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ABSTRACT 
 

In this paper, a hybrid method is applied to recover parameters and motion of camera from a set of 
silhouettes of an object taken under circular motion. Camera parameters can be obtained by maximizing the 
total coherence between all silhouettes. Two optimization methods, the Powell optimizer (PO) and the 
Genetic algorithms (GA), are applied to maximize the silhouette coherence and their performances are 
compared for several experiments. To take advantage of the strengths of the two methods, we developed a 
hybrid method that combines the genetic algorithm and the Powell optimizer to improve the performances 
in term of convergence speed and accuracy. The recovered parameters are used for 3D image-based 
modeling to obtain high fidelity 3D reconstruction. 

Keywords: Hybrid Genetic Algorithms, Powell Optimizer, Silhouette Coherence, Parameters Estimation, 
Circular Motion 

 
1. INTRODUCTION  
 

Acquiring 3D information from images has 
always been a hot research topic in 3D computer 
vision and recently, it has attracted more and more 
interest because of its potential applications such as 
computer games, augmented reality and cultural 
heritage preservation. In 3D computer vision, it is 
necessary to know the relationship between the 3D 
object coordinates and the image coordinates. This 
transformation is determined in the camera 
calibration step by recovering the camera intrinsic 
parameters and the relative pose of the camera. 

Recovering camera parameters and motion from 
image sequences without using any calibration 
patterns can be classified into two approaches: the 
feature-based and silhouette-based approaches. In 
the feature-based approach, structure from motion 
algorithm [1] determines the camera parameters and 
the 3D structure of the object simultaneously from 
the feature correspondences [2], [3]. These methods 
would therefore be not applicable to smoothed 
objects with low texture. In addition to feature 
correspondences, silhouettes also offer important 
clues for determining both motion and shape. It is 
especially the case when the object being viewed is 
composed of non textured smooth surfaces like 

pottery and sculptures. For this kind of object, 
silhouettes are the most predominant and stable 
image feature. 

Silhouette-based approaches generally exploit 
epipolar tangents [4], [5], to locate the images of 
the frontier points for deriving point 
correspondences between images. Hernandez et al. 
[6] considered the problem of recovering both the 
focal length and the camera motion under circular 
motion from silhouettes. They extended the idea of 
exploiting the epipolar tangents [5] to the concept 
of silhouette coherence, which measures how well a 
set of silhouettes corresponds to the projections of 
the visual hull. The author performed camera 
calibration by maximizing the silhouette coherence 
in optimization procedure.  

The Powell optimizer [7] was able to quickly 
reach the optimal solution for silhouette coherence 
maximization. However, we encountered 
difficulties in robustness when the initial guess for 
parameters are far away from the optimal solution, 
and when the desired global maximum was hidden 
by many local maxima. 

Genetic Algorithms (GA) [8, 9], are pseudo-
stochastic search methods that derive their 
fundamental ideas and terminology from the 
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Darwinian ‘’Natural selection’’ theory, according to 
which individuals that are better fit to a given 
environment are more likely to survive. GA are 
problem-independent and can process information 
generated at previous stages of a search process. 
They comprise concepts such as natural selection, 
quick exploration, and information collection in a 
design space. In contrast to most of classical 
optimization methods, GA require no initial guess 
for parameters and can avoid being trapped in local 
optimal solutions as shown in our previous work 
[10]. These characteristics make the GA powerful 
tools for solving optimization problems.  

In this paper, two optimization methods, the 
Powell optimizer (PO) and a Genetic algorithm 
(GA), are applied to maximize the silhouette 
coherence and their performances are compared for 
several experiments. To take advantage of the 
strengths of the two methods, we developed a 
hybrid method that combines the genetic algorithms 
(GA) and Powell optimizer (PO) to improve the 
performance of the optimization procedure. 

