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ABSTRACT

Survival analysis, also known as time-to-event wsia) focuses on modeling waiting times until egeoit
interest occur. This paper proposes statisticaldlaph models (SFGMs) as a suitable decision stippor
tool for survival analysis in power systems. SFGMs useful for modeling time-to-event data thatltes
from a stochastic process. Analysis from the flapdr model gives an entire waiting time distributas
well as cumulative distribution function, survivéunction and hazard function for any total or parti
waiting time. The importance of survival analysigpower system is demonstrated when our power guppl
is disrupted. Two examples illustrated in this pagemonstrate with clarity, the effectiveness oGMs to

the survival analysis in power systems. One ofattivantages of SFGMs is to reduce the multistateetaod
into an equivalent binary-state model. Based om shidy, the authors suggest that the use of SR@NMs
help decision makers to identify weak points inslistem in order to control system conditions.

Keywords: Hazard; Power System; Statistical Flowgraph Model; Survival Analysis; Time-To-Event Data.

1. INTRODUCTION statistics. Directed graphical models use nodes to
identify random variables and edges to model
Survival analysis, also known as failure timecausal relationships. SFGMs, on the other hand, use
analysis or time-to-event analysis, involves thelirected graphs to model the outcomes of random
estimation of the distribution of the time it takkes  variables. In a SFGM, nodes identify the actual
an event to occur to an object depending on itshysical states of a system; edges model allowable
features [1]. transitions, probabilities of outcomes, and waiting
The basic function of an electric power systenwis ttimes until the occurrence of outcomes.
supply the load demand as economically as possibB=GMs  bring together applied probability
within pre-defined continuity, quality and securitytechniques such as transforms and approximation
patterns. However due to the enormous quantity afiethods and meld them with data analysis and
components in these systems, combined with theitatistical methods. They provide a method for
unique operation characteristics, there is accessing the waiting time distribution for any
possibility of failure of the entire system simgdy  partial or total waiting time [4].
failure of a crucial or a group of crucial compotseen SFGMs were first used in engineering and appeared
[2]. This paper describes Statistical flowgraphn the literature of electrical engineering as f&b
models for survival analysis in power systems. flow graphs” [5]. Mason [5] was primarily
Statistical flowgraph models (SFGMs) connect @oncerned with solving systems of linear equations.
vast number of areas that are of interest in $izdjs Signal  flowgraphs are  concerned  with
mathematics, computer science, and engineerinfiransmitting” current with respect to inductance
Some application areas include survival analysiand capacitance. Butler and Huzurbazar [6] adapted
and disease progression in medical studie§FGMs for use in Bayesian stochastic models.
reliability engineering, and queuing theory; all ofSince then, the use and theory of SFGMs has
these involve stochastic processes. A statisticabntinued to expand. Huzurbazar [7] used SFGMs
flowgraph model is a directed graphical depictionno generalize phase-type distributions. Huzurbazar
of a finite state stochastic process that is asdume [8] demonstrated a Bayesian application of SFGMs
have the semi-Markov property [3]. They are usefubn a complex cellular telephone network. Butler
for analyzing time-to-event data. SFGMs areand Huzurbazar [9] improved on some of the
distinct from other graphical models used intechniques used in statistical flowgraph modeling
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and demonstrated their use in Bayesian prediction
of waiting times in queuing theory. Yau andThis is also called thénstantaneous failure rate.
Huzurbazar [10] show how SFGMs can be used tbhe hazard gives the instantaneous rate of fadtre
model incomplete data in multistate systems. Thiéme t given that the component survives up to time
theory linking semi-Markov processes witht. Although the hazard is technically a rate, it is
multistate models using SFGMs was explained ioften spoken of in probabilistic terms as the cleanc
[11]. Huzurbazar [4] provides an excellent exampléhat a component “fails” at time conditional on
of how Bayesian SFGMs can be applied in varioulaving survived up to that time. In faait)is not a
fields, using an example in construction projecprobability density function and it can take on any
management. Huzurbazar [12] is a full length textalue greater than or equal to zero. We can think o
devoted to SFGMs and its applications. Othethe hazard function as an component’s propensity
applications of SFGMs can be found in [13-15].  to fail in the next short interval of time, givenat
the component has survived to time
2. STATISTICAL FLOWGRAPH MODELS Some common relationships between these
functions are
Throughout this paper, we will assume that the time

to eventT is a continuous random waiting time that dF(t) ,

is nonnegative. fO=—"=-50 ©)
Actually, the distributon of T has four S(t) =1-F() (4)
representations that are equivalent. Each

representation is useful in specific contexts. €hess(t) = exp [_ fot h(w) du] )
representations include the probability densit);l _ dlogs()

function, the survivor function, the cumulative O=-—0 ©)

distribution function, and the hazard function. The
survivor function and the hazard function are veryfultistate models are used to describe time-to-

useful to survival analysis methodology. event data. They model stochastic processes that
Before we describe SFGMs, we present tw@rogress through various stages [14]. Time-to-event
definitions [12]. data analysis focuses on modeling waiting times

