m

− 
= + + =  + − 

m (6) 

Here basis vectors are expressed in terms of 
Pauli matrices according to Eq. (5). 

 
Matrix in the right side of Eq. (6) can be written 

as a direct sum of its matrix elements: 
 

3331

21312133

)(

)())((=

NmNe

immPeimmPm

−
−+++m          (7) 

 
where 
 

3 0 3 1 3 1 13

3 0 3 1 3 1 13

1 0 0 01 1
( ) ( ) ( )

0 0 1 02 2

0 0 0 11 1
( ) ( ) ( )

0 1 0 02 2

P e e e P e e

N e e e N e e

   = + = ; = + = ;   
   

   = − = ; = − =   
   

   (8) 

 
are the unique `paravector names' of unit matrix 
elements, or their `addresses' inside the 2×2  matrix. 
Each term in Eq. (7) is a named quantity. As their 
names are different (linearly independent), they do 
not mix in the direct sum. 

 
Idempotent paravectors P3 and N3 are projectors. 

They project vector m into left (contravariant) 
spinor ideals [2]: 

 
Positive: 

3
3 3 3 1 2 1 3

1 2

0
( )( )

0

m
P m P m im e P

m im

 
= + + =  + 

m            (9) 

Negative:  

1 2
3 1 2 1 3 3 3

3

0
( )( ) .

0

m im
N m im e N m N

m

− 
= − − =  − 

m     (10) 

 
Spinor mP3 describes vector m in the right frame 

of reference, which is associated with the upper half 
of the Poincaré sphere. Spinor mN3 describes the 
same vector m in the left frame of reference, which 
is associated with the lower half of the Poincaré 
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sphere. Basis vector e3 points to the North Pole of 
the sphere. 

 
Both projections have only two terms, which in 

matrix representation are composed in columns. 
They could be treated as column-vectors, but for a 
little complication: their `paravector names' in Eq. 
(9) contain zero matrix elements of the adjacent 
column to avoid ambiguities. 

 
Another way to describe spatial orientation of 

vector m is to treat it as the result of some spatial 
rotation from a certain fixed position, e. g. from the 
privileged direction e3. To avoid ambiguities 
usually the shortest one is selected. The plane of 
this rotation is spanned on both vectors and its axis 
is perpendicular to this plane. The rotation is 
described as 

 

)()( 3 mQemQm =                                    (11) 

 (11) 
 where )(mQ  and ( )Q m%  are two conjugated 

(mutually reversed) unitary quaternions [2]. In 
matrix representation they are written as 

  

�
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            (12) 

 
 Their matrix elements complex numbers α, β, 

−β* and α*, which meet a condition 
 

1=** ββαα +                                                     (13) 

 
are well known Cayley-Klein parameters. In a 
given frame of reference they contain information 
about the axis (a=a1e1+ a2e2+ a3e3), the direction 

and the angle, ϑ , of rotation: 
 


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+−
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Cayley-Klein parameters are complex numbers, 

complementary in the sense that only pair of them 
in concert contains full information about the 
rotation. Half-angle in Eq. (14) is a sequence of the 
fact that each quaternion in Eq. (12) is a direct sum 
of two spinors [2], positive and negative, 
respectively. This kind of spinors also can be 

expressed in terms of matrix columns and rows as 
one-sided products of unitary quaternions Eq. (12) 
with idempotent paravectors P3 and N3, defined in 
Eq. (8): 
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It is worth noting, that there is no information in 

Cayley-Klein parameters about what is rotated, and 
about the initial and final conditions for the rotated 
entities. It is due to the fact that each simple 
rotation is a unitary operation. It preserves the 
lengths of all vectors being rotated and all angles 
among them. So it describes, the rotation of the 
entire distribution of vectors as well. For example, 
if a book is rotated, it may be granted that neither 
its form nor its contents will be changed. 

 
The initial state e3 is transformed by the rotation 

into the final state: 
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are 4D paravector `images' [4] of unit vector m. 
So, taking into account Eq. (13), directional cosines 
of the    unit vector m in terms of Cayley-Klein 
parameters are: 
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;|||=|1;=|||=|||
**

2
**

1

22
3

22

αββααββα
βαβα

−+
−+

imm

mm             (19) 

 
They are identical with scaled to unity Stokes 

parameters in Eq. (2) with respect to Pauli matrices 
Eq. (3), but they differ in notations according to Eq. 
(4) and Eq. (5), and their contents and interpretation 
is quite different. More than that, complex numbers 
α1 and α2 in definition Eq. (2) of Stokes parameters 
are identical with Cayley-Klein parametersα and β 
in Eq. (19). 
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Cayley-Klein parameters in Eq. (14) are complex 

numbers. So they can be represented in the 
`module-phase' form. They even can oscillate, if the 
rotation is in progress. But they never can be 
compared by their phase, because their phases are 
defined in different (noncoplanar) hyperplanes of 
4D spinorial space. So any coherence between them 
should be treated not in the sense of their phase 
synchronism, but in the sense of their 
complementarity. Only a pair of them in concert 
contains full information about the axis and the 
angle of rotation. They should not be treated 
separately. 

