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ABSTRACT 

Survival analysis, also known as time-to-event analysis, focuses on modeling waiting times until events of 
interest occur. This paper proposes statistical flowgraph models (SFGMs) as a suitable decision support 
tool for survival analysis in power systems. SFGMs are useful for modeling time-to-event data that result 
from a stochastic process. Analysis from the flowgraph model gives an entire waiting time distribution as 
well as cumulative distribution function, survivor function and hazard function for any total or partial 
waiting time. The importance of survival analysis in power system is demonstrated when our power supply 
is disrupted. Two examples illustrated in this paper demonstrate with clarity, the effectiveness of SFGMs to 
the survival analysis in power systems. One of the advantages of SFGMs is to reduce the multistate models 
into an equivalent binary-state model. Based on this study, the authors suggest that the use of SFGMs will 
help decision makers to identify weak points in the system in order to control system conditions.    

Keywords: Hazard; Power System; Statistical Flowgraph Model; Survival Analysis; Time-To-Event Data.  
 

1. INTRODUCTION 
 
Survival analysis, also known as failure time 
analysis or time-to-event analysis, involves the 
estimation of the distribution of the time it takes for 
an event to occur to an object depending on its 
features [1].  
The basic function of an electric power system is to 
supply the load demand as economically as possible 
within pre-defined continuity, quality and security 
patterns. However due to the enormous quantity of 
components in these systems, combined with their 
unique operation characteristics, there is a 
possibility of failure of the entire system simply by 
failure of a crucial or a group of crucial components 
[2]. This paper describes Statistical flowgraph 
models for survival analysis in power systems. 
Statistical flowgraph models (SFGMs) connect a 
vast number of areas that are of interest in statistics, 
mathematics, computer science, and engineering. 
Some application areas include survival analysis 
and disease progression in medical studies, 
reliability engineering, and queuing theory; all of 
these involve stochastic processes. A statistical 
flowgraph model is a directed graphical depiction 
of a finite state stochastic process that is assumed to 
have the semi-Markov property [3]. They are useful 
for analyzing time-to-event data. SFGMs are 
distinct from other graphical models used in 

statistics. Directed graphical models use nodes to 
identify random variables and edges to model 
causal relationships. SFGMs, on the other hand, use 
directed graphs to model the outcomes of random 
variables. In a SFGM, nodes identify the actual 
physical states of a system; edges model allowable 
transitions, probabilities of outcomes, and waiting 
times until the occurrence of outcomes.  
SFGMs bring together applied probability 
techniques such as transforms and approximation 
methods and meld them with data analysis and 
statistical methods. They provide a method for 
accessing the waiting time distribution for any 
partial or total waiting time [4].  
SFGMs were first used in engineering and appeared 
in the literature of electrical engineering as “signal 
flow graphs” [5]. Mason [5] was primarily 
concerned with solving systems of linear equations. 
Signal flowgraphs are concerned with 
“transmitting” current with respect to inductance 
and capacitance. Butler and Huzurbazar [6] adapted 
SFGMs for use in Bayesian stochastic models. 
Since then, the use and theory of SFGMs has 
continued to expand. Huzurbazar [7] used SFGMs 
to generalize phase-type distributions. Huzurbazar 
[8] demonstrated a Bayesian application of  SFGMs 
on a complex cellular telephone network. Butler 
and Huzurbazar [9] improved on some of the 
techniques used in statistical flowgraph modeling 
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and demonstrated their use in Bayesian prediction 
of waiting times in queuing theory. Yau and 
Huzurbazar [10] show how SFGMs can be used to 
model incomplete data in multistate systems. The 
theory linking semi-Markov processes with 
multistate models using SFGMs was explained in 
[11]. Huzurbazar [4] provides an excellent example 
of how Bayesian SFGMs can be applied in various 
fields, using an example in construction project 
management. Huzurbazar [12] is a full length text 
devoted to SFGMs and its applications. Other 
applications of  SFGMs can be found in [13-15].  
 
2. STATISTICAL FLOWGRAPH MODELS  
 
Throughout this paper, we will assume that the time 
to event � is a continuous random waiting time that 
is nonnegative.  
Actually, the distribution of � has four 
representations that are equivalent. Each 
representation is useful in specific contexts. These 
representations include the probability density 
function, the survivor function, the cumulative 
distribution function, and the hazard function. The 
survivor function and the hazard function are very 
useful to survival analysis methodology. 
Before we describe SFGMs, we present two 
definitions [12]. 
Definition (survivor function). In the analysis of 
time-to-event data, one quantity of interest is the 
probability that a component survives beyond some 
time � starting from the initial time � � 0. The word 
survives is used quite generally to mean that the 
event of interest has not yet occurred. Let � be the 
random waiting time until the event of interest 
occurs. The quantity ��� � �� represents the 
probability that the event of interest has not 
occurred. In survival analysis, this is called the 
survivor function and is denoted by 
 	��� � ��� � ��                                                (1)  
                                                                                                                                     
For instance, the survivor function gives the 
probability that a component survives beyond some 
specified time �. In engineering applications, this is 
called the reliability function and is denoted by 
��� � ��� � ��.  
Definition (hazard function). Suppose that T is the 
random waiting time until the event of interest 
occurs, and let ����, ����, and 	��� denote the 
density, cumulative distribution function (CDF), 
and survivor function of  � . Then the hazard 
function is defined as  
 ��� � ����

����                                                         (2) 

                                                                                                                             
This is also called the instantaneous failure rate. 
The hazard gives the instantaneous rate of failure at 
time � given that the component survives up to time �. Although the hazard is technically a rate, it is 
often spoken of in probabilistic terms as the chance 
that a component “fails” at time � conditional on 
having survived up to that time. In fact, ���is not a 
probability density function and it can take on any 
value greater than or equal to zero. We can think of 
the hazard function as an component’s propensity 
to fail in the next short interval of time, given that 
the component has survived to time �.  
Some common relationships between these 
functions are 
 
���� � �	����

�� � �	 ′���                                      (3)                                                                            	��� � 1 � ����                                                (4) 
                                                                                                                             

	��� � ��� ��� ������
	 �                                (5)                                                                          

��� � � � 
�� ����
��                                                (6)   

                                                                                                
Multistate models are used to describe time-to-
event data. They model stochastic processes that 
progress through various stages [14]. Time-to-event 
data analysis focuses on modeling waiting times 
until events of interest occur [12]. Today’s complex 
systems make the analysis of multistate models 
very important in reliability. Statistical flowgraph 
models are one type of multistate model.  Statistical 
flowgraphs model potential outcomes, probabilities 
of outcomes, and waiting times for the outcomes to 
occur. They can be used to model complex system 
behavior, time to total or partial system failure, 
time to repair of components or the entire system, 
and to predict system reliability. Current methods 
in reliability for complex systems require that all 
the component waiting times be from the same 
distributional family such as the Weibull so that 
information may be easily combined. In addition, 
some methods for complex systems such as fault 
trees restrict themselves to binomial data so that 
large amounts of information may be easily 
aggregated. SFGMs allow each component or set of 
components to have its own distribution and 
statistical flowgraph algebra provides a way to 
combine these varied distributions [14].  
SFGMs provide a link between traditional 
multistate models and semi-Markov processes. 
They model semi-Markov processes and provide a 
practical alternative methodology for data analysis. 
They are useful when a continuous time semi-
Markov process defines the transition times 
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between states and interest focuses on estimating 
the density, CDF, survivor function and hazard 
function of the process [4]. Semi-Markov analysis 
is restricted to cases where the waiting times 
between states all come from the same family of 
distributions or each transition in the multistate 
model is modeled by a separate proportional 
hazards model [12]. Although semi-Markov 
processes are a natural extension for multistate 
models, in practice, data analysis for semi-Markov 
processes can be quite difficult, especially when 
returns to a state are allowed [16]. SFGMs 
circumvent this difficulty by working in the 
moment generating function (MGF) domain.  
Statistical flowgraph models provide an extension 
of traditional multistate models to include semi-
Markov processes. They allow vastly different 
distributions for waiting times between states, and 
they provide a closed form for the distribution of 
quantities of interest, such as total or partial waiting 
time in a stochastic network [12]. In addition to 
allowing a variety of distributions to be used within 
the stages of the multistate model, the statistical 
flowgraph methodology also easily handles 
reversibility. In the engineering context, this means 
that a failed component can be repaired [14].  
SFGMs have been used in both Bayesian and 
frequentist frameworks [14]. The final result of a 
Bayesian SFGM is a posterior predictive density 
(PPD) of the waiting time from one state to another, 
and similarly for frequentist SFGMs the result is a 
probability density function (PDF).   
There is a systematic way to implement statistical 
flowgraphs. The first step is to propose the system 
diagram or graphical model. We design our graph 
by identifying the states the process can assume. 
These states are represented by the nodes of the 
graph. Next, we identify the possible transitions 
between states, which are the directed branches (or 
edges) of the graph. Once the graphical model is in 
place, we examine the data to suggest appropriate 
distributions for the branch transition times. The 
selected distributions model the time it takes to 
transition from one state to another. Next, we find 
the MGFs or Laplace Transforms (LTs) of the 
distributions assigned to the branches of the SFGM 
[3].  
The powerful capability of  SFGMs to power 
system survival analysis is demonstrated via two 
examples from power system operation and power 
system protection. 
 