Definition (survivor function). In the analysis of wuntil events of interest occur [12]. Today's comple
time-to-event data, one quantity of interest is theystems make the analysis of multistate models
probability that a component survives beyond someery important in reliability. Statistical flowgrap
time t starting from the initial time = 0. The word maodels are one type of multistate model. Statbtic
survives is used quite generally to mean that thdélowgraphs model potential outcomes, probabilities
event of interest has not yet occurred. Tdte the of outcomes, and waiting times for the outcomes to
random waiting time until the event of interestoccur. They can be used to model complex system
occurs. The quantityP(T >t) represents the behavior, time to total or partial system failure,
probability that the event of interest has notime to repair of components or the entire system,
occurred. In survival analysis, this is called theind to predict system reliability. Current methods

survivor function and is denoted by in reliability for complex systems require that all
the component waiting times be from the same
St)=P(T >t) (1) distributional family such as the Weibull so that

information may be easily combined. In addition,
For instance, the survivor function gives thesome methods for complex systems such as fault
probability that a component survives beyond somiees restrict themselves to binomial data so that
specified timet. In engineering applications, this islarge amounts of information may be easily
called thereliability function and is denoted by aggregated. SFGMs allow each component or set of
R(t) = P(T > t). components to have its own distribution and
Definition (hazard function). Suppose that is the statistical flowgraph algebra provides a way to
random waiting time until the event of interestcombine these varied distributions [14].
occurs, and letf(t), F(t), and S(t) denote the SFGMs provide a link between traditional
density, cumulative distribution function (CDF), multistate models and semi-Markov processes.
and survivor function of T . Then thehazard They model semi-Markov processes and provide a

function is defined as practical alternative methodology for data analysis
They are useful when a continuous time semi-
h(t) _f® ) Markov process defines the transition times

s
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between states and interest focuses on estimatiRgr purpose of analyzing power system security
the density, CDF, survivor function and hazardind designing appropriate control systems, it is
function of the process [4]. Semi-Markov analysiselpful to conceptually classify the system-
is restricted to cases where the waiting timeeperating conditions into five states: normal, &ler
between states all come from the same family a&fmergency, in extremis, and restorative. Fig. 1
distributions or each transition in the multistatedepicts these operating states and the ways inhwhic
model is modeled by a separate proportiondtansition can take place from one state to another
hazards model [12]. Although semi-Markov[17].

processes are a natural extension for multistate

models, in practice, data analysis for semi-Markowig. 1 SFGM For Operating States Of A Power System
processes can be quite difficult, especially when At End Of Text

returns to a state are allowed [16]. SFGMs

circumvent this difficulty by working in the In the normal state, all system variables are withi
moment generating function (MGF) domain. the normal range and no equipment is being
Statistical flowgraph models provide an extensiofverloaded. The system operates in a secure
of traditional multistate models to include semimanner and is able to withstand a contingency
Markov processes. They allow vastly differentvithout violating any of the constraints. The syste
distributions for waiting times between states, an@nters the alert state if the security level fattow
they provide a closed form for the distribution ofa certain limit of adequacy, or if the possibildy/a
quantities of interest, such as total or partiaiting disturbance increases because of adverse weather
time in a stochastic network [12]. In addition toconditions such as the approach of severe storms. |
allowing a variety of distributions to be used with this state, all system variables are still withite t
the stages of the multistate model, the statistic@cceptable range and all constraints are satisfied.
f|owgraph methodok)gy also eas”y hand|ed‘|owever, the system has been weakened to a level
reversibility. In the engineering context, this mea Where a contingency may cause an overloading of
that a failed component can be repaired [14]. equipment that places the system in an emergency
SFGMs have been used in both Bayesian arfdate. If the disturbance is very severe, the in
frequentist frameworks [14]. The final result of aéxtremis (or extreme emergency) state may result
Bayesian SFGM is a posterior predictive densitgirectly from the alert state. Preventive actiamgts
(PPD) of the waiting time from one state to anathe@S generation shifting (security dispatch) or
and similarly for frequentist SFGMs the result is dncreased reserve, can be taken to restore the
probability density function (PDF). system to the normal state. If the restorative sstep
There is a systematic way to implement statistic&l0 not succeed, the system remains in the alert
flowgraphs. The first step is to propose the systegfates. The system enters the emergency state if a
diagram or graphica| model. We design our grapﬁUfﬁCiently severe disturbance occurs when the
by identifying the states the process can assum@/stem is in the alert state. In this state, velsagt
These states are represented by the nodes of fRany buses are low and/or equipment loadings
graph. Next, we identify the possible transitiongxceed short-term emergency ratings. The system is
between states, which are the directed branches @fll intact and may be restored to the alert skgte
edges) of the graph. Once the graphical model is the initiating of emergency control actions: fault
place, we examine the data to suggest approprigitearing, excitation control, fast-valving, geneat
distributions for the branch transition times. Thdfipping, generation run-back, high voltage dc
selected distributions model the time it takes téHVDC) modulation, and load curtailment. If the
transition from one state to another. Next, we fin@Pove measures are not applied or are ineffective,
the MGFs or Laplace Transforms (LTs) of thethe system is in extremis; the result is cascading
distributions assigned to the branches of the SFGRUtages and possibly a shut-down of a major
[3]. portion of the system. Control actions, such asd loa
The powerful capability of SFGMs to powershedding and controlled system separation are
system survival analysis is demonstrated via twaimed at saving as much of the system as possible