 
Now let us return to the Stokes vector and look at 

its evolution along with the light beam propagation 
through a birefringent medium. 

4. STOKES VECTOR EVOLUTION IN A 
HOMOGENEOUS BIREFRINGENT 

MEDIUM 

In a homogeneous non-dissipative birefringent 
medium, Stokes vector evolution equation takes a 
simple form of the classical torque equation [8]. In 
geometric algebra [9] it takes the form: 

 

].)()([
2

1
=)(=

)(
ΩSΩSSΩ

S
zziz

z

z −−×
∂

∂             (20) (19) 

 
where z is the distance along the propagation 

direction, and S(z)=[S1(z),S2(z), S3(z)] is Stokes 
polarization vector. 

 
According to Eq. (20), as the wave propagates 

along the ze3 axis, Stokes vector S precesses with a 
constant spatial frequency Ω about the fixed 
direction w=Ω/Ω. In terms of the medium 
properties, direction w and absolute value Ω 
characterize the type and the strength of the 
medium birefringence, respectively. 

 
Scaling the length S0 of the Stokes vector 

S(z)=S0s to unity, S0=e0, brings Eq. (20) to the 
form: 

 

].)()([
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1
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s
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z
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 (20) 
To solve it in 4D space, we split the unit Stokes 

vector S(z) into a direct sum of two complementary 
idempotent paravectors: 

 

))((
2

1
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2

1
=)()(=)( 00 zezeNPz sssss −−+− (22) (21) 

and then split each of them into an ordered product 
of contravariant and covariant spinors: 
 

( ) ( ) ( ); ( ) ( ) ( ).P Nψ ψ ψ ψ= =s s s s s s%%        (23) (22) 

 
The first step turns Eq. (20) into a pair of 

Liouville-von-Neumann-like equations 
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 (23) 
Substitation of Eq. (23) into Eq. (24) gives a 

system of four Schrödinger-like linear equations for 
conjugated spinors 
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Composition of spatially inverted spinors into 
direct sums yields unitary quaternions: 

 

( ) ( ) ( ); ( ) ( ) ( )Q Qψ ψ ψ ψ= + = +s s s s s s% % %   (26) 

 
This step turns the system of four equations Eq. 

(25) into a system of two linear equations for 
conjugated quaternions: 
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                                     (27) 

 
The system Eq. (27) can be easily solved for a 

simple rotation with spatial frequency Ω=const(z) 
about the fixed axis w=const(z). One easily obtains 

 

0

0

( ) ( ) ;
2 2 2

( ) ( ) .
2 2 2

z z z
Q exp i e cos i sin

z z z
Q exp i e cos i sin

Ω Ω Ω = − = −
 Ω Ω Ω = = +


s w w

s w w%

        (28) 

 
This is the point at which Cayley--Klein 

parameters are expressed in terms of the angle and 
the axis of the particular rotation. Comparison of 
Eq. (28) with Eq. (12) yields 
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For initial state s(0)=e3 the output Stokes vector 

s(z) will have direction cosines as in Eq. (19) where 
Cayley-Klein parameters α and β  are defined by 
Eq. (29). Any other initial state have to be treated as 
the result of some previous rotation Eq. (11), which 
is described by unitary quaternions Eq. (12) with 
Cayley-Klein parameters α1 and β1, followed by the 
rotation in the homogeneous birefringent medium, 
which is described by the unitary quaternions Eq. 
(26) with Cayley-Klein parameters Eq. 29, which 
we denote now α2 and β2. Then Cayley--Klein 
parameters for the resulting rotation are given by a 
recurrence relation [2]: 

 





+
−

.=

;=

1
*
21221

1
*
21221

βααββ
ββααα                                    (30) 

 
This is the most elegant way to find the result of 

two sequential rotations about non-collinear axes 
[9]. Substitution of Eq. (30) into Eq. (19) yields 
spatial orientation of the unit Stokes vector in the 
Cartesian frame of reference. 

5. POLARIZATION   

As it was mentioned before, every unit Stokes 
vector corresponds to a point on the Poincaré 
sphere and vice versa. The right circular 
polarization is represented by the North Pole. In our 
model it is in the direction of light beam 
propagation. The left circular polarization is 
represented by by the South Pole, which is in the 
direction of the source of light. Linear polarizations 
are represented by points in the equatorial plane, 
and the elliptical polarization by the points between 
the poles and the equatorial plane. 

 
In all these cases Stokes vector is a vector of 3D 

Euclidean space. More than that, it is the axis of 
rotation. The plane of rotation is perpendicular to 
the axis. Electric field components rotate in the 
plane of rotation with light frequency, i. e. they are 
circularly polarised in this plane. But polarization is 
measured in  e1e2 plane, i. e. in the transverse 
section of the light beam. So the result of 
measurement depends on the mutual orientation of 
these to planes in 3D Euclidean space. 