2.1. Example 1: statistical flowgraph models for 

power system operation  

For purpose of analyzing power system security 
and designing appropriate control systems, it is 
helpful to conceptually classify the system-
operating conditions into five states: normal, alert, 
emergency, in extremis, and restorative. Fig. 1 
depicts these operating states and the ways in which 
transition can take place from one state to another 
[17].  
 
Fig. 1 SFGM For Operating States Of A Power System 

At End Of Text 
 
In the normal state, all system variables are within 
the normal range and no equipment is being 
overloaded. The system operates in a secure 
manner and is able to withstand a contingency 
without violating any of the constraints. The system 
enters the alert state if the security level falls below 
a certain limit of adequacy, or if the possibility of a 
disturbance increases because of adverse weather 
conditions such as the approach of severe storms. In 
this state, all system variables are still within the 
acceptable range and all constraints are satisfied. 
However, the system has been weakened to a level 
where a contingency may cause an overloading of 
equipment that places the system in an emergency 
state. If the disturbance is very severe, the in 
extremis (or extreme emergency) state may result 
directly from the alert state. Preventive action, such 
as generation shifting (security dispatch) or 
increased reserve, can be taken to restore the 
system to the normal state. If the restorative steps 
do not succeed, the system remains in the alert 
states. The system enters the emergency state if a 
sufficiently severe disturbance occurs when the 
system is in the alert state. In this state, voltages at 
many buses are low and/or equipment loadings 
exceed short-term emergency ratings. The system is 
still intact and may be restored to the alert state by 
the initiating of emergency control actions: fault 
clearing, excitation control, fast-valving, generation 
tripping, generation run-back, high voltage dc 
(HVDC) modulation, and load curtailment. If the 
above measures are not applied or are ineffective, 
the system is in extremis; the result is cascading 
outages and possibly a shut-down of a major 
portion of the system. Control actions, such as load 
shedding and controlled system separation are 
aimed at saving as much of the system as possible 
from a widespread blackout. The restorative state 
represents a condition in which control action is 
being taken to reconnect all the facilities and to 
restore system load. The system transits from this 
state to either the alert state or the normal state, 
depending on the system conditions. 
Characterization of the system conditions into the 
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five states as described above provides a framework 
in which control strategies can be developed and 
operator actions identified to deal effectively with 
each state. For a system that has been disturbed and 
that has entered a degraded operating state, power 
system controls assist the operator in returning the 
system to a normal state. If the disturbance is small, 
power system controls by themselves may be able 
to achieve this task. However, if the disturbance is 
large, it is possible that operator actions such as 
generation rescheduling or element switching may 
be required for a return to the normal state [17].  
In a SFGM, the states or nodes represent outcomes. 
The nodes are connected by directed line segments 
called branches. These branches are labeled with 
transmittances. These transmittances are labeled 
with the “transition probability × moment 
generating function of the waiting time distribution 
in the previous state” which is a quantity called the 
branch transmittance. The waiting times on the 
branches can be any parametric distributions that 
admit MGFs [4]. We use the branch transmittances 
of a SFGM to solve for the MGF of the distribution 
of the waiting time of interest. The next section 
describes how to solve the statistical flowgraph of  
Fig. 1.  
 
2.1.1. Solving a statistical flowgraph model 

The term solving a SFGM refers to finding the 
MGF of the overall waiting time distribution from 
one state to another.   
We use a procedure based on Mason’s rule, 
described in [5], to solve the SFGM. Mason’s rule 
did not involve probabilities or MGFs. However, 
SFGMs can be solved by applying Mason’s rule to 
the branch transmittances. When the system is 
certain to pass eventually from state � to state �, 
the transmittance is the MGF of the waiting time 
distribution. Practical use of Mason’s rule entails 
identifying all of the paths from � to �, the loops 
involved in those paths and then solving for the 
overall MGF. It requires computing the 
transmittance for every distinct path from the initial 
state to the end state and adjusting for the 
transmittances of various loops. Before we describe 
Mason’s rule, we present the following definitions 
[12].   
Definition (path). A path is any possible sequence 
of nodes from an initial state to an end state that 
does not pass through any intermediate node more 
than once.  
Definition (path transmittance).  A path 
transmittance is the product of all of the branch 
transmittances for that path. 