examp|es from power System operation and powérrom a Widespread_ -blaC-kOUt. The restorative- Sta-te
system protection. represents a condition in which control action is

being taken to reconnect all the facilities and to

2.1.Example 1: statistical flowgraph models féestore system load. The system transits from this
power system operation state to either the alert state or the normal state
depending on the system conditions.

Characterization of the system conditions into the
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five states as described above provides a framewobefinition (loop). A loop is any closed path that
in which control strategies can be developed angturns to the initiating state without passing
operator actions identified to deal effectively lwit through any state more than once.
each state. For a system that has been disturlied &mason’s rule differentiates among different types
that has entered a degraded operating state, poveéloops. These are defined as follows [12].
system controls assist the operator in returnimgy ttDefinition (first-order loop). A first-order loop is
system to a normal state. If the disturbance idlsmaany closed path that returns to the initiating node
power system controls by themselves may be ablgthout passing through any node more than once.
to achieve this task. However, if the disturbaree iDefinition (second-order loop). A second-order
large, it is possible that operator actions such deop consists of two non-touching first-order loops.
generation rescheduling or element switching maRefinition (J *-order loop). A J"-order loop
be required for a return to the normal state [17].  consists of non-touching first-order loops.
In a SFGM, the states or nodes represent outcome&onsider the SFGM in Fig. 1. It has five states.
The nodes are connected by directed line segmer8appose that our interest is ipredicting the
called branches. These branches are labeled wisfaiting time distribution from2 — 4. There are
transmittances. These transmittances are labelego paths from2 —» 4: 2 - 4 and2 —» 3 - 4. The
with the “transition probability x moment transmittances of these paths required for the
generating function of the waiting time distributio application of Mason’s rule are given in Table 1.
in the previous state” which is a quantity called t The transmittance of a first-order loop is the
branch transmittance. The waiting times on th@roduct of the individual branch transmittances
branches can be any parametric distributions thaivolved in the path. Table 1 gives the
admit MGFs [4]. We use the branch transmittancegansmittance for this loop. The transmittance of a
of a SFGM to solve for the MGF of the distributionhigher-order loop is the product of the
of the waiting time of interest. The next sectiontransmittances of the first-order loops it contains
describes how to solve the statistical flowgraph ofhere are no higher-order loops in this SFGM.
Fig. 1.
Table 1 insert here, exactly.

2.1.1. Solving a statistical flowgraph model

Let T be the overall waiting time from stateto

The termsolving a SFGM refers to finding the state. The general form of Mason’s rule that gives
MGF of the overall waiting time distribution from ihe MGE of the distribution of’. is

one state to another.