The remainder of this paper is organized as 
following: in Section 2 we present the circular 
motion parameterization. In section 3 we present 
the silhouette coherence measure and its practical 
implementation. In section 4 and 5, three 
optimization methods including a Powell optimizer, 
Genetic Algorithms, and our hybrid GA-PO, are 
described, applied and compared for several tests in 
term of convergence and accuracy. In section 6 we 
build 3D models with the recovered parameters. 

2. CIRCULAR MOTION 
PARAMETERIZATION 

2.1 Camera Model 

We consider a pinhole camera model. The 
geometry of a pinhole camera model is illustrated in 
Fig. 1. Let M = (x, y, z) be a 3D point in an object 
frame and m = (u, v) the corresponding image point 
in the image frame. The central projection of a 3D 
scene point M onto its 2D image point m can be 
written with the following linear equation using 
homogeneous coordinates: 

[ ]MTRKPMm ≈≈
(1) 
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The projection matrix P is a 3×4 matrix defined 
up to a scalar factor that captures both the extrinsic 
and intrinsic camera parameters. R and T 
representing the rotation and translation between 
the world coordinate system and the camera 
coordinate system respectively. K is the camera 
calibration matrix. The parameters fy and fx 
represent the focal lengths measured in pixel units, 
with the aspect ratio defined as r = fy/fx, (u0,v0 ) 
represents the coordinates of the principal point. 

In this paper, the aspect ratio is assumed to be 
one (r=1), the principal point (u0,v0) is considered to 
be the center of the image. The only intrinsic 
parameter that we consider is the focal length f.  

 

Figure 1: The geometry of a pinhole camera model 

2.2 Circular Motion Parameterization 

Circular motion is a practical setup for image-
based modeling. A circular motion image sequence 
can be obtained equivalently in two ways. The most 
common, and the one used in our real image 
experiments, is the case of a static camera viewing 
an object rotating on a turntable. A second method 
is that of a camera rotating around a fixed axis and 
pointing at a static object. Figure 2 shows the 3D 
geometry of circular motion. The camera matrix P1 
of the first view can be written as:  

 ] tR[K  = P 111
(2) 

where K is the camera calibration matrix, R1 and t1 
are the rotation and translation that transform the 
world coordinate system to the camera coordinate 
of the first view. 
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Figure 2: Circular Motion Parameterization 

After rotating by ω about the axis a(θa, φa), the 
camera matrix Pω of the second view can be 
achieved by post-multiplying [R1|t1] with Ra(ω): 

)(R ] tR[K  = P a11 ωω (3) 

Suppose that the circular motion image 
sequence consists of n views and the camera 
matrices for each view is denoted by Pi i=1,…,n, 
from (2) and (3) we have 

)(R P = P a1 ii ω  (4) 

where ωi denotes the rotation angle between the i th  
and the first view, the rotation matrix Ra(ωi) is 
written as a function of ωi and the axis a(θa, φa) as 
follow: 
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the rotation axis a is written in function of 
spherical coordinates (θa, φa): 

( )aaaaaa θφθφθ cos,sinsin,cossin=  

the translation is written in function of an angle αt 
(the angle formed between the camera viewing 
direction and the z-axis see Fig. 2) as follow: 

( )att αα cos,0,sin1 =  

For n views, we parameterize the circular 
motion with n+3 parameters: the focal length f, the 
translation direction angle αt, the rotation axis 
coordinates (θa, φa), the n-1 camera angle steps ωi. 
In this paper, our goal is to recover the projection 
matrices Pi of a set of silhouettes Si of an object 
taken under circular motion as the set of n+3 
parameters:  

1,,1 ),,,,,( −== nifv itaa Kωαϕθ  

 

 

3. SILHOUETTE COHERENCE 

Given a set of silhouettes Si, i = 1,…,n of a 
same 3D object taken from different points of view, 
and the corresponding set of camera projection 
matrices Pi. Let Vh denote the reconstructed visual 
hull1 using the set of silhouettes Si, and Svi denote 
the reconstructed visual hull silhouettes. We would 
like to evaluate the coherence between the 
silhouette Si and all the other silhouettes Sj≠i that 
contributed to the reconstructed visual hull Vh.  

