
Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

47

BLOCK IDENTIFICATION METHODOLOGY:
CASE STUDY ON BUSINESS DOMAIN

MUSTAFA ALMATARY, MARINI ABU BAKAR AND ABDULLAH MOHD ZIN

Center for Software Technology and Management
Faculty of Information Science and Technology

Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia

E-mail: vim4mustafa@yahoo.com, marini@ftsm.ukm.my, amz@ftsm.ukm.my

ABSTRACT

The Block-Based Software Development (BBSD) is a software development approach that enables end
users to develop applications by integrating blocks. In order for block based programming approach to be
successful, there is a need for a large number of blocks to be developed in various application domains. The
BBSD life cycle divided into two parts: Block development for a specific domain (carried out by project
initiators and block developers), and block integration (carried out end by users). Block development
consists of two stages: block identification and block creation. This paper describes a methodology that can
be used for block identification. Through this methodology blocks that are needed for a given domain can
be properly determined and specified, which will help blocks developers to develop the right blocks for the
domain. The feasibility of the proposed methodology is shown through a case study.

Keywords: End User Software Development, UML, Block-Based Software Development, Component-
Based Software Development
.

1. INTRODUCTION

The Block-Based Software Development
(BBSD) is a software development approach that
enables end users to develop applications by
integrating blocks (Zin 2011). The term “block”
refers to a software component that can be reused,
is highly composable, customizable and
configurable. Blocks can be combined with other
blocks to form applications without going through
the normal coding process [1, 2]. In the current
implementation, a block is packed as a JAR (Java
Archive) file. JAR files provide a standard
mechanism to compress and package a set of files
for distribution to users. In order for block based
programming approach to be successful, there is a
need for a large number of blocks to be developed
in various application domains.

The block-based software development life cycle
is shown in figure 1. The development process can
be divided into two parts: Block development and
block integration. Block development process is
carried out by project initiator and block
developers, while the block integration is done by
End-Users. Within a BBSD, a project initiator is a
person responsible for managing blocks
development for a particular domain. His task is

including a new application domain, creating sub-
domains and identifying the required blocks for the
domain. The process of blocks development will be
carried out by professional programmers (in BBSD
they are called block developers). Blocks submitted
by block developers need to be managed and
certified by project initiator, before they can be
published and distributed.

Figure 1: Blocks Based Development Life Cycle

The paper proposes the methodology for carrying
out the first phase of the block development process
that is blocks identification. The availability of this

Block

Identificat

ion

Block

Creation

Block

Deployme

nt

Select

Blocks

Customiz

e Blocks

Integrate

Blocks

Block
Development

Block
Integration

End User

Project Initiator
Block Developer

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

48

methodology will help block developers to develop
required blocks for a given domain. The suitability
of the proposed methodology is validated by using a
case study.

2. RELATED WORK

BBSD is a combination of component based
software development and end user development
[3]. A block is basically a software component.
Thus, it is important for us to study related work
that has been carried out within component based
software development, in particular on the issue
related to component identification. End user
development is normally carried out by first doing
end user requirement analysis. One of the popular
tool to do this analysis by using the use case
diagram that is provided within the UML notation.

2.1 COMPONENT IDENTIFICATION

Component Identification problem and methods
is one of important issues within the software
engineering community [4-6]. Most of the
component identification methods consists of three
steps are: Domain Analysis, CRUD and Clustering
[4-11]. Domain analysis is normally done based on
conception views of legacy systems expertise;
CRUD (Create, Read, Update and Delete) is used to
identify the classes and use cases relationship;
while Clustering is used to group the similar
functionalities and objects that having high
relationship.

Surveys by [4-6] shows that several
methodologies for the analysis and design of
component identification have been proposed.
However, very few of them explicitly focus on
EUD (end user development) where the number of
end users has been increasing exponentially around
the world. The surveys reflected a similar goal of
structuring the scope as limited to identifying
business components. In addition, the authors did
not provide a detailed scheme to heuristically
distinguish between approaches with domain-
engineering, CRUD matrix, or cohesion-coupling
clustering strategies and other methods. Thus,
different methodologies serve different needs and
there is no methodology serving all requirement
processes. So each methodology is good for its
designed purposed and task, each approach
requiring a proper non-universal, integrated
methodology.

 Regardless of the component type to be
identified, whether it is a business component or a
software component, the technique used is forward
or backward, and the base of these techniques is
domain engineering. Examples of the techniques
are Feature-Oriented Domain Analysis (FODA),
Feature-Oriented Reuse Method (FORM),
Product Line Method (PLM) and Integrating
Feature Modeling with the RSEB [12-15],
clustering methods (COMO, O2BC, etc.) [16, 17].

2.1 UML

UML became a language of notations modeling
techniques in today’s object oriented paradigm [11,
18, 19]. Through UML, the requirement statements
given by the stakeholders are presented through the
use case diagrams and descriptions.

The software analysis starts with basic statements
gathering from the End Users (stakeholders) by
analysts during the system feasibility study. In
UML, the user requirements (also known as stories)
are nothing but a set of scenarios converted into
Use Case [20]. Then, the class diagrams are
identified from those use case descriptions while
sequence diagrams illustrate the sequence of actions
of use case instances (Andrew, 2009). Use cases
examine a scenarios in a simple and easy manner by
describing a real-world example of how one or
more people or organizations interact with a system
[21]. Figure 2 illustrates how the End User story
can be represented in a number of use cases, where
each use case may have a number of scenarios.

Figure 2: The user story, use case and scenarios

Although use case analysis can be considered as

the simplest way to describe and represent real

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

49

world problems, its flexibility can lead to different
levels of use case abstraction (different views of
representing a problem). Figure 3 illustrates two
possible alternatives for representing ATM and
POS. An ATM can be represented simply as a
single Process Transