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ABSTRACT

In this paper, a hybrid method is applied to recoparameters and motion of camera from a set of
silhouettes of an object taken under circular moti©amera parameters can be obtained by maximilzeng
total coherence between all silhouettes. Two opttion methods, the Powell optimizer (PO) and the
Genetic algorithms (GA), are applied to maximize #ilhouette coherence and their performances are
compared for several experiments. To take advarghtfee strengths of the two methods, we develaped
hybrid method that combines the genetic algoritimth the Powell optimizer to improve the performances
in term of convergence speed and accuracy. Theveeed parameters are used for 3D image-based
modeling to obtain high fidelity 3D reconstruction.

Keywords: Hybrid Genetic Algorithms, Powell Optimizer, Silhouetteh€@nce, Parameters Estimation,
Circular Motion

1. INTRODUCTION pottery and sculptures. For this kind of object,
silhouettes are the most predominant and stable
Acquiring 3D information from images hasimage feature.
always been a hot research topic in 3D computers.Ih tte-based h I loit
vision and recently, it has attracted more and more ; lihouetle-based approaches generailly explol
interest because of its potential applications ach €pipolar tangents [4], [5], fo locate the images of

computer games, augmented reality and Cu"urgsaerresfr:nnélcee;lcespt?(lart]\t;eenf?éa Ssermg]r?landpec;nét al
heritage preservation. In 3D computer vision, it i P ges. '

necessary to know the relationship between the ] considered the problem of recovering both the

object coordinates and the image coordinates. Th%cgl length a_nd the camera motion under qrcular
transformation is determined in  the Camergﬁotlon from silhouettes. They extended the idea of

o . S .gxploiting the epipolar tangents [5] to the concept
calibration step by recovering the camera intrinsic; " . 4
: of silhouette coherence, which measures how well a
parameters and the relative pose of the camera. . S
set of silhouettes corresponds to the projectidns o
Recovering camera parameters and motion frothe visual hull. The author performed camera
image sequences without using any calibratiocalibration by maximizing the silhouette coherence
patterns can be classified into two approaches: tliveoptimization procedure.
feature-based and silhouette-based approaches. | . .
e feture.ased approsch, sictre rom motig (1 P01 OPITIZe (1) vas sie 10 ikt
algorithm [1] determines the camera parameters arr‘naximizatioﬁ However we  encountered
the 3D structure of the object simultaneously from ' '

the feature correspondences [2], [3]. These methoglsﬁ'cumes in robustness when the |n|t!al guess .f
would therefore be not applicable to SmootheBarameters are far away from the optimal solution,

objects with low texture. In addition to featureand when the desired global maximum was hidden

correspondences, silhouettes also offer importaHY many local maxima.

clues for determining both motion and shape. It is Genetic Algorithms (GA) [8, 9], are pseudo-
especially the case when the object being viewed ¢¢ochastic search methods that derive their
composed of non textured smooth surfaces likeindamental ideas and terminology from the
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Darwinian “"Natural selection” theory, according t fx 0 wu,

which individuals that are better fit to a given K =0

environment are more likely to survive. GA are - fy v,
problem-independent and can process information 0O 0 1

generated at previous stages of a search process. @

They comprise concepts such as natural selection,The projection matrix P is a 3x4 matrix defined
quick exploration, and information collection in aup to a scalar factor that captures both the esitrin
design space. In contrast to most of classicaind intrinsic camera parameters. R and T
optimization methods, GA require no initial guessepresenting the rotation and translation between
for parameters and can avoid being trapped in loctde world coordinate system and the camera
optimal solutions as shown in our previous workoordinate system respectively. K is the camera
[10]. These characteristics make the GA powerfuwlalibration matrix. The parameterfy and fx
tools for solving optimization problems. represent the focal lengths measured in pixel units
with the aspect ratio defined as rfyfx, (Ug,Vo )

In this paper, two optimization methods, the epresents the coordinates of the principal point.

Powell optimizer (PO) and a Genetic algorlthn{
(GA), are applied to maximize the silhouette In this paper, the aspect ratio is assumed to be
coherence and their performances are compared tne (r=1), the principal pointif,vy) is considered to
several experiments. To take advantage of thse the center of the image. The only intrinsic
strengths of the two methods, we developed garameter that we consider is the focal lerigth
hybrid method that combines the genetic algorithms
(GA) and Powell optimizer (PO) to improve the
performance of the optimization procedure.

r

The remainder of this paper is organized as fy|~/\\
following: in Section 2 we present the circular | (v -
motion parameterization. In section 3 we present P “
the silhouette coherence measure and its practical M ‘
implementation. In section 4 and 5, three (T//’ \ ‘
optimization methods including a Powell optimizer, -
Genetic Algorithms, and our hybrid GA-PO, are | \/ R,T)
described, applied and compared for several tasts i
term of convergence and accuracy. In section 6 we Figure 1: The geometry of a pinhole camera model
build 3D models with the recovered parameters.

2. CIRCULAR MOTION 2.2 Circular Motion Parameterization
PARAMETERIZATION

Circular motion is a practical setup for image-
2 1 Camera Model based modgling. A c_ircular m_otion image sequence
can be obtained equivalently in two ways. The most
We consider a pinhole camera model. ThSOMMON, and the one used in our real image
. P o ' .%xperiments, is the case of a static camera viewing
geometry of a pinhole camera mod_el IS '”“S”a.md lan object rotating on a turntable. A second method
Egrh;.a;e(mﬂ—_ sx’vyihze)t::?)r?eiDoﬁ(()jli?\t I?mi\n gbj(e)ii[tis that of a camera rotating around a fixed axid an
= (U, v) P 9 9e p ointing at a static object. Figure 2 shows the 3D

Isncézee Imoa"r?ﬂe\/lf?r:rt]:.'t-ls- thce.;t;alepr%%ﬂocr;ﬁfbaeS eometry of circular motion. The camera matrix P
pol ' Image pol of the first view can be written as:

written with the following linear equation using

homogeneous coordinates: P =K [Rl‘tl] 2
m=PM = K[RT]M where K is the camera calibration matrix, d {
are the rotation and translation that transform the
Where world coordinate system to the camera coordinate

of the first view.
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YA |a@,,s,) 3. SILHOUETTE COHERENCE

Given a set of silhouettes,$ = 1,...,nof a
y P, same 3D object taken from different points of view,
e — and the corresponding set of camera projection
s z ~— matrices R Let Vh denote the reconstructed visual
Pl\ ] wS \\\ hull* using the set of silhouettes &nd & denote
the reconstructed visual hull silhouettes. We would
like to evaluate the coherence between the
-~ - silhouette $and all the other silhouettes;Shat
— X contributed to the reconstructed visual Al

Figure 2: Circular Motion Parameterization @ @ @
After rotating byw about the axig(6,, ¢,), the e
camera matrix P of the second view can be
achieved by post-multiplying [fR.] with Ry():
P, =K[R|t, IR.(&) (3)

Suppose that the circular motion image
sequence consists af views and the camera Figure 3: Visual Hull Reconstruction From A Set Of

matrices for each view is denoted byi®l,...,n Silhouettes. Left: Silhouettes Obtained By Projeriihe
from (2) and (3) we have e Original Object Back Into Cameras. Right: The

Reconstructed Visual Hull Using These Silhouettes.
P=RR,(@) (4) We assume that the silhouettes segmentation
wheree; denotes the rotation angle betweenithe and the projection matrices are exact. We say that
and the first view, the rotation matrix,®;) is the silhouette Sis coherent with all the other
written as a function oy and the axi®(fa, ¢9a) as  silhouettes S if the reconstructed visual hull
follow: silhouettes $ and the original silhouette; Sire

g aa aa| [ cosy -asiny gsiny exactly the same (S= S'). Two examples of
Rw=Q-cos)aa & aa|+ asiy cos -asimy coherent and non-coherent silhouettes are shown in

. . Fig.4 and Fig. 5.
ag ap & | |-asiny asiy  cos) g J

(5)
the rotation axisiis written in function of
spherical coordinatg®,, ¢,):

a = (sing, cosg, ,sind, sing, cosb,)

the translation is written in function of an angie
(the angle formed between the camera viewing
direction and the z-axis see Fig. 2) as follow:

t, = (sina, Ocosa,)

For n views, we parameterize the circular
motion withn+3 parameters: the focal lengththe
translation direction angley, the rotation axis
coordinates;, 95, then-1 camera angle steps. (b)

In this paper, our goal is to recover the projectio

matrices Pof a set of silhouettes; 8f an object Figure 4: Two Examples Of Different Silhouette
taken under circular motion as the set of n+3 conherence. (A) Perfect Coherent Silhouette. (B Lo
parameters: Silhouette Coherence.

v=(6,,¢,.0,w,1t)i=1...,n-1

! visual hull is an outer approximation of the olveer solid,
constructed as the intersection of the visual coaesociated
with all input cameras projection matricesgee Fig. 3
s
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it are required. The imaged-based visual hull
(IBVH) technique [11] does not compute a 3D

w W "« representation of the reconstructed visual hull but
- - - only 2D views of it. To take advantage of epipolar
geometry, 3D ray intersections required to construc
. _ - x the VH are reduced to 2D line intersections, which
£ 7 EF ES simplify the computation.
W e W

The implementation of silhouette coherence
Figure 5: The Original Silhouettes Superposed With ~ Will be as following: for each 2D point in contour,
The Visual Hull SilhouetteS;. The Red Region Indicates compute the intersection between its corresponding
Non Coherent Silhouette Pixels. optic ray and the visual hull by a ray-casting
approach, this is equivalent to (see Figure 6):

1. project the optic ray into each silhouette
compute the 2D intersection intervals
between the projected ray and each
silhouette
back project all the 2D intervals onto the
original 3D optic ray,

4. Compute the intersection on the 3D optic

o _‘-(aiv n o, ai ray of all the intervals of all the silhouettes
as.§)= Ia' [02] For any optic ray, we have a set of remaining
' (6) depth intervals, possibly empty, which represeet th
where §; denote the contour of the originalintersection between the optic rays and the inplici
silhouette Si and 8", the contour of the visual hull.

reconstructed visual hull silhouett§.S /

3.1 Measure Of Silhouette Coherence

To evaluate the coherence between silhouettes,
some kind of similarity measurement between the
original silhouette Sand the reconstructed visual
hull silhouettes $is needed. Hernandez [6] defines
this measure of coherence as the ratio of the
silhouette contour lengths:

~——

To compute the total coherence between all
the silhouettes, we compute the mean coherence ol
each silhouette with the (n-1) other silhouette [6] 2 3

Cc(§ -8 = - 2. C(S.§) ()

If the silhouettes segmentation and the
projection matrices are exact then: <

Csc(S.S)) =1 1

3.2 Silhouette coherence implementation

The simplest implementation of silhouette Figure 6: 2D Computation Steps, (1) Project The 3D
coherence, would be the following: i) compute the Optic Ray, (2) Compute The 2D Intersection Intesval
reconstructed visual hull defined by the silhoustte Between The 3D Optic Ray And Each Silhouette, (3)
ii) project the reconstructed visual hull back itite ~ Back Project All 2D Intervals Onto The 3D Optic Ray
cameras, iii) compare the reconstructed visual hull (4) The Intersection On The 3D Optic Ray (Green
silhouettes to the original ones. The major Segment).
drawback of this approach is the computation time.
Since the reconstruction of the visual hall wikea 4 OPTIMIZATION ROUTINES
several minutes, and if we want accurate projected In order to exploit silhouette coherence for
silhouettes, we need a high resolution 3D model @écovering camera parameters and motion under
the visual hull, which is computationally verycircular motion, the idea is to use the silhouette
expensive and not appropriate for an iterativeoherence measure & as the cost in an
optimization process. In addition, we are nobptimization procedure. In this section, three
interested in 3D model in itself but in theoptimization methods, including a Powell
comparison between its silhouettes with the originaptimizer, Genetic Algorithms, and a hybrid GA-
silhouettes. Therefore, it is a waste of time tddou PO, are applied to maximizes& (Eq. 7) and
the visual hull completely when only some views oEompared for several tests.

s
325




Journal of Theoretical and Applied Information Technology
20" February 2014. Vol. 60 No.2 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISSI817-3195
4.1 Powell Optimizer (PO) » step 4: Find the best individuiald, in pop, and

The first optimization method used here is the replaceind, by ind,.

Powell direction set method. The Powell optimizer  Note that an individuahd; is said to be better
applied in this paper is the version describedliy [ than another individuahd, if the fitness value of
13] in which starting points and a set ofind, is less that ofind,, since the problem under
independent search directions are provided to thgnsideration is a maximization problem.

program. In each iteration the method serially T adapt the GA to the camera parameters
performs a sequence of line minimizations alonggtimation problem, the real-valued Coding GA is
the various directions in the space of parame#érs. silized. TheCqc of the chosen Silhouettes is taken
the end of each iteration the method replaces 6ne @ pe the objective function. The camera parameters
the original directions with the line joining the 516 encoded as a chromosome string of n+3 genes
starting and ending points. A special care is takefs shown in Fig. 6. The alleles of each gene are

to ensure that the directions remain linearlyonsirained to a bound of values to ensure only
independent. This version of the Powell optimizefaasiple solution are adopted for evolution.

is applied to the Silhouette coherence maximization Th ist iterion in the literat 17
problem. Although there are many other ere exists no criterion in the literature [17],
15], the current work does not intend to include 3

comparative study of the merits of each of thesd Ge?eélcf Algo;_lthrgs: In l;he fl][S{, thte_z procezst;]s
implementations. executed for a fixed number of iterations and the

best individual obtained is taken to be the optimal
4.2 Genetic Algorithms (GA) one. In the second, the algorithm is terminatetif
improvement in the fitness value of the best
individual for a fixed number of iterations, anckth
est chromosome is taken to be the optimal one.
e have adopted the second stopping criteria with
elitist strategy [18].

When solving an optimization problem using
GA, each solution is usually coded as an alphab
string of finite length called chromosome. Eac
string or chromosome is considered as a
individual. A collection of N individuals is called

population. GA start with a randomly generated | 04 | ¢a | Ot |Aool ‘ ‘ An, | f |
population of size N, in each iteration of the Fig. 6 Encoding of camera parameters as
algorithm, a new population of the same size is chromosome string

generated from the current population by applyingr13 )
operators, termed selection, crossover and mutatidn3 Hybrid approach GA-PO

[16], that mimic the corresponding processes of  Ajthough GA can quickly locate the region in
natural selection. Following nature’'s example theyhich the optimal solution exists, it takes a
probability p, of applying the mutation operator ise|atively long time to converge to the optimal
very low compared to the probability of applyingsplution [10]. On the other hand, the Powell
the crossover operatog.p optimizer is known for its fast convergence speed
To improve the search process of the globdbut the correctness of solution is very dependant o
optimum, an additional operator, elitism, waghe quality of the initial guess. Therefore, we
implemented. The aim of the elitist strategy is te@xploited in the G maximization problem the
carry the best chromosome from the previoubenefit of combining the Powell Optimizer (PO)
generation into the next. We have implemented thiand the GA. The proposed hybrid method consists
strategy in the following way: of two steps. We start the search for good initial
« step 1: Copy the best individu@d, of the parameter \{alues us_ing GA followed by the refining
initial populationpop, in a separate location. ~ Process using PO in order to get more accurate

solution.
* step 2: Perform selection, crossover and |y oyr Hybrid method, the Genetic Algorithm
mutation operations to obtain a new population;s responsible to provide good initial values of
Pop:. camera parameters, while the Powell optimizer is