We use a procedure based on Mason’'s rule, S P14~ 1 (5)]
described in [5], to solve the SFGM. Mason's rulé¥(s) =
did not involve probabilities or MGFs. However, here:
ShFG't\)/IS car? be solved by app\;\)//ir?g M:;l]son’s rule 19 (5) is the transmittance for the” path.

the branch transmittances. en the system ; ; ;

certain to pass eventually from stateto statev, ,ﬁ’;j; mli?t art:c.':f:‘ s gﬁgff;gffg:d elf | ot: es sum_ of the
the transmittance is the MGF of the waiting timeL, (s) is the sum of the transmitEc)aﬁces over the
distribution. Practical use of Mason’s rule entails” > ) )
identifying all of the paths fromx to v, the loops J t*-order loops sharing no common nodes with the

h . :
involved in those paths and then solving for thd " path (i.e., loops not touching that path).
overall MGF. It requires computing the Eq:_(7) .for the MGF o_f th_e Q|str|but|oﬂ", the
transmittance for every distinct path from theiatit Waiting time from 2 to 4, in Fig. &

state to the end state and adjusting for the
transmittances of various loops. Before we describd/(s) =
Mason’s rule, we present the following definitions

[12],' . ) ) Where
Definition (path). A_pg;h is any possible SeqUEeNCe; (s) = p,,pyMiy()Myy(s) + PyspsyMys(s)May(s)

of nodes from an initial state to an end state that  +p,,p,sps,My4(s)Mys(s)Ms5 ()

does not pass through any intermediate node mMore  + p,3pssPasPs2Mas (5) M4 (s)Mys (s)Ms, (s)

than once. + P12P24PasPs1 M1z (S)Ma4 (S)My5(5)Ms4 (s)
Definition (path transmittance). A path + D12P23P34PasP51M12 () Ma3(S) M34(5)Mys(s)Msy ()
transmittance is the product of all of the branch
transmittances for that path.

()

1+%(-1)Ly(s)

P24M24(5)+P23P34M23(S)M34(s) (8)
1-L4(s)

andLj(s) = 0, since all loops touch the path.
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We assume a variety of waiting time distribution®.1.2. Inversion of statistical flowgraph MGF

such as Inverse Gaussiah,(,), Gamma ¢, )

and Exponentia“o given in Table 2. If we had Note that our interest with SFGMs is to convert the
data on the real system, we would use that to selggsulting MGF into a density, CDF, survivor
candidate distributions [4]. Parameter estimation ifunction and hazard function.

done by standard methods such as maximufmarametric SFGMs have used MGF to represent the
likelihood [4] or the entire problem can be solvedProbability of transition between states. This has
from the viewpoint of prediction using Bayesiangreatly limited the number of distributions avaleb

methods as in Section 2.1.3. for SFGMs, since not all distributions have MGFs.
For now, we assume the following parametePopular distributions such as the lognormal or
values certain Weibulls do not have MGFs and have not

been used in SFGMs. By using complex Laplace
Piz = 0.6, Py = 0.3, Pz = 0.7, ppa=1— Transforms (LTs) in lieu of MGFs we can use all
D21 — Doz, Paz = 0.5, Pag = 1 — Pay, Pas = 0.4, cpnt!nuqus . and  differentiable  parametric
Psi = 0.6, ps; = 1 —psy, Ay, = 20,2, , =5, distributions in SFGMs. Complex LTs are a

—03,a,, =3, =4 —1, _ generalization  of MGFs and characteristic
Pa1 =75 023 = Pas _ e = L s = functions and exist for all lifetime distributions.
3 Usa = 1,045 =4, Bas =1, tgy = 0.3, gy =
N The Laplace Transform, as defined in statistics, is

- simplification of the LT as defined in mathematics.
Table 2 Waiting Time Distributions For The Statistical In mathematics, the Laplace Transfoirtz), is
Flowgraph Of Fig. 1 At End Of Text. defined for all real and complex, while in
statistics it is usually only defined for real
The MGF for the overall waiting time using theseTherefore, we use the term complex LT to avoid
distributions in Eq. (8) is (from MAPLE software) ambiguity [3]. A complex LT for a positive
random variable T, defined on [0,00) with

23 z\= x+iyandx > 0,is
M(s) = ((P23 ( L ) D3aza(Uss — 5)71) + (P24 Hoa(Uos — 5)71)>

Baz—s

2 2 05 — ® -zt
X (1 - (P12€A112 Aoz (1o 01229)) P21ttz1(z1 — 5)71) L) fo e fnyat (10)

0.5 @ .
_(plzeamAzlz-(ﬁ“(léu-zs)) p23( Bas ) “ paattzaves 1 the MGF has a closed analytic form, then so does

pay \15 . & : the complex LT, and finding the complex LT for
% ms—s) Por b (tsa =) sy =)™ the random variabl@ is a transformation similar to
—(plze’“lz Hopp-(22,,(23,,-25))"" Doabtrelas (9) finding the MGF. However, for distributions that do
ae not have closed form MGFs we must find the
X(,gf:is) Ps1 1 (124 — )7 (usy — )7) complex LT or MGF by numerical integration.
_(p23( Bas )“23p32 Hn%z_g)fl) Examples of distributions that haye closed form
fas=s e complex LTs are the gamma and inverse Gaussian
_(st (Bﬁf) P3altza Pas (BET) Ps2 #sz) distributions, and examples that do not are the
(tzq — ) (ugy — )71 lognormal and Weibull distributions. Using the