 

Figure 3: Visual Hull Reconstruction From A Set Of 
Silhouettes. Left: Silhouettes Obtained By Projecting The 

Original Object Back Into Cameras.  Right: The 
Reconstructed Visual Hull Using These Silhouettes. 

We assume that the silhouettes segmentation 
and the projection matrices are exact. We say that 
the silhouette Si is coherent with all the other 
silhouettes Sj≠i if the reconstructed visual hull 
silhouettes Svi and the original silhouette Si are 
exactly the same (Si = Sv

i). Two examples of 
coherent and non-coherent silhouettes are shown in 
Fig.4 and Fig. 5. 

 

Figure 4: Two Examples Of Different Silhouette 
Coherence. (A)  Perfect Coherent Silhouette. (B) Low 

Silhouette Coherence. 

                                                 
1 visual hull is an outer approximation of the observed solid, 
constructed as the intersection of the visual cones associated 
with all input cameras projection matrices Pi, see Fig. 3 
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Figure 5: The Original Silhouettes Si Superposed With 

The Visual Hull Silhouettes Sv
i. The Red Region Indicates 

Non Coherent Silhouette Pixels. 

3.1 Measure Of Silhouette Coherence 
To evaluate the coherence between silhouettes, 

some kind of similarity measurement between the 
original silhouette Si and the reconstructed visual 
hull silhouettes Svi is needed. Hernandez [6] defines 
this measure of coherence as the ratio of the 
silhouette contour lengths: 

( )
]1,0[),( ∈

∂

∂∩∂
=

∫
∫

i

ii

ii SSC
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ν

(6) 

where ∂i denote the contour of the original 
silhouette Si and ∂v

i the contour of the 
reconstructed visual hull silhouette Sv

i.  

To compute the total coherence between all 
the silhouettes, we compute the mean coherence of 
each silhouette with the (n-1) other silhouette [6]. 

∑
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If the silhouettes segmentation and the 
projection matrices are exact then: 

1),...,( =jiSC SSC
(8) 

3.2 Silhouette coherence implementation 
The simplest implementation of silhouette 

coherence, would be the following: i) compute the 
reconstructed visual hull defined by the silhouettes, 
ii) project the reconstructed visual hull back into the 
cameras, iii) compare the reconstructed visual hull 
silhouettes to the original ones. The major 
drawback of this approach is the computation time. 
Since the reconstruction of the visual hall will take 
several minutes, and if we want accurate projected 
silhouettes, we need a high resolution 3D model of 
the visual hull, which is computationally very 
expensive and not appropriate for an iterative 
optimization process. In addition, we are not 
interested in 3D model in itself but in the 
comparison between its silhouettes with the original 
silhouettes. Therefore, it is a waste of time to build 
the visual hull completely when only some views of 

it are required. The imaged-based visual hull 
(IBVH) technique [11] does not compute a 3D 
representation of the reconstructed visual hull but 
only 2D views of it. To take advantage of epipolar 
geometry, 3D ray intersections required to construct 
the VH are reduced to 2D line intersections, which 
simplify the computation. 

The implementation of silhouette coherence 
will be as following: for each 2D point in contour, 
compute the intersection between its corresponding 
optic ray and the visual hull by a ray-casting 
approach, this is equivalent to (see Figure 6): 

1. project the optic ray into each silhouette 
2. compute the 2D intersection intervals 

between the projected ray and each 
silhouette 

3. back project all the 2D intervals onto the 
original 3D optic ray, 

4. Compute the intersection on the 3D optic 
ray of all the intervals of all the silhouettes 

For any optic ray, we have a set of remaining 
depth intervals, possibly empty, which represent the 
intersection between the optic rays and the implicit 
visual hull. 

