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ABSTRACT

Stokes vector evolution in a homogeneous birefrihgmedium is treated in terms of Cayley-Klein
parameters inside 8D space of geometric Cliffoggtlata. Scaled to unity, Stokes parameters are aehpa
with directional cosines of a unit vector in georiealgebra and with a unit magnetization vectoNMR.
The unusual interpretation of Cayley-Klein paramgeia matrix optics is regarded as a stimulus tasee
4D entities in geometric algebra.
Keywords: Polarization, Stokes vector, Mathematical methodghysics, Quantum optics.
themselves (idempotents). Their linear
1. INTRODUCTION independence, treated as a new kind of
“orthogonality', gives way to a fourth dimension

The idea to treat simplicity as pretty organized
complexity has deep roots in optics. It can be&asiwithin a 3D Euclidean vector space. In one-sided
traced from the simple laws of geometric opticsProducts idempotent paravectors behave as
Actually, it is well known that in specular Projectors. They project all algebra elements into
reflection, the angle of incidence equals the angf@ur conjugated spinor ideals [2]. This approach
of reflection for all wavelengths of light. Knowing Provides a new insight onto the meaning of
that the specular mirror is composed of twdnatrices, their parts, raws and columns, single
complementary gratings the removal of any one dhatrix elements and their coefficients [3],[ 4].dan
them turns reflection into diffraction. This it gives some restrictions on their usage. Here we
phenomenon is more complicated than the first on@PPly these results to revise matrix representation
Laws of wave optics have to be used to describe Rf light polarization and to compare scaled to yinit
Note, that nothing was added, but something wagtokes parameters with directional cosines of & uni
removed to sophisticate the phenomenon. vector in geometric algebra and with a unit

magnetization vector in NMR. The comparison is

Recombination of two complementary gratingghade in terms of Cayley-Klein parameters which

into the specular mirror turns the superposition o€ commonly used to describe spatial rotations.

two diffraction patterns into simple specular
reflection pattern again. So simple specula?- STOKESVECTOR AND STOKES

reflection can be treated as a proper superposition PARAMETERS
of diffraction patterns from two complementary

gratings. Stokes vector is a simple way to describe the
polarization state of light. For a light beam

This idea, applied to a unit scalar, , insidgropagating inz, direction and decomposed into
geometric Clifford algebra [1], reveals anyyo components polarized along the orthogonal

gxistence of two new 4D entities Compl?me”tarﬁirectionsél andg, the electric field is given by
idempotent paravectors, and, for any arbitrary unit

vector with a positive square, . Paravectorse ar R 5 o i 1
related to the unit scalar, , in the same way @) =(ea +em) *+cc. (1)
complementary gratings are related to the specular o

mirror. They are 4D objects of mixed grade, the four Stokes parameters characterizing such a
hermitian and invariant to multiplication by beéam are defined by [5]
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It is made to associate the directiey, of static
S =l f+la,P S =la f-la,P (2)  magnetic field in 3D Euclidean space with the
S, =(ma,tam) S =-i(@a,-aa,) unique properties of Pauli matrs.

which lead to the representation of light3. UNIT VECTORIN GEOMETRIC
polarization by a point on the Poincaré sphere. ALGEBRA

All points of equator line in thegs, plane | 3 given frame of referenceef e, e3}, spatial
represent states of linear polarization, whereaswientation of a unit vectom is usually described
north and south poles represent states of circulby its directional cosinesr(;, m,, ms,) as
polarization. All other points on Poincaré sphere m, m-im ©6)
represent states of elliptic polarization. m=me+me+ m ?z[ml+ im  -m }

Here basis vectors are expressed in terms of

It is supposed, thag, and o, are instantaneous i - ;
PP o, o Pauli matrices according to Eq. (5).

amplitudes of two transversely-spaced electricifiel

componentst, andE,. They oscillate along and  \1a4iy in the right side of Eq. (6) can be written

& directions, at the same frequency with a as a direct sum of its matrix elements:
possible phase shifd=¢;-¢, among them. This

model describes Stokes vector as a vectoggn M = MgPs +(m, +im,)(eR;) +(m, —im,) @)
plane in terms of intensities of these simple(&N;)—m;N,

oscillations, which are real for linear polarizatjo
imaginary for a circular one, and complex for arwhere

elliptical one.
1 10 1 00
H H - . . P == = ) =— = ;
As in matrix optics [5] and in geometric algebra * 2(%+%) {0 0} (¢8 2( ¢ 8 [1 o} (8)
[6] unit vectors of the Cartesian frame of referenc 1 00 1 01
A . . . . N3=f(eo-q)={ }; (eN)=-(¢ §J=[ }
&, &, € are associated with Pauli matrices 2 01 2 00
5 3 3
UF[S (ﬂ Uz=[i0 (j af[; _01}- ) are (th)e unique paravector names' of unit matrix
elements, or their "addresses' inside tk2 2natrix.
In matrix optics the choice is Each term in Eq. (7) is a named quantity. As their
names are different (linearly independent), they do
&=0, &=0, 8&=0, (4) ~ hotmixin the direct sum.