Bas \ 15 . ) complex LT does not change any theory we
_(p24“24”45(m) P52 Hs2(tza = )7 sz = 5) ) introduced in Section 2.1.1. Mason's rule still
applies; all we do is replace the MGFs with their

We could replace Fig. 1 with an equivalent SFGMESSociated complex LTs [3]. _
that has only two states 2 and 4, with ond Ne most common method for converting the MGF

connecting branch. The MGF assigned to thaf the overall waiting time of interest into an
branch is¥ (s) as de.fined in Eq.(9). approximate density is the saddlepoint method.

Solving SFGMs gives us the MGF of the overalll IS method is cumbersome when  solving
waiting time distribution of interest; however, wecomplicated SFGMs. It cannot handlt_a distributions
still have not obtained the distribution itself. f[hat dc_) not have MGFs. Another possible method of
The next section discusses the conversion of MGHEE/ErSION 1S the EULER method, developed_ by
such as Eq.(9) to waiting time density. Abate and Whlt_t_[18]._ The EULER meth_od requires
that the densities involved be continuous and
differentiable. Thus by using complex LTs in the
place of MGFs on the branches of a SFGM, we can
use any relatively continuous and differentiable
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distribution in statistical flowgraph modeling. Bhi and Euler acceleration cannot be bounded, only
is a big step forward for SFGMs [3]. estimated.

The Euler method uses the Bromwich integral andll of the distributions used in this example have
Euler summation (and hence its name). Thelosed form MGFs. Now, we use the Euler method

Bromwich contour inversion integral is [3]: to convert the MGF of the overall waiting time
from 2 to 4 into a density. The resulting density,
£(t) = ij““‘_i“ezt L(z)dz (11) CDF, etc., are given in Fig. 2 (from MATLAB).
2mi Ya—ix !

) ) Fig. 2 Density Function, CDF, Survivor Function And
Wherei = V-1, L(z) is the complex LT, and the  Hazard Function For Example 1 At End Of Text.

contour is any vertical ling = a such thatL(a)
has no singularities on or to the right of it. Wah SFGMs focus on modeling the observed state-to-
change of variable and some manipulatigift) state waiting times. This type of modeling alloves u
can be rewritten as to realistically model the shape of the hazard. The
shape of the hazard is increasing and decreasing at
fX‘Re[L(a+iu)] cos(ut) du, (12) varying rates. This is typical of hazards from
0 SFGMs since we are modeling the actual waiting
times and not making assumptions about the
‘hazards. Based on these, the purpose of plots
presented in Fig. 2 is to help energy managers
better understand the hazards and opportunities
Y Y they face, to evaluate the options available feirth
f© ~ S Re[L(2)] + < Sie(-1)* Re [L(£2)]. (18)  control and finally to select optimal energy padiei
SFGM is a useful decision support tool for survival
This is a nearly alternating series so Abate ar@halysis in power systems. The term decision
Whitt [18] use Euler summation as an acceleratiofupport (DS) contains the worslipport, which
method. Combining these, our approximation ~ refers to supporting people in making decisions.

ZEat

s

f@® =

WhereRe(z] is the real part of a complex number
Using the trapezoidal rule with step sizg(2t)
and lettinga = A/(2t) gives the approximation

the density obne random variabld’, is Thus, DS is concerned with human decision
making, especially in terms of helping people

Az pom Re[L(i)] improv?ng their decision making. _ _
f@) =27 <e— |—_m|< 2600 Analysis from the flowgraph model gives an entire
Eojmepty 2 waiting time distribution as well as the system

. A2k reliability (survivor) and hazard functions for any
kA (=1)* Re [L (Tm)D) (14)  total or partial waiting time. For decision making,
this immediately provides the mean, median, or any

or, .\ percentile of the waiting time distribution for a
€2 oman, g k A+2kmi variety of input distributions [12].

f@) = ¢ k=0 (=1)*w Re [L( 2t )] (15) In addition to the functions(t) and h(t), a
common metric in power system is the mean time

Wherel to failure (MTTF) which is the average time to the

Wo =2, Wy = 1fork=1..n, first failure. It can be obtained from the mearthef

and probability density of the time to failug&(t):