Definition (loop).  A loop is any closed path that 
returns to the initiating state without passing 
through any state more than once. 
Mason’s rule differentiates among different types 
of loops. These are defined as follows [12].  
Definition (first-order loop). A first-order loop is 
any closed path that returns to the initiating node 
without passing through any node more than once. 
Definition (second-order loop). A second-order 
loop consists of two non-touching first-order loops. 
Definition (�	�-order loop). A �	�-order loop 
consists of � non-touching first-order loops. 
Consider the SFGM in Fig. 1. It has five states. 
Suppose that our interest is in predicting the 
waiting time distribution from 2 → 4. There are 
two paths from 2 → 4: 2 → 4 and 2 → 3 → 4. The 
transmittances of these paths required for the 
application of Mason’s rule are given in Table 1.  
The transmittance of a first-order loop is the 
product of the individual branch transmittances 
involved in the path. Table 1 gives the 
transmittance for this loop. The transmittance of a 
higher-order loop is the product of the 
transmittances of the first-order loops it contains. 
There are no higher-order loops in this SFGM.  
 

Table 1 insert here, exactly. 
 
Let � be the overall waiting time from state � to 
state �. The general form of Mason’s rule that gives 
the MGF of the distribution of  �, is 
 

�� � � ∑ ��������∑ ������ ��� �����

��∑ ������ �����
                        (7)                                                                                                                   

where: ��� � is the transmittance for the !	� path.  "�� � in the denominator is the sum of the 
transmittances over the �	�-order loops.  "�� � � is the sum of the transmittances over the    �	�-order loops sharing no common nodes with the !	� path (i.e., loops not touching that path). 
Eq. (7) for the MGF of the distribution �, the 
waiting time from 2 to 4, in Fig. 1 is 
 

 �� � � ����������������������������
�������

              (8)  

                                                                                                    
Where ����� � 	 	������������������			������������������																���������������������������																������������������������������������																������������������������������������																���������������������������������������������		

 

 

and "�� � � � 0, since all loops touch the path. 
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We assume a variety of waiting time distributions 
such as Inverse Gaussian (#�, #�), Gamma (%, &) 
and Exponential (') given in Table 2. If we had 
data on the real system, we would use that to select 
candidate distributions [4]. Parameter estimation is 
done by standard methods such as maximum 
likelihood [4] or the entire problem can be solved 
from the viewpoint of prediction using Bayesian 
methods as in Section 2.1.3. 
For now, we assume the following parameter 
values  
 ��� � 0.6, ��� � 0.3, ��� � 0.7, 	��� � 1 ���� � ���, ��� � 0.5, ��� � 1 � ���, 	��� � 0.4,��� � 0.6, ��� � 1 � ���, 	#��� � 20, #��� � 5,'�� � 0.3, %�� � 3, &�� � 4, 	'�� � 1, '�� �3, '�� � 1, %�� � 4, &�� � 1, '�� � 0.3, '�� �0.5.  
 

Table 2 Waiting Time Distributions For The Statistical 
Flowgraph Of Fig. 1 At End Of Text. 

 
The MGF for the overall waiting time using these 
distributions in Eq. (8) is (from MAPLE software) 
 
���� � 
���� � ���

�����
�	�� �������� � ����� 	 �	���	����� � ������

											� 	�1 � �����
���	
�����
���� 
���
� �����

�.��������� � �����
											� �����
��� 	
�����
���� 
���

� �����
�.� ��� � ���

�����
�	�� �����	���

											� � ���

�����
�	�� ���	����� � ������� � �����	

											� �����
��� 	
�����
���� 
���
� �����

�.� ��������													�9�	
											� � ���

�����
�	�� ���	����� � ������� � �����

											� ���� � ���

�����
�	�� ���	����� � �����

											����� � ���

�����
�	�� �����	��� � ���

�����
�	�� ���	��

��� � ������� � ���� �
											� ��������� � ���

�����
�	�� ���	����� � ������� � ��������

                     

 
We could replace Fig. 1 with an equivalent SFGM 
that has only two states 2 and 4, with one 
connecting branch. The MGF assigned to the 
branch is �� � as defined in Eq.(9).  
 Solving SFGMs gives us the MGF of the overall 
waiting time distribution of interest; however, we 
still have not obtained the distribution itself.   
The next section discusses the conversion of  MGFs 
such as Eq.(9) to waiting time density. 
 