. . o Idempotent paravectors RndN; are projectors.
It helps to associate basis vectgrand g, in the They project vectorm into left (contravariant)
transverse plane of the light beam with reagpinor ideals [2]:
matriceso; ando,. While it is good for the simple
plane model described above, it seempositive:
unsatisfactory in more complicated phenomena, _ [ m o 9)
such as photon echo [7] or light propagatior™™=mRE+(m+ '”5)(‘?9{,“1“% 0}
through. a 'homogeneogs birefringe'nt mediu”\\legative:
where light is regarded in a 3D Euclidean vector {0
0

space. mN, = (m - im)(g N)= m N= m’m}. (10)

-m
In geometric algebra and its applications to
magnetic resonance [2], the chdite SpinormP; describes vectan in the right frame
of reference, which is associated with the uppér ha
€,=01, €,=0,,6:=03, (5) of the Poincaré sphere. SpinaMN; describes the
same vectom in the left frame of reference, which
is associated with the lower half of the Poincaré
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sphere. Basis vecta; points to the North Pole of expressed in terms of matrix columns and rows as
the sphere. one-sided products of unitary quaternions Eq. (12)
with idempotent paravectoi?; and N, defined in

Both projections have only two terms, which inEq. (8):

matrix representation are composed in columns.

They could be treated as column-vectors, but for g(m):Q(m)%:[a O};zﬁ(m)=Q(m)N3=[o A }

little complication: their "paravector names' in.Eq B0 0

(9) contain zero matrix elements of the adjacent

—pom=? Al am=nom=° °| (15
column to avoid ambiguities. W(m)_%Q(m)_[o O},tﬁ(m) N.Qm) [/3 a}'

Another way to describe spatial orientation of |t is worth noting, that there is no information in
vectorm is to treat it as the result of some spatiaCayley-Klein parameters about what is rotated, and
rotation from a certain fixed position, e. g. fréhe  about the initial and final conditions for the rietz
privileged direction e, To avoid ambiguities entities. It is due to the fact that each simple
usually the shortest one is selected. The plane gftation is a unitary operation. It preserves the
this rotation is spanned on both vectors and its axiengths of all vectors being rotated and all angles
is perpendicular to this plane. The rotation isimong them. So it describes, the rotation of the

described as entire distribution of vectors as well. For example
if a book is rotated, it may be granted that neithe
m=Q(m)e,Q(m) (11) its form nor its contents will be changed.

1
(rjhe? initial statee; is transformed by the rotation

where Q(m) and Q(m) are two conjugated into the final state:

(mutually reversed) unitary quaternions [2]. In

matrix representation they are written as m= P(m) - N(m) = (16)
[ m, ml—imz}:[aa‘—ﬁﬂ’ 2ap }:
Qm)=aR+p(eR)-A(gN+a" "F[; _zﬁ ' 42 nem e
@ B =(a'B+af )e, +i(a' f-ap )e, +(aa” - B )e;.
QAm)=a’R+B(Re)-B(NQ+a N=[_5 a}-
where
Their matrix elements complex numbers S, P(m):;(%m):w(m)w(m){mf a’ﬂ} 17
-f anda’, which meet a condition 2 af Ap
and
o ) © - B] (18)
aa’ +fp =1 (13) N(m) = —m)=w(m)z/7(m)={"”, "ﬂ (
2" ~ap  pp

are well known Cayley-Klein parameters. In a

given frame of reference they contain informatiorfi"® 4D paravector ‘images’ [4] of unit veator

about the axisa=ae+ ae+ ases), the direction So, taking int'o account .Eq. (13), directional ce§in
o of the unit vectom in terms of Cayley-Klein
and the angle? , of rotation:

parameters are:

a =co%—ia3sin%; (14)  m| M+ 18F=1 my=laf-IBF; (19)
/3=-i(a1+ia2)sin% m o =aprap; m =i f-af).
_ They are identical with scaled to unity Stokes
Cayley-Klein parameters are complex numbergarameters in Eq. (2) with respect to Pauli masrice
complementary in the sense that only pair of themq. (3), but they differ in notations according&q.
in concert contains full information about the(4) and Eq. (5), and their contents and interpiatat
rotation. Half-angle in Eq. (14) is a sequencehef t is quite different. More than that, complex numbers
fact that each quaternion in Eq. (12) is a direehs g, anda, in definition Eq. (2) of Stokes parameters