27™m!
W Wk T G S DI m+n+ 1— k! MTTF = [” tf (t)dt (16)

forr k=n+1..n+m

If S(t) is the system reliability (survivor) function,
Abate and Whitt [19] recommend setting = the integral in Eq. (16) becomes
11,n = 15, and increasing if better accuracy is MTTF = —fowtdS(t) which, after integrating by
required. This approximation contains two differenbartS [20-22], gives
errors. First is the error introduced by the
trapezoidal approximation, and the second by t
truncated sum and Euler acceleration. Abate an
Whitt [19] show how to bound the first type of
error by choosing A (often they choode= 18.4).
However, the error introduced by the truncated sum

TTF = [” S(t) dt (17)
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2.1.3. Bayesian statistical flowgraph models In general, we do not knoy%(z|6) in Eq.(19). In

. o this case, we us¢,(z|0) in place of f,(z]6).
Bayesian SFGMs use the same principles a5 gy is computed using the Euler method i.e.
frequentist SFGMs. The primary difference is tha 9. (14) or Eq.(15). Practically, this involves

the Bayesian framework provides a posteriopenerating a random sample @fvalues from the
predictive distribution (PPD) as the final result ciarior  and performing  the following

This is very useful sincg predic_tion is the_ primar fomputations for each value [12]:
focus of_ SFGMs. Thls_ section _ d_escrlbes _the 1. Convert the statistical flowgraph
computation O.f I_3aye5|an_ pred|cfuve den_3|ty, MGF,Mz4(s), to a density using the Euler
cumulative distribution function, survivor function .
and hazard function for SFGMs using Euler method meth_od .for eqch valug of Z at which the

: ; . . density is desired.
and slice sampling technique. Information about the 5 Treat each density as a vector of values
process allows us to solve the SFGM as seen in = y . .
Section 2.1.1 and Section 2.1.2. Observations on (ev_aluated at each valuein computation
the various transitions allow us to consider 1) indexed by,.. .
parametric models for the branch waiting times of 3. For eachz value, average the densities
the SFGM. Our interest lies in making inferences over theg vﬂa;lu?s togive
about the unknown parameters in the model, f2(zD) = Z“%Z(zwr) (20)
updating our knowledge of the mechanism that

generated the data, evaluating branch models, apg .o 7,(316,) is the density derived from the

ultimately using our data and the SFGM fOrg jor method andf is the number of samples. For
prediction. Bayesian analysis formally |ncorporate§arge M, this sum approximates the integral
subjective information about a problem into thaEq (19) '

analysis.

We can think about our model as the theory th
drives what we can observe. For a given paramet
vector 8, we expect things to behave in a c:ertaie:i1

way. We use the data to give us additionalyecific problems. A recently developed technique
information aboud, but we can never knot. We  yhat lends itself to sampling from the posteriothwi
know_that our theory (model) is incorrect, so th%FGMs is a Markov Chain Monte Carlo (MCMC)
question then becomes: How useful is it? What ig,atnod called slice sampling [12]. Slice sampling
often [important is whether we can use thgyas introduced by Neal [23] and is presented in
formulated moqlel to make useful predictions aboYjeiai in [24]. The basic premise of slice sampling
new —observations,Z = (Zy, ..,Z,), thal aré g hat one can sample from any univariate
conditionally independent @b, the observed data, jstribution by sampling points uniformly under the
given 6. In a flowgraph model, these futuregrann of its” density function. Multivariate slice
obsc_arvat]ons will generally be total or partlalst.jmp”ng can be performed by applying a single
waiting times [12]. ~ variable slice sampling method to each variable in
Definition  (Bayes theorem). The posterior gequence [12]. In this study, we use Slice sampling
distribution of parameter vectérgiven the datd 5, sampling from the posterior distribution.

There are many methods for sampling from the
osterior distribution (e.g. rejection sampling,
portance sampling, Gibbs sampling, etc. [12]),
nd some methods are better suited than others for

is defined by Our goal is to compute the Bayesian predictive
density of the overall waiting time fromd — 4
m(6]D) < L(6]D)7(6) (18) using Eq.(20). We leT be this random timeOur

parameter vector8 is 6 = (P12, P21, P230 P24
P32, P34, P45, Ps1, Ps2, /1112'1212‘ U1, Q23
E\ﬁ/\zlg’ H24r H32) H3ar Qas, Pas, Hs2, Us1)-

e assum@nif(0,1) priors onpy,, P21, P23, P24,
D32, P34 Pas, Ps1and ps,. The remaining priors
are

whereL(8|D) is the likelihood function andz(6)

is the prior [12].