 
Figure 6: 2D Computation Steps, (1) Project The 3D 
Optic Ray, (2) Compute The 2D Intersection Intervals 
Between The 3D Optic Ray And Each Silhouette, (3) 

Back Project All 2D Intervals Onto The 3D Optic Ray, 
(4) The Intersection On The 3D Optic Ray (Green 

Segment). 

4 OPTIMIZATION ROUTINES  

In order to exploit silhouette coherence for 
recovering camera parameters and motion under 
circular motion, the idea is to use the silhouette 
coherence measure CSC as the cost in an 
optimization procedure. In this section, three 
optimization methods, including a Powell 
optimizer, Genetic Algorithms, and a hybrid GA-
PO, are applied to maximize CSC (Eq. 7) and 
compared for several tests. 
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4.1 Powell Optimizer (PO) 

The first optimization method used here is the 
Powell direction set method. The Powell optimizer 
applied in this paper is the version described in [12, 
13] in which starting points and a set of 
independent search directions are provided to the 
program. In each iteration the method serially 
performs a sequence of line minimizations along 
the various directions in the space of parameters. At 
the end of each iteration the method replaces one of 
the original directions with the line joining the 
starting and ending points. A special care is taken 
to ensure that the directions remain linearly 
independent. This version of the Powell optimizer 
is applied to the Silhouette coherence maximization 
problem. Although there are many other 
implementations of the PO such as described in [14, 
15], the current work does not intend to include a 
comparative study of the merits of each of these 
implementations. 

4.2 Genetic Algorithms (GA) 

When solving an optimization problem using 
GA, each solution is usually coded as an alphabet 
string of finite length called chromosome. Each 
string or chromosome is considered as an 
individual. A collection of N individuals is called 
population. GA start with a randomly generated 
population of size N, in each iteration of the 
algorithm, a new population of the same size is 
generated from the current population by applying 
operators, termed selection, crossover and mutation 
[16], that mimic the corresponding processes of 
natural selection. Following nature’s example the 
probability pm of applying the mutation operator is 
very low compared to the probability of applying 
the crossover operator pc.  

To improve the search process of the global 
optimum, an additional operator, elitism, was 
implemented. The aim of the elitist strategy is to 
carry the best chromosome from the previous 
generation into the next. We have implemented this 
strategy in the following way: 

• step 1: Copy the best individual ind0 of the 
initial population pop0 in a separate location. 

• step 2: Perform selection, crossover and 
mutation operations to obtain a new population 
pop1. 

• step 3: Compare the worst individual ind1 in p1 
with ind0 in terms of their fitness values. If ind1 
is found to be worse than ind0, then replace 
ind1 by ind0. 

• step 4: Find the best individual ind2 in pop1 and 
replace ind0 by ind2. 

Note that an individual ind1 is said to be better 
than another individual ind2 if the fitness value of 
ind2 is less that of ind1, since the problem under 
consideration is a maximization problem. 

To adapt the GA to the camera parameters 
estimation problem, the real-valued Coding GA is 
utilized. The CSC of the chosen Silhouettes is taken 
to be the objective function. The camera parameters 
are encoded as a chromosome string of n+3 genes 
as shown in Fig. 6. The alleles of each gene are 
constrained to a bound of values to ensure only 
feasible solution are adopted for evolution. 

There exists no criterion in the literature [17], 
which ensures the convergence of GA to an optimal 
solution. But usually, two stopping criteria are used 
in Genetic Algorithms: In the first, the process is 
executed for a fixed number of iterations and the 
best individual obtained is taken to be the optimal 
one. In the second, the algorithm is terminated if no 
improvement in the fitness value of the best 
individual for a fixed number of iterations, and the 
best chromosome is taken to be the optimal one. 
We have adopted the second stopping criteria with 
elitist strategy [18]. 