of two spinors [2], positive and negative,are jdentical with Cayley-Klein parameterand 3
respectively. This kind of spinors also can beg, Eq. (19).
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Cayley-Klein parameters in Eq. (14) are complex ,_. _ B 1 1, 22 21
numbers. So they can be represented in g2 = PO N(s)—E(e0+s(z)) E(e‘) (2)(22) (21)
‘module-phase’ form. They even can oscillate,&f thand then split each of them into an ordered product
rotation is in progress. But they never can bef contravariant and covariant spinors:
compared by their phase, because their phases are
defined in different (noncoplanar) hyperplanes ofpiq) = (<) (s): N(S) = Z(idi(s 23 22
4D spinorial space. So any coherence between them( ) =4SP ); &) =P @3) 22)
should b_e treated no'F in the sense of their pha_lseThe first step turns Eq. (20) into a pair of
synchronism, but in the sense of their. = . .

. ; , L iouville-von-Neumann-like equations
complementarity. Only a pair of them in concert
contains full information about the axis and the

angle of rotation. They should not be treate aziis) = —i%Q[wP(s)—P(s)w]; (24)
separately. NGE _ i 1 OLwN(9 ~N(Gw]
0z 2
Now let us return to the Stokes vector and look at (23)
its evolutloq alqng with the_ light beam propagation g pstitation of Eq. (23) into Eq. (24) gives a
through a birefringent medium. system of four Schrodinger-like linear equations fo

conjugated spinors
4. STOKES VECTOR EVOLUTION IN A

HOM OGENEOUS BIREFRINGENT
MEDIUM WO -ty XO-iZopew (29
In.a homogeneous non-di;sipative pirefringenﬁlﬁ(S):_ilgww(s); 3lﬁ(5):ilQl/;/(S)W. (24)
medium, Stokes vector evolution equation takes aodz 2 z 2
simple form of the classical torque equation [8]. | Composition of spatially inverted spinors into
geometric algebra [9] it takes the form: direct sums yields unitary quaternions:
%:gxs@: —i%[QS(z)—S(z)Q]. (200 QSN +P(S) QA =@(9+P(9) (26)
z

) _ ) This step turns the system of four equations Eq.

~where z is the distance along the propagationos) jnto a system of two linear equations for
direction, and §(2)=[Si(2),$(z), S(z)] is Stokes conjugated quaternions:
polarization vector.

Accord Q9 - Lowo:

ccording to Eq. (20), as the wave propagates—,, 15 QWQ(s); (27)

along the B; axis, Stokes vectd precesses with a 0 1~
constant spatial frequency2 about the fixed |—5— =IEQQ(S)W-
direction w=Q/Q. In terms of the medium
properties, directionw and absolute valueQ

h eri the t d th ¢ th of th The system Eq. (27) can be easily solved for a
characterize fhe type and 1he strength o gmple rotation with spatial frequency=const(z)
medium birefringence, respectively.

about the fixed axis=const(z). One easily obtains

Scaling the length Sof the Stokes vector 0z 0z Oz
S(z)=8s to unity, $=e,, brings Eqg. (20) to the |Q(9 =exu- 'TW)= %CO%Z—W siF?; (28)
form: ~ _ Qz Qz . .Qz
Q(s) =exgd I7W) =g co%2+ W sm?.
0s(2) _

il _ 21
> |2§2[ws(z) s(2)w]. (21)

This is the point at which Cayley--Klein
pd@Meters are expressed in terms of the angle and
To solve it in 4D space, we split the unit Stokeshe axis of the particular rotation. Comparison of
vector$(z) into a direct sum of two complementarygq. (28) with Eq. (12) yields

idempotent paravectors:
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Qz . . Qz

@ meosT TSI (29) For example, iE=e;, i. €. Stokes vector points in
the direction of light propagation, the resulting
Cayley-Klein parameters in Eq. (29) arel, 5=0.
Both of them are real numbers. There are no phase

For initial states(0)=e; the output Stokes vector relations between them because phase fois
S(z) will have direction cosines as in Eq. (19) wher undefined. The plane of rotation is collinear
Cayley-Klein parameters and 5 are defined by (coincides) with the plane of measurement. So
EQ. (29). Any other initial state have to be treads rotation of some measurable light components in
the result of some previous rotation Eq. (11), Whicthe anticlockwise direction is associated with tigh
is described by unitary quaternions Eq. (12) witleircular polarization.
Cayley-Klein parameters; and3,, followed by the
rotation in the homogeneous birefringent medium, If s=e;, i. e. Stokes vector points in the direction
which is described by the unitary quaternions Emf the source of light, the resulting Cayley--Klein
(26) with Cayley-Klein parameters Eq. 29, whichparameters aren=-1, $=0. Again the plane of
we denote nowa, and S. Then Cayley--Klein rotation coincides withee, plane. But now
parameters for the resulting rotation are giveraby measurable light components rotate in the
recurrence relation [2]: clockwise direction. This corresponds to the left

circular polarization of light.