The Bayesian predictive density of a futur
observableZ given dataD about a system with
parameter vectd? is

_ [ Fz(=19)L(8ID)m(8)d6
fz2(3|D) = | LEODYE8)s (19)

whereZ has density; (z]6) [12].
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T(Upa), T(Uszs), T(ays), T(Bss) ~ Unif(0,4) model system to state 6, where the line is isolated
(Uy1), T(psy), m(us,) ~ Unif(0,1) (ISO). The line is repaired and re-energized, tgkin
m( az3) , m(P23) ~ Unif(0,2) the model back to state 1.

(Ay,, ) ~ Unif(1,5) (21) States 5, 3, 9 and 10 represent conditions where th
(4. ) ~ Unif(1,10) relay is out of service and una\{allable to tripaif
12 ’ fault occurs. In state 5, the relay is out of segvior

_ _ - m(us;) ~ Beta(2,1) routine testing. In states 3, 9, and 10, the réday
This computation, usinyl = 1000 values, gives the o,; of service due to a relay failure. State 9
Bayes predictive density, CDF, survivor function,gpresents the relay under repair (REP). The model
and hazard function of the waiting time of intéresgpiers state 9 from state 1 when a relay self-test
in Fig.3. Note that we never actually get the exaGfetects a failure. The model system enters state 9
predictive density; we estimate it via the random,om state 3 when a routine test detects a relay
samples. failure. The model enters state 9 from state 10nwhe
a meter check detects a failure.
The model enters state 3 from state 1 when a relay
failure occurs that is not detected by the reldfs se
test function and could not be detected by meter
checks.
A failure not detected by either self-tests or mete
tests are only detected by routine testing or by
The goal of protective relay testing is to maximiz&?PServing a misoperation. The model enters state 4
the availability of protection and minimize risk of If @ fault occurs while the relay is out of service
relay misoperation. Having defined the necessafly @ common-cause failure of the relay and power
tests and monitoring methods for protective relay$yStem occurs. If a fault occurs while the relay is
it is now necessary to optimize the testing intervaPut of service, remote backup protection operates t
[25]. isolate the fault. Wh(_en the remote protection
Schweitzer [25] introduced a nine-state modePPerates, a larger portion of the power system is
defined by the operating condition of the relay an{gken out of service than would have been if the
the protected component. The model accounts fégiled relay had operated properly. This is
relay self-testing, but does not account for othgiePresented in state 4 and state 8 by the isolafion
monitoring means. Fig. 4 shows a ten-state mod&i a@nd X, where X is the additional equipment
that accounts for self-testing and models routinémoved from service by the backup relay trip
relay verification through other simple checks. Th@peration. o _ _
circles represent the model states. The arrOv\gonsmer the SFGM in Fig. 4. Quantity of interest

represent the transition paths between the states. Includes predicting the distribution of the total
waiting time from state 1 to state 4. There arédteig

Fig. 4 SFGM For A Protection/Component System At paths from 1 to 4 (e.§.— 3 - 9 — 4). Also, there
End Of Text. are nineteen first-ordefoops (e.gl -2 > 6 -
7—-9-1) and six second-ordedoops (e.g.

The model assumes that when a fault occurs while— 3 - 9 - 1 with 6 - 7 - 6) . In this analysis,
the relay is out of service, a larger portion of th the waiting time distribution for transition fronmya
power system is isolated than was actuallgtateu to any statey is assumed to be Exponential
necessary to remove the fault. The relay could bg). Applying Mason'’s rule we find the MGF of the
out of service because of a failure, testing, ooverall waiting time distribution from state 1 to
repairs. state 4. Finally, we transform this MGF into a
The probability model is divided into four density, CDF, etc. They are shown in Fig. 5.
quadrants representing the condition of the relay
(Protection (P)) and the line (Component (C)). Fig. 5Density Function, CDF, Survivor Function And
State 1 represents a normal operating condition Hazard Function For Example 2.
where the line is energized (C UP) and the relay is
Operating proper|y (P UP) When a line fau|tTO compute the Bayes predictive density of the
occurs, the Component makes the transition to t@tal waiting time distribution from 1 to 4, we
down (DN) state, represented by state 2. In state @sumeUnif(0,1) priors on all of the parameters.
the line is faulted and the relay signals the dircuFig. 6 shows the Bayes predictive density, CDF,
breaker to trip. Circuit breaker operation takes thetc., for this illustration.

Fig. 3. Bayes Predictive Density Function, CDF,
Survivor Function And Hazard Function For Example
1 At End Of Text.