θa φa αt ∆ω1 … ∆ωn-1 f 
Fig. 6 Encoding of camera parameters as 

chromosome string 

4.3 Hybrid approach GA-PO 

Although GA can quickly locate the region in 
which the optimal solution exists, it takes a 
relatively long time to converge to the optimal 
solution [10]. On the other hand, the Powell 
optimizer is known for its fast convergence speed 
but the correctness of solution is very dependent on 
the quality of the initial guess. Therefore, we 
exploited in the CSC maximization problem the 
benefit of combining the Powell Optimizer (PO) 
and the GA. The proposed hybrid method consists 
of two steps. We start the search for good initial 
parameter values using GA followed by the refining 
process using PO in order to get more accurate 
solution.  

In our Hybrid method, the Genetic Algorithm 
is responsible to provide good initial values of 
camera parameters, while the Powell optimizer is 
responsible for the quality of parameters estimation. 
The advantage of this hybridization is not only 
reduces the search space greatly, but also avoids 
premature convergence of Genetic Algorithm to 
some extent. 
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5 EXPERIMENTAL RESULTS 

In order to test the performance of our hybrid 
method, several parameters of the GA operators 
need to be determined. As recommended in [9] the 
crossover probability pc was set to 0.6 and the 
mutation probability pm was set to the inverse of the 
population size N. The determination of the 
population size N depends on the number of 
parameters to optimize. For a simple case (3 
parameters), such as the estimation of focal length f 
and rotation axis coordinates (θa, φa), a population 
with N=50 is sufficient. However, for full motion 
estimation (n+3 parameters) a small population size 
can drive the GA to converge to a local maximum. 
To facilitate the implementation of our algorithm, 
we have used the GAlib version 2.4 developed by 
MIT. 

5.1 Comparison between PO and GA 

In this experiment, we have used a synthetic 
Teapot sequence of 18 exact silhouettes shown in 
Fig. 7. We conducted systematic comparisons 
between the PO described in [8] and of the GA to 
estimate the focal length f and the rotation axis 
coordinates (θa, φa). We found that in this case the 
PO performs better than the GA, as shown by 
comparison of the convergence histories in Fig. 8. 
Both the PO and the basic GA converge correctly to 
the optimal solution. However, the PO converges to 
the optimal solution more rapidly than the GA. 

 

 
Figure 7: Some Views Of Synthetic Teapot Sequence 

With Their Corresponding Exact Silhouettes And Their 
Absolute Camera Angles 

 
Figure 8: Comparison Of The Convergence Histories Of 

PO And GA For Focal Length And Rotation Axis 
Estimation. 

In the second test we have increased the 
complexity of the optimization problem, we have 
taken 9 views spaced of 20 degrees and we have 
computed the full circular motion (translation 
direction αt and rotation axis coordinates (θa, φa), 
camera angles ∆ωi) by keeping the focal length to 
its calibrated value. Fig 9 shows the convergence 
histories for the basic GA and the PO for this case. 
As shown in Fig 9 the GA converges correctly to 
the optimal solution while PO has been trapped in 
local optimal solution due to bad initialization of 
starting points. It is important to note that there are 
different implementations of the PO. Although the 
version applied in this paper fails to find the global 
maximum, there may be other versions of the PO 
that can improve the result. Though, seeking the 
best version of the Powell optimizer is not the 
intent of this paper. 

 
Figure 9: Comparison Of The Convergence Histories Of 

Powell And GA For Full Motion Estimation 
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5.2 Comparison between the GA and Hybrid 
GA-PO 

To demonstrate the advantage of the hybrid 
method over the previous one (basic GA), we 
applied it to recover camera parameters and motion 
from real silhouettes. In this experiment, we have 
used the Hannover dinosaur sequence shown in Fig 
10. The dinosaur sequence (36 images) is binarized 
by a segmentation algorithm, and then the contours 
are extracted from silhouettes using a GVF snake 
[19]. 