. step 3: Compare the worst individuadl; in p; responsible for the quality of parameters estinmatio

with ind, in terms of their fitness values.itfd, The advantage of this hybridization is not only
is found to be worse thaimd,, then replace reduces the search space greatly, but also avoids

ind; by indo. gcr)i]za;l:(rtzn;:onvergence of Genetic Algorithm to

s
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5 EXPERIMENTAL RESULTS I

GA
Powell

In order to test the performance of our hybric
method, several parameters of the GA operato
need to be determined. As recommended in [9] tt
crossover probability pwas set to 0.6 and the
mutation probability p was set to the inverse of the
population size N. The determination of the
population size N depends on the number c
parameters to optimize. For a simple case (
parameters), such as the estimation of focal lehgtt “
and rotation axis coordinatég,, ¢,), a population
with N=50 is sufficient. However, for full motion
estimation (n+3 parameters) a small population siz  wl— Lo L e v L o Ly

0 1000 Ji A0 000

. . Ut 300
can drive the GA to converge to a local maximum Number of Function Calls

To facilitate the implementation of our algorithm, gigre 8: Comparison Of The Convergence Historiés O
we have used the GAlib version 2.4 developed by ~po And GA For Focal Length And Rotation Axis

MIT. Estimation.

Silhouette Coherence
1= = =4

=

5.1 Comparison between PO and GA In the second test we have increased the

In this experiment, we have used a Syn,[he,[i[?omplexny of the optimization problem, we have

Teapot sequence of 18 exact silhouettes shown i%ken 9 views spaced of 20 degrees and we have

Fig. 7. We conducted systematic Comparisoncomputed the full circular motion (translation
betWeén the PO described in [8] and of the GA t irection e, and rotation ax_is coordinatggs, ¢a),
estimate the focal length and the rotation axis camera angleAw) by keeping the focal length to

: : - its calibrated value. Fig 9 shows the convergence
coordinategf,, ¢.). We found that in this case theggistories for the basic GA and the PO for this case

PO performs better than the GA, as shown b s shown in Fig 9 the GA converges correctly to

comparison of the convergence histories in Fig. ) . . .
Both the PO and the basic GA converge correctly e optimal solution while PO has been trapped in

the optimal solution. However, the PO converges t cal optimal solution due to bad initialization of

; : : tarting points. It is important to note that thare
the optimal solution more rapidly than the GA. St . .
P picly different implementations of the PO. Although the

version applied in this paper fails to find the lzd

, maximum, there may be other versions of the PO
that can improve the result. Though, seeking the
best version of the Powell optimizer is not the
intent of this paper.

L L L L L L L L L B B
0 deg 20 deg 40 deg 60 deg

Figure 7: Some Views Of Synthetic Teapot Sequence
With Their Corresponding Exact Silhouettes And iThei
Absolute Camera Angles

Silhouette Coherence

ol b b b b b e b by
0 100 m mw 4 00 m jL0) ) 910
Number of Function Calls

Figure 9: Comparison Of The Convergence Historiés O
Powell And GA For Full Motion Estimation
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5.2 Comparison between the GA and Hybrid L B
GA-PO ol

To demonstrate the advantage of the hybric I
method over the previous one (basic GA), we
applied it to recover camera parameters and motic ¥ ¢
from real silhouettes. In this experiment, we have#

[
Fybeid |

used the Hannover dinosaur sequence shown in Fé
10. The dinosaur sequence (36 images) is binarize 2 s
by a segmentation algorithm, and then the contour
are extracted from silhouettes using a GVF snak

[19]. ut

PR S SR T N SR SR TR T NN SR TR SR S N T
0 e

] £ an 0
Wumber of Funcoion Calls

Figure 11: Comparison Of The Convergence Histobés
GA And Our Hybrid Method

6 3D MODEL RECOSTRUCTION

The 3D object surface is determined by an
octree based algorithm: We dispose of a set of 36
& ¥/ { ,  silhouettes (dinosaur sequence in Fig. 10) and thei
\\}_Jf/ﬂL s A8 '“ldx'j EJJE'\E“'_’? correspondi(ng projectior(wq matrices P? reC())vered by