2.2. Example 2: datistical flowgraph models for
power system protection: protective relay testing

e —
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[2] Leonel de Magalhdes Carvalho, Using

Fig. 6 Bayes Predictive Density Function, CDF, Survivor
Function And Hazard Function For Example 2 At End Of
Text

(3]
3. CONCLUSION

The aim of survival analysis is to estimate th 4]
distribution of the time it takes for events to occ
This paper proposed statistical flowgraph models
(SFGMs) as a new approach to do survival analysis
in power systems. This decision support tool (using;
the semi-Markov assumption) provides a way for
analyzing time-to-event data and constructing
corresponding Bayesian predictive distributions 6]
SFGMs allow data analysis for semi-Markov
processes using non-exponential waiting times.
They can be applied without becoming intimatel3[7
familiar with the mathematical theory of stochastic
processes. While the increase number of states
improves the accuracy of modeling power systems,
it also brings the problem of whether proposeﬁB
multistate models can be compatible with practical
studies. Therefore, it is necessary to find a natho
to reduce multistate models into an equivaler[b
binary-state model, to ensure proposed models are
practical. SFGMs provide a systematic way that can

be used to reduce complex power systems mode[§0]cl L. Yau. AV.

The approach advances the state of the art in power
system survival analysidt also lays a general
foundation for effective and systematic power
system management.
SFGMs model the observable waiting times rather
than the hazards and as such, they do not directly
make any assumptions about the shape of the

hazard. For decision making, this immediatel)[lz]A_V_ Huzurbazar

[11]A.V.

evolutionary swarms (epso) in power system
reliability indices calculation, Master thesis,
University of Porto, Porto, Portugal, 2008.

R.L. Warr, Generalizations of the statistical
flowgraph model framework, PhD thesis,
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2010.
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TABLES

Table 1 Paths And Loops For Solving The Satistical Flowgraph Of Fig. 1
Path Transmittance
Path 12 — 4 D2aM54(s)
Path22 -3 -4 D23P34Ma3(s)M34(s)
15t-order loops

1-2-1 P12P21M12(s) M3 (s)

2-53-2 D23P32M23 ()M, (s)

2-54-55-2 D24PasPs2M24(8)Mys(s)Ms,(s)
2-53-54-55-2 D23P34PasPs2Ma3 (s)M34(s)Mys(s)Ms; (s)
1-2-4-55-1 P12P24PasPs1M12(S) M4 (s)Mys(s) M54 (s)

12253-5455-1 p1pr3P3aPasPsiMin(S)Mas(S)Ms4(S)Mys(5)Ms, ()

Table 2 Waiting Time Distributions For The Satistical Flowgraph Of Fig. 1

Transmittance Distribution MGF
1-2 Inverse Gaussiam{,,,1,,,) M, (s) = exp [/1112 Aoy, — |, (A5, — Zs)]
251 Exponential {,;) My, (s) = (L)
Ha21 — S
ﬂ23 %23
2-3 Gamma @23, ﬁ23) M23 (S) = (—)
B2z —s
. HUza
254 Exponential f,,) My, (s) = (—)
Haa — S
352 Exponential f3,) M, (s) = (A)
Hzz =S
354 Exponential f34) M3y (s) = (ﬁ)
Hza — S
Bas \*°
4-5 Gamma {45, fas) Mys (s) = ( )
Bas —s
. Hs2
552 Exponential gs,) Ms;, (s) = (—)
ﬂSﬁ =S
551 Exponential {s;) Mg, (s) = (L)
Hs1 — S
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FIGURES

ps1Msi(S) P12Ma2(S)

P21M21(S)

Ps2Msy(S)

5
Restorative

P24Ma4(S)

PasMas(S) P2sMaz3(S)

p32Ma2(S)

4 3

In extremis Emergency
PasMas(s)

Fig. 1. SFGM For Operating States Of A Power System.
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Fig. 2. Density Function, CDF, Survivor Function And Hazard Function For Example 1.

CDF

: - ; . 0 - : : ;
0 10 20 30 40 50 0 10 20 30 40 50
Time Time
0.2
o0.15R------ ....... ....... N—
5 = SR T B
= A I B e, O RS LI el e
= (] ; : . .
3] T ; : : :
oosk------ e, ....... ....... ........
0 F : : : 0 . : : ;
0 10 20 30 40 50 0 10 20 30 40 50
Time Time

Fig. 3. Bayes Predictive Density Function, CDF, Survivor Function And Hazard Function For Example 1.
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Fig. 4. SFGM For A Protection/Component System.
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Fig. 6. Bayes Predictive Density Function, CDF, Survivor Function And Hazard Function For Example 2
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Fig. 5. Density Function, CDF, Survivor Function And Hazard Function For Example 2.
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