 
 
 

2.1.2. Inversion of  statistical flowgraph MGF 

Note that our interest with SFGMs is to convert the 
resulting MGF into a density, CDF, survivor 
function and hazard function.   
Parametric SFGMs have used MGF to represent the 
probability of transition between states. This has 
greatly limited the number of distributions available 
for SFGMs, since not all distributions have MGFs. 
Popular distributions such as the lognormal or 
certain Weibulls do not have MGFs and have not 
been used in SFGMs. By using complex Laplace 
Transforms (LTs) in lieu of MGFs we can use all 
continuous and differentiable parametric 
distributions in SFGMs. Complex LTs are a 
generalization of  MGFs and characteristic 
functions and exist for all lifetime distributions. 
The Laplace Transform, as defined in statistics, is a 
simplification of the LT as defined in mathematics. 
In mathematics, the Laplace Transform,	"�,�, is 
defined for all real and complex ,, while in 
statistics it is usually only defined for real ,. 
Therefore, we use the term  complex LT to avoid 
ambiguity [3].  A complex LT for a positive 
random variable �, defined on -0,∞� with ,	 � 	� / 01 and � 2 	0, is   

 "�,� � � ���� 
	 ������                                      (10)  

                                                                                                                                
If the MGF has a closed analytic form, then so does 
the complex LT, and finding the complex LT for 
the random variable � is a transformation similar to 
finding the MGF. However, for distributions that do 
not have closed form MGFs we must find the 
complex LT or MGF by numerical integration. 
Examples of distributions that have closed form 
complex LTs are the gamma and inverse Gaussian 
distributions, and examples that do not are the 
lognormal and Weibull distributions. Using the 
complex LT does not change any theory we 
introduced in Section 2.1.1. Mason’s rule still 
applies; all we do is replace the MGFs with their 
associated complex LTs [3]. 
The most common method for converting the MGF 
of the overall waiting time of interest into an 
approximate density is the saddlepoint method. 
This method is cumbersome when solving 
complicated SFGMs. It cannot handle distributions 
that do not have MGFs. Another possible method of 
inversion is the EULER method, developed by 
Abate and Whitt [18]. The EULER method requires 
that the densities involved be continuous and 
differentiable. Thus by using complex LTs in the 
place of MGFs on the branches of a SFGM, we can 
use any relatively continuous and differentiable 
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distribution in statistical flowgraph modeling. This 
is a big step forward for SFGMs [3].    
The Euler method uses the Bromwich integral and 
Euler summation (and hence its name). The 
Bromwich contour inversion integral is [3]: 
 

���� � �
�!" � ���#�"∞

#�"∞ "�,��,,                             (11)  

                                                                                                                
Where 0 � √�1, "�,� is the complex LT, and the 
contour is any vertical line , � 4 such that "�4� 
has no singularities on or to the right of it. With a 
change of variable and some manipulation, ���� 
can be rewritten as 
 

���� � �$��
! � 
�-"�4 / 0��5∞

	 cos����	��,        (12) 

                                                                                             
Where 
�-,5 is the real part of a complex number. 
Using the trapezoidal rule with step size 9/�2�� 
and letting 4 � ;/�2�� gives the approximation 
 

���� � �
�

�

�� �� �� ��
���� 	 �

�

�

� ∑ ��1��∞

��� ��	 �� ��������� ��.    (13)  
                                                                  
 This is a nearly alternating series so Abate and 
Whitt [18] use Euler summation as an acceleration 
method. Combining these, our approximation for 
the density of one random variable �, is  
 

���� < ∑ >$	/�

� 	 ���%!'!�%�'�!?($	)�*
	

��
+,

� /%
'-	

																							∑ ��1�./�'
.-� 
�	 �" @0��.!"�� A�BC,    (14)                                               

or, 

���� < $
	
�

� ∑ ��1�.%�/
.-	 D. 	
�	 �" @0��.!"�� A�,     (15) 

                                                                                         
Where 

 D	 � �
� , D. � 1	for	G � 1…I,	  

and 

D. � D.�� � 2�%J!�G � I � 1�! �J / I / 1 � G�!					 		for							G � I / 1…I / J. 
 
Abate and Whitt [19] recommend setting J �11, I � 15,	and increasing I if better accuracy is 
required. This approximation contains two different 
errors. First is the error introduced by the 
trapezoidal approximation, and the second by the 
truncated sum and Euler acceleration. Abate and 
Whitt [19] show how to bound the first type of 
error by choosing A (often they choose ; � 18.4). 
However, the error introduced by the truncated sum 

and Euler acceleration cannot be bounded, only 
estimated.   
All of the distributions used in this example have 
closed form MGFs. Now, we use the Euler method 
to convert the MGF of the overall waiting time 
from 2 to 4 into a density. The resulting density, 
CDF, etc., are given in Fig. 2 (from MATLAB).  
                                                                   
Fig. 2 Density Function, CDF, Survivor Function And 

Hazard Function For Example 1 At End Of Text. 
 