 
Figure 10: Same Images Of Hannover Dinosaur 

Sequence. From Top To Bottom: Color Images, Binarized 
Silhouettes And Contours Extracted From Silhouettes. 

Table 1 gives the ranges of values for each 
parameter that we set for this experiment and the 
estimation of the rotation axis coordinates (θa, φa), 
the translation direction αt and the focal length f by 
the GA and the Hybrid method. The results are 
good for both methods. The Hybrid method 
outperforms the basic GA when computing the 
rotation axis and the translation direction. The 
comparison of convergence histories between the 
both methods is shown in Fig. 11. It is seen that 
strong improvement is obtained when the PO is 
launched after 50 generations (1000 function calls). 
The hybrid method maximizes the CSC faster than 
the basic GA.  

Table 1: Camera Parameter Estimated By Ga And The 
Proposed Hybrid Method 

Parameters 
Rotation Translation Focal leght 

θa φa αt f 
Ground 
Truth 92.663 2.261 2.735 3217 

Lower range -180 -90 -5 3000 

Upper range 180 90 5 3400 

Recovered 
by GA 92.405 2.272 2.774 3232 

Recovered 
by Hybrid 92.658 2.257 2.743 3246 

 
Figure 11: Comparison Of The Convergence Histories Of 

GA And Our Hybrid Method 

6 3D MODEL RECOSTRUCTION 

The 3D object surface is determined by an 
octree based algorithm: We dispose of a set of 36 
silhouettes (dinosaur sequence in Fig. 10) and their 
corresponding projection matrices Pi recovered by 
our hybrid GA-PO method. The algorithm needs 
two additional input data: the level of detail (the 
size of the voxel), and an initial bounding box. 
Starting from the bounding box, the octree 
approach subdivides a cube into 8 children 
whenever it is on the isosurface, and iterates the 
process recursively until the maximum level of 
depth is attained. To evaluate a given cube, we 
project it into all the silhouettes to assign it one of 
the 3 labels [20] depending on whether it lies 
entirely inside (in), entirely outside (out), or 
partially intersects the silhouette (on). If the cube is 
on and the maximum depth is not still reached, we 
subdivide it and recursively test its children. At the 
end, only the cubes that are on surface have been 
subdivided. We can see the result of this step for 
different levels of resolution in Fig. 13. 

 Once the octree is constructed, the next step is 
to mesh it. Marching cubes algorithm [21] provides 
an initial consistent surface which is then smoothed 
using a decimation algorithm. Examples are shown 
in Fig. 14. 

7 CONCLUSION 

In this paper we developed a hybrid method 
GA-PO that combines the genetic algorithms and 
the Powell optimizer to maximize the silhouette 
coherence between a set of silhouettes in circular 
motion. The Comparison between the GA and the 
PO shows that both methods converged correctly to 
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the optimal solution. However, the GA was slower 
than the PO. Important improvements ware 
obtained with the hybrid method in term of 
convergence speed and parameters accuracy. The 
hybrid method can correctly find the optimal 
parameters without the need of initial values and 
successfully avoid to be trapped in local maxima. 
These characteristics will make the silhouette 
coherence concept more efficient and powerful to 
work in general motion instead of circular motion. 

ACKNOWLEDGMENT 

The dinosaur images used here were provided 
by Wolfgang Niem at the University of Hannover. 

REFRENCES:  

[1] R. Hartley and A. Zisserman, Multiple View 
Geometry, Cambridge University Press, 2000. 

[2] A. W. Fitzgibbon, G. Cross, and A. Zisserman, 
“Automatic 3D model construction for turn-
table sequences,” in 3D SMILE, June 1998, pp. 
155–170. 

[3] G. Jiang, H. Tsui, L. Quan, and A. Zisserman, 
“Single axis geometry by fitting conics,” in 
ECCV, vol. 1, 2002, pp. 537–550. 