 
For example, if s=e3, i. e. Stokes vector points in 

the direction of light propagation, the resulting 
Cayley-Klein parameters in Eq. (29) are α=1, β=0. 
Both of them are real numbers. There are no phase 
relations between them because phase for β is 
undefined. The plane of rotation is collinear 
(coincides) with the plane of measurement. So 
rotation of some measurable light components in 
the anticlockwise direction is associated with right 
circular polarization. 

 
If s=e3, i. e. Stokes vector points in the direction 

of the source of light, the resulting Cayley--Klein 
parameters are α=-1, β=0. Again the plane of 
rotation coincides with e1e2 plane. But now 
measurable light components rotate in the 
clockwise direction. This corresponds to the left 
circular polarization of light. 

 
If Stokes vector s is in the 

21ˆˆ ee  plane, rotations 

occur in a plane that contains e3 vector which is 
orthogonal to e1e2 plane. So only linear projection 
of rotating measurable light components (linear 
polarization) can be measured in e1e2 plane. Linear 
light polarization is perpendicular to Stokes vector 

direction. For example, if s=e1, 
2

2
=(α , 

)
2

2
= i−β , linear polarization is long e2 direction. 

If s=e2 
2

2
=(α , )

2

2
=β , linear polarization is 

along e1 direction. 
 
In all other points of the Poincaré sphere which 

are not poles or equator points, Stokes vector is 

tilted to 3ê  vector. Hence the plane of rotation is 

slanted to 2ê1ê  plane, and its Cartesian projection 

on 
21ˆˆ ee  plane is an ellipse. This provides an elliptic 

polarization. 

6. DISCUSSION  

 
In this paper, we concentrate on the idea that 

light might be more complicated substance, than it 
is supposed to be. Geometric algebra allows it to be 
even an 8D entity which has some measurable and 
some immeasurable components [4]. 
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Matrix representations for such objects have 
several limitations. First of all, there is only one 
direction in 3D vector space, associated with Pauli 
matrix σ3, for which matrix elements have their 
unique paravector names (addresses), as in Eq. (8). 
In this case matrix elements can be treated as some 
components of a vector, as in Eq.(6), or as some 
components of a unitary quaternion (Cayley-Klein 
parameters), as in Eq. (12), describing its 
orientation, as in Eq. (11). Both kinds of 2×2 
matrices can be truncated up to `column-vectors' in 
contravariant paravector projections, as in Eq.(9) or 
in Eq. (15). But this can lead to some ambiguities. 
Spinor mP3 in Eq.(9) is treated in 3D Euclidean 
space and can be treated as representation of vector 
m in the right-handed (spherical) frame of 
reference, e. g. as a point on the surface of the unit 
Poincaré sphere. Spinor Ψ(m) represents the same 
vector in 4D Hilbert space. Its components also can 
be associated with directional cosines of some 
vector and with a point on the surface a sphere, but 
it is a sphere in 4D space. An example of 
correspondence between points on both spheres is 
described in [3]. 

 

In matrix optics 31 σ=ê . So the unique space 

direction is in the transverse plane of the light 
beam. It brings spinorial properties (halved engles) 
into the plane of measurements. Association of 
spinorial components (Cayley-Klein parameters α1 
and β1) with instantaneous amplitudes of two 
transversely-spaced electric field components, Ex 
and Ey, mixes vectors defined in 3D and in 4D 
spaces, which is unfair in geometric algebra. As a 

sequence vectors σ3 and )σ(σ
2

1
31 +  with angle 450 

between them are treated as orthogonal ones. 
 
In our model σ3 is associated with a light beam 

propagation direction. In this case, Stokes vector 
spatial rotations in a homogeneous birefringent 
medium are similar to temporal ones for unit 
magnetization vector in pulsed NMR [2]. In both 
cases, they are the axes of rotations. The main 
difference is in magnetic and electric nature of 
these measurable quantities. Magnetization vector 
is an invariant of steady-state rotations, it coincides 
with the axis of rotation. Electric field components 
rotate in the plane of rotation with the frequency of 
light. Cartesian projection of the plane of rotation 

onto the plane of measurement defines the 
polarization of light. 

 
Unusual interpretation of Cayley-Klein 

parameters in matrix optics is a stimulus to revise 
those things we thought we knew as about light in 
optics, and about 4D entities in geometric algebra 
Γ3,0. 

7. CONCLUSIONS 

 
Stokes vector evolution in a homogeneous 

birefringent medium is treated in terms of Cayley-
Klein parameters inside geometric Clifford algebra 
Γ3,0. It is shown that its spatial rotation is 
completely defined by the properties of the medium 
but its position on Poincaré sphere depends on its 
initial orientation. If the north pole of the sphere is 
associated with the direction of light propagation, 
Stokes vector has to be treated only as an axis of 
rotation. The plane of rotation for electric 
components of light is perpendicular to this axis, 
and its Cartesian projection on the transverse plane 
of the light beam defines its polarization. Some 
sequences of different interpretation of Cayley-
Klein parameters in matrix optics and in geomnetric 
algebra are considered. 
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