SFGMs focus on modeling the observed state-to-
state waiting times. This type of modeling allows us 
to realistically model the shape of the hazard. The 
shape of the hazard is increasing and decreasing at 
varying rates. This is typical of hazards from 
SFGMs since we are modeling the actual waiting 
times and not making assumptions about the 
hazards. Based on these, the purpose of plots 
presented in Fig. 2 is to help energy managers 
better understand the hazards and opportunities 
they face, to evaluate the options available for their 
control and finally to select optimal energy policies.  
SFGM is a useful decision support tool for survival 
analysis in power systems. The term decision 
support (DS) contains the word support, which 
refers to supporting people in making decisions.  
Thus, DS is concerned with human decision 
making, especially in terms of helping people 
improving their decision making. 
Analysis from the flowgraph model gives an entire 
waiting time distribution as well as the system 
reliability (survivor) and hazard functions for any 
total or partial waiting time. For decision making, 
this immediately provides the mean, median, or any 
percentile of the waiting time distribution for a 
variety of input distributions [12]. 
 In addition to the functions 	��� and  ���, a 
common metric in power system is the mean time 
to failure (MTTF) which is the average time to the 
first failure. It can be obtained from the mean of the 
probability density of the time to failure ����: 
 MTTF � � ������� 

	                                          (16)  
                                                                                                                             
If 	��� is the system reliability (survivor) function, 
the integral in Eq. (16) becomes                  MTTF � �� �	�	��� 

	  which, after integrating by 
parts [20-22], gives  
 MTTF � � 	��� 

	 ��                                              (17)    
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2.1.3. Bayesian statistical flowgraph models 

Bayesian SFGMs use the same principles as 
frequentist SFGMs. The primary difference is that 
the Bayesian framework provides a posterior 
predictive distribution (PPD) as the final result. 
This is very useful since prediction is the primary 
focus of SFGMs. This section describes the 
computation of Bayesian predictive density, 
cumulative distribution function, survivor function, 
and hazard function for SFGMs using Euler method 
and slice sampling technique. Information about the 
process allows us to solve the SFGM as seen in 
Section 2.1.1 and Section 2.1.2. Observations on 
the various transitions allow us to consider 
parametric models for the branch waiting times of 
the SFGM. Our interest lies in making inferences 
about the unknown parameters in the model, 
updating our knowledge of the mechanism that 
generated the data, evaluating branch models, and 
ultimately using our data and the SFGM for 
prediction. Bayesian analysis formally incorporates 
subjective information about a problem into the 
analysis. 
We can think about our model as the theory that 
drives what we can observe. For a given parameter 
vector P, we expect things to behave in a certain 
way. We use the data to give us additional 
information about P, but we can never know P. We 
know that our theory (model) is incorrect, so the 
question then becomes: How useful is it? What is 
often important is whether we can use the 
formulated model to make useful predictions about 
new observations, Q � �Q�, …	 , Q�, that are 
conditionally independent of R, the observed data, 
given P. In a flowgraph model, these future 
observations will generally be total or partial 
waiting times [12].  
Definition (Bayes theorem). The posterior 
distribution of parameter vector P given the data R  
is defined by  
 9�P|R� ∝ 	U�P|R�9�P�                                    (18)  
                                                                                                                      
where U�P|R� is the likelihood function and  9�P� 
is the prior [12].  
The Bayesian predictive density of a future 
observable Q given data R about a system with 
parameter vector P  is  
 

�1�V|R� � 2��3|5�6�5|7�!�5��5
26�5|7�!�5��5                          (19)  

                                                                                                         
where Q has density �1�V|P� [12].  

In general, we do not know �1�V|P� in Eq.(19). In 
this case, we use �W1�V|P� in place of  �1�V|P�. �W1�V|P� is computed using the Euler method i.e. 
Eq. (14) or Eq.(15).  Practically, this involves 
generating a random sample of P values from the 
posterior and performing the following 
computations for each P value [12]:  

1. Convert the statistical flowgraph 
MGF,�1|5� �, to a density using the Euler 
method for each value V of Q at which the 
density is desired.  