[4] Wong, K.-Y. K. and Cipolla, R. (2001). 
Structure and motion from silhouettes. In 8th 
IEEE International Conference on Computer 
Vision, volume II, pages 217-222, Vancouver, 
Canada. 

[5] Paulo R. S. Mendonca, Kwan-Yee K. Wong, 
and Roberto Cipolla. Epipolar geometry from 
profiles under circular motion. IEEE Trans. 
Pattern Anal. Mach. Intell., 23(6): 604616, 
2001. 

[6] Carlos Hernndez, Francis Schmitt, and Roberto 
Cipolla. Silhouette coherence for camera 
calibration under circular motion. PAMI, 
29(2):343349, February 2007. 

[7] M. Powell, ”An efficient method for finding the 
minimum of a function of several variables 
without calculating derivatives”, Computer 
Journal, vol. 17, pp. 155162, 1964. 

[8] J. H. Holland, Genetic algorithms, Scientif. Am. 
44 (1975). 

[9] D. E. Goldberg, Genetic Algorithms in Search, 
Optimization & Machine Learning (Addison-
Wesley, Reading, MA, 1989). 

[10] A. Mouafi, R. Benslimane, A. El Ouaazizi. A 
Genetic Algorithm for Recovering Camera 
Parameters and Motion from Silhouettes. 
Telecommunications (ICT), 20th International 
Conference on, 6-8 May 2013. 

[11] Matusik, W., Buehler, C., Raskar, R., Gortler, 
S., and McMillan, L. Image-based visual hulls. 
SIGGRAPH 2000, pages 369{374. 

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, 
and B. P. Flannery, Numerical Recipes, 2nd ed. 
(Cambrige Univ. Press, Cambridge, UK, 1992). 

[13] 18. F. S. Acton, Numerical Methods That Work 
(Mathematical Association of America, 
Washington, DC, 1970) p. 464. [1990 corrected 
edition]. 

[14] R. P.Brent, in Algorithms for Minimization 
without Derivatives (Prentice Hall International, 
Englewood Cliffs, NJ, 1973), Chap. 7. 

[15]  J. E. Dennis, Jr. and R. B. Schnable, Numerical 
Methods for Unconstrained Optimization and 
Nonlinear Equations (Prentice Hall 
International, Englewood Cliffs, NJ, 1983) 

 [16]Z. Michalewiez,”Genetic Algorithms + Data 
Structure = Evolution Programs”, Springer, 
Berlin, 1992. 

[17] A. El ouaazizi, M. Zaim and R. Benslimane, A 
Genetic Algorithm for Motion Estimation, 
International Journal of Computer Science and 
Network Security, VOL.11 No.4, April 2011 

[18] A. El ouaazizi, R. Ouremchi and R. 
Benslimane, Reconstruction of gray-level image 
by genetic algorithm , Proceeding of 4th 
International Conference on Quality Control by 
Artificial Vision, Japan 1998. 

[19] Xu, C. and Prince, J. L. (1998). Snakes, shapes, 
and gradient vector flow. IEEE Transactions on 
Image Processing, pages 359-369. 

[20] R. Szeliski, Rapid octree construction from 
image sequence. CVGIP, 58(1):23-32, July 
1993. 

[21] William E. Lorensen, Harvey E. Cline, 
Marching cubes: A high resolution 3D surface 
construction algorithm, ACM Computer 
Graphics, 21(24): 163-169, July 1987. 

 

 
 
 
 



Journal of Theoretical and Applied Information Technology 
 20th February 2014. Vol. 60 No.2 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
330 

 

 
 
 
 

 
 

Figure 13: Octree Generation: The Dinosaur Octree Is Carved From A Single Bounding Box Given 36 Images. From 
Left To Right: Bounding Box, Level 3, 5, 6 And 7 Of Subdivision. 

 
Figure 14: Dinosaur Model: Marching Cubes Meshing And Decimation Steps.

 