Figure 10: Same Images Of Hannover Dinosaur ~ OYf hybr_i(_j GA'_PO method. The algorithm _needs
Sequence. From Top To Bottom: Color Images, Biedriz tWO additional input data: the level of detail (the

Silhouettes And Contours Extracted From Silhouettes Size of the voxel), and an initial bounding box.
tarting from the bounding box, the octree
proach subdivides a cube into 8 children
henever it is on the isosurface, and iterates the
process recursively until the maximum level of
depth is attained. To evaluate a given cube, we

roject it into all the silhouettes to assign iteoof
he 3 labels [20] depending on whether it lies
e‘entirely inside (in), entirely outside (out), or
artially intersects the silhouette (on). If théeus
and the maximum depth is not still reached, we

-]

y gl(:u L![

oy C'—\\
/\ ) :g Pé n e E

)

g
f ]
S f L |

7,

L]

Table 1 gives the ranges of values for eac
parameter that we set for this experiment and t
estimation of the rotation axis coordina(@s, ¢,),
the translation direction, and the focal lengthby
the GA and the Hybrid method. The results ar
good for both methods. The Hybrid metho
outperforms the basic GA when computing th
rotation axis and the translation direction. Th
comparison of convergence histories between t

both methods is shown in Fig. 11. It is seen thal,iyide it and recursively test its children. the

strong improvement is o_btained when the PO iénd, only the cubes that are on surface have been
launched after 50 generations (1000 function callsy, givided. We can see the result of this step for
The hybrid method maximizes thes{aster than itarent levels of resolution in Fig. 13.

the basic GA. ) _
Once the octree is constructed, the next step is
to mesh it. Marching cubes algorithm [21] provides
an initial consistent surface which is then smodthe
using a decimation algorithm. Examples are shown

Table 1: Camera Parameter Estimated By Ga And The
Proposed Hybrid Method

Rotati Translation |Focal leght | in Ei
Parameters otation ransiation ocal leg in F|g 14
fa pa at f

GTrﬁﬂrr:d 92,663 2.261 2.735 3217 | 7 CONCLUSION

Lower range | _ - - 3000 . ;
9¢ | -180 9% 5 In this paper we developed a hybrid method
Upper range | 180 90 5 3400 GA-PO that combines the genetic algorithms and
R?JCOéeAred 92.405| 2272 2774 3232 the Powell optimizer to maximize the s!IhOL_Jette
y coherence between a set of silhouettes in circular

Eeiovsrzgd 92.658| 2257 2743 3246 motion. The Comparison between the GA and the

yry PO shows that both methods converged correctly to
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the optimal solution. However, the GA was slowef10]A. Mouafi, R. Benslimane, A. El Ouaazizi. A
than the PO. Important improvements ware Genetic Algorithm for Recovering Camera
obtained with the hybrid method in term of Parameters and Motion from Silhouettes.
convergence speed and parameters accuracy. The Telecommunications (ICT), 20th International
hybrid method can correctly find the optimal Conference on, 6-8 May 2013.

parameters without the need of initial values angh1]Matusik, W., Buehler, C., Raskar, R., Gortler,
successfully avoid to be trapped in local maxima. s and McMillan, L. Image-based visual hulls.
These characteristics will make the silhouette SIGGRAPH 2000, pages 369{374.

coherence concept more efficient and powerful t?l2] W. H. Press, S. A. Teukolsky, W. T. Vetterling
work in general motion instead of circular motion. and B. P. Flé\nnery Numerice,u Recipes, 2nd ed.

(Cambrige Univ. Press, Cambridge, UK, 1992).
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Figure 13: Octree Generation: The Dinosaur OctreeClarved From A Single Bounding Box Given 36 Imalgesn
Left To Right: Bounding Box, Level 3, 5, 6 And S0ldivision.

Figure 14: Dinosaur Model: Marching Cubes MeshingdADecimation Steps.
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