2. Treat each density as a vector of values 
(evaluated at each value V in computation 
1) indexed by P8. 

3. For each V value, average the densities 
over the P values to give  

             �X1�V|R� � ∑ �9�3|5���
���

�                         (20)   

                                                                                                           
where �W1�V|P8� is the density derived from the 
Euler method and � is the number of samples. For 
large �, this sum approximates the integral 
Eq.(19). 
There are many methods for sampling from the 
posterior distribution (e.g. rejection sampling, 
importance sampling, Gibbs sampling, etc. [12]), 
and some methods are better suited than others for 
specific problems. A recently developed technique 
that lends itself to sampling from the posterior with 
SFGMs is a Markov Chain Monte Carlo (MCMC) 
method called slice sampling [12]. Slice sampling 
was introduced by Neal [23] and is presented in 
detail in [24]. The basic premise of slice sampling 
is that one can sample from any univariate 
distribution by sampling points uniformly under the 
graph of its density function. Multivariate slice 
sampling can be performed by applying a single 
variable slice sampling method to each variable in 
sequence [12]. In this study, we use Slice sampling 
for sampling from the posterior distribution. 
Our goal is to compute the Bayesian predictive 
density of the overall waiting time from 2 → 4 
using Eq.(20). We let � be this random time. Our 
parameter vector P is P � ����, ���, ���, 	���,���, ���, 	���, ���, ���, 	#���	, #���, '��, 	%��,&��, 	'��, '��, '��, %��, &��, '��, 	'���.   
We assume Unif�0,1� priors on ���, ���, ���, 	���,���, ���, 	���, ���	and		���. The remaining priors 
are  
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9�	'���, 9�	'���, 9�%���, 9�&���	~	Unif�0,4�																	9�'���, 9�'���, 9�'���	~	Unif�0,1�																													9�	%���	, 9�&���	~	Unif�0,2�																																												9�#���	�	~	Unif�1,5�																																											9�	#���	�	~	Unif�1,10�																																														9�'���	~	Beta�2,1�
  (21)                                                                                    

This computation, using M = 1000 values, gives the 
Bayes predictive density, CDF, survivor function, 
and hazard function of  the waiting time of interest 
in Fig.3. Note that we never actually get the exact 
predictive density; we estimate it via the random 
samples. 
                                                                    

Fig. 3. Bayes Predictive Density Function, CDF, 
Survivor Function And Hazard Function For Example 

1 At End Of Text. 
 
2.2. Example 2: statistical flowgraph models for 

power system protection: protective relay testing 

The goal of protective relay testing is to maximize 
the availability of protection and minimize risk of 
relay misoperation. Having defined the necessary 
tests and monitoring methods for protective relays, 
it is now necessary to optimize the testing interval 
[25].  
Schweitzer [25] introduced a nine-state model 
defined by the operating condition of the relay and 
the protected component. The model accounts for 
relay self-testing, but does not account for other 
monitoring means. Fig. 4 shows a ten-state model 
that accounts for self-testing and models routine 
relay verification through other simple checks. The 
circles represent the model states. The arrows 
represent the transition paths between the states. 
 

Fig. 4 SFGM For A Protection/Component System At 
End Of Text. 

 
The model assumes that when a fault occurs while 
the relay is out of service, a larger portion of the 
power system is isolated than was actually 
necessary to remove the fault. The relay could be 
out of service because of a failure, testing, or 
repairs. 
The probability model is divided into four 
quadrants representing the condition of the relay 
(Protection (P)) and the line (Component (C)).  
State 1 represents a normal operating condition 
where the line is energized (C UP) and the relay is 
operating properly (P UP). When a line fault 
occurs, the Component makes the transition to a 
down (DN) state, represented by state 2. In state 2, 
the line is faulted and the relay signals the circuit 
breaker to trip. Circuit breaker operation takes the 

model system to state 6, where the line is isolated 
(ISO). The line is repaired and re-energized, taking 
the model back to state 1. 
States 5, 3, 9 and 10 represent conditions where the 
relay is out of service and unavailable to trip if a 
fault occurs. In state 5, the relay is out of service for 
routine testing. In states 3, 9, and 10, the relay is 
out of service due to a relay failure. State 9 
represents the relay under repair (REP). The model 
enters state 9 from state 1 when a relay self-test 
detects a failure. The model system enters state 9 
from state 3 when a routine test detects a relay 
failure. The model enters state 9 from state 10 when 
a meter check detects a failure. 
The model enters state 3 from state 1 when a relay 
failure occurs that is not detected by the relay self-
test function and could not be detected by meter 
checks. 
A failure not detected by either self-tests or meter 
tests are only detected by routine testing or by 
observing a misoperation. The model enters state 4 
if a fault occurs while the relay is out of service, or 
if a common-cause failure of the relay and power 
system occurs. If a fault occurs while the relay is 
out of service, remote backup protection operates to 
isolate the fault. When the remote protection 
operates, a larger portion of the power system is 
taken out of service than would have been if the 
failed relay had operated properly. This is 
represented in state 4 and state 8 by the isolation of  
C and X, where X is the additional equipment 
removed from service by the backup relay trip 
operation. 
Consider the SFGM in Fig. 4. Quantity of interest 
includes predicting the distribution of the total 
waiting time from state 1 to state 4. There are eight 
paths from 1 to 4 (e.g.1 → 3 → 9 → 4). Also, there 
are nineteen first-order loops (e.g.1 → 2 → 6 →7 → 9 → 1) and six second-order loops (e.g. 1 → 3 → 9 → 1 with 6 → 7 → 6) . In this analysis, 
the waiting time distribution for transition from any 
state � to any state � is assumed to be Exponential 
('). Applying Mason’s rule we find the MGF of the 
overall waiting time distribution from state 1 to 
state 4. Finally, we transform this MGF into a 
density, CDF, etc. They are shown in Fig. 5.  
 