B =—i(w1+iwz)sin%.

If Stokes vectors is in the g&, plane, rotations

occur in a plane that contairs vector which is
_ . rthogonal toee, plane. So only linear projection
This is the. most ellegant way to find th'e resuilt o f rotating measurable light components (linear
two sequential rotations about non-collinear axeﬁolarization) can be measuredeje, plane. Linear
[9]. Substitution of Eq. (30) into Eq. (19) yIEIOISIight polarization is perpendicular to Stokes vecto

{GZI =a,a, - :8;:31; (30)
By =B, a;ﬁl'

spatial orientation of the unit Stokes vector ie th 2
Cartesian frame of reference. direction. For example, ifs=e;, (4= 2,
2
5. POLARIZATION L=-i ‘E), linear polarization is long, direction.
As it was mentioned before, every unit Stokes 2

vector corresponds to a point on the Poincarg
sphere and vice versa. The right circular
polarization is represented by the North Pole.un o alonge, direction.

model it is in the direction of light beam

propagation. The left circular polarization is |n all other points of the Poincaré sphere which
represented by by the South Pole, which is in thgre not poles or equator points, Stokes vector is
direction of the source of light. Linear polarnzats e 1o &, vector. Hence the plane of rotation is
are represented by points in the equatorial plane,

and the elliptical polarization by the points betwe slanted to&g, plane, and its Cartesian projection

the poles and the equatorial plane. on gg, plane is an ellipse. This provides an elliptic
%olarization.

=€ (g:‘f,g:‘f), linear polarization is

In all these cases Stokes vector is a vector of 3
Euclidean space. More than that, it is the axis
rotation. The plane of rotation is perpendicular to"
the axis. Electric field components rotate in the
plane of rotation with light frequency, i. e. thase
circularly polarised in this plane. But polarizatics

DISCUSSION

In this paper, we concentrate on the idea that
light might be more complicated substance, than it
measured in e plane, i. e. in the transverse!S supposed to pe. Gepmetric algebra allows ieto b
section of the light beam. So the result ofVen an 8D entity which has some measurable and

measurement depends on the mutual orientation $fMe Immeasurable components [4].
these to planes in 3D Euclidean space.
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Matrix representations for such objects havento the plane of measurement defines the
several limitations. First of all, there is onlyeon polarization of light.
direction in 3D vector space, associated with Pauli
matrix g;, for which matrix elements have their Unusual interpretation of Cayley-Klein
unique paravector names (addresses), as in Eg. (Barameters in matrix optics is a stimulus to revise
In this case matrix elements can be treated as soith@se things we thought we knew as about light in
components of a vector, as in Eq.(6), or as son@ptics, and about 4D entities in geometric algebra
components of a unitary quaternion (Cayley-Kleir 3.
parameters), as in Eq. (12), describing its
orientation, as in Eq. (11). Both kinds ox2 7. CONCLUSIONS
matrices can be truncated up to "column-vectors' in

contravariant paravector projections, as in E®p{9)  Stokes vector evolution in a homogeneous
in Eqg. (15). But this can lead to some ambiguitiesirefringent medium is treated in terms of Cayley-
Spinor mP; in Eq.(9) is treated in 3D Euclideank|ein parameters inside geometric Clifford algebra
space and can be treated as representation ofrveqtglo_ It is shown that its spatial rotation is
m in the right-handed (spherical) frame ofcompletely defined by the properties of the medium
reference, e. g. as a point on the surface of thite Upt its position on Poincaré sphere depends on its
Poincaré sphere. Spind{m) represents the sameinitial orientation. If the north pole of the sphes
vector in 4D Hilbert space. Its components also cagssociated with the direction of light propagation,
be associated with directional cosines of somstokes vector has to be treated only as an axis of
vector and with a point on the surface a sphere, biptation. The plane of rotation for electric
it is a sphere in 4D space. An example otomponents of light is perpendicular to this axis,
correspondence between points on both spheresaigd its Cartesian projection on the transverseeplan
described in [3]. of the light beam defines its polarization. Some
sequences of different interpretation of Cayley-
In matrix optics & = o,. So the unique space Klein parameters in matrix optics and in geomnetric

direction is in the transverse plane of the "ghtalgebra are considered.

beam. It brings spinorial properties (halved engle
into the plane of measurements. Association ot
spinorial components (Cayley-Klein parametets

and £;) with instantaneous amplitudes of two
transversely-spaced electric field componerts,

and E,, mixes vectors defined in 3D and in 4D
spaces, which is unfair in geometric algebra. As

l .
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