Fig. 5 Density Function, CDF, Survivor Function And 
Hazard Function For Example 2. 

 
To compute the Bayes predictive density of  the 
total waiting time distribution from 1 to 4, we 
assume Unif�0,1�  priors on all of the parameters. 
Fig. 6 shows the Bayes predictive density, CDF, 
etc., for this illustration. 
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Fig. 6 Bayes Predictive Density Function, CDF, Survivor 
Function And Hazard Function For Example 2 At End Of 

Text 
 

 
3. CONCLUSION 
 
The aim of survival analysis is to estimate the 
distribution of the time it takes for events to occur. 
This paper proposed statistical flowgraph models 
(SFGMs) as a new approach to do survival analysis 
in power systems. This decision support tool (using 
the semi-Markov assumption) provides a way for 
analyzing time-to-event data and constructing 
corresponding Bayesian predictive distributions. 
SFGMs allow data analysis for semi-Markov 
processes using non-exponential waiting times. 
They can be applied without becoming intimately 
familiar with the mathematical theory of stochastic 
processes. While the increase number of states 
improves the accuracy of modeling power systems, 
it also brings the problem of whether proposed 
multistate models can be compatible with practical 
studies. Therefore, it is necessary to find a method 
to reduce multistate models into an equivalent 
binary-state model, to ensure proposed models are 
practical. SFGMs provide a systematic way that can 
be used to reduce complex power systems models.  
The approach advances the state of the art in power 
system survival analysis. It also lays a general 
foundation for effective and systematic power 
system management. 
SFGMs model the observable waiting times rather 
than the hazards and as such, they do not directly 
make any assumptions about the shape of the 
hazard. For decision making, this immediately 
provides the mean, median, or any percentile of the 
waiting time distribution for a variety of input 
distributions [12].  
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TABLES 
  

Table 1 Paths And Loops For Solving The Statistical Flowgraph Of Fig. 1 
Path Transmittance 

Path 1: 2 → 4 ������
��� 

Path 2: 2 → 3 → 4 ���������
������

��� 
1��-order loops  

1 → 2 → 1 ���������
������

��� 
2 → 3 → 2 ���������

������
��� 

2 → 4 → 5 → 2 ������������
������

������
��� 

2 → 3 → 4 → 5 → 2 ���������������
������

������
������

��� 
1 → 2 → 4 → 5 → 1 ���������������

������
������

������
��� 

1 → 2 → 3 → 4 → 5 → 1 ������������������
������

������
������

������
��� 

 
 
 

Table 2 Waiting Time Distributions For The Statistical Flowgraph Of Fig. 1 
Transmittance Distribution MGF 

1 → 2 Inverse Gaussian (���� , ����) ���	
��� � exp ����� 	���� � ������ ��

���

� � 2��� 
2 → 1 Exponential (���) ���	

��� � 	 � ���
��� � �� 

2 → 3 Gamma (���, ���) ���	
��� � � ���

��� � ��
	��

 

2 → 4 Exponential (���) ���	
��� � 	 � ���

��� � �� 

3 → 2 Exponential (���) ���	
��� � 	 � ���

��� � �� 

3 → 4 Exponential (���) ���	
��� � 	 � ���

��� � �� 

4 → 5 Gamma (���, ���) ���	
��� � � ���

��� � ��
	��

 

5 → 2 Exponential (���) ���	
��� � 	 � ���

��� � �� 

5 → 1 Exponential (���) ���	
��� � 	 � ���

��� � �� 
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FIGURES 
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Fig. 1. SFGM For Operating States Of A Power System. 
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Fig. 2. Density Function, CDF, Survivor Function And Hazard Function For Example 1. 
 

 
Fig. 3. Bayes Predictive Density Function, CDF, Survivor Function And Hazard Function For Example 1. 
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Fig. 4. SFGM For A Protection/Component System. 
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Fig. 5. Density Function, CDF, Survivor Function And Hazard Function For Example 2. 

 

 
Fig. 6. Bayes Predictive Density Function, CDF, Survivor Function And Hazard Function For Example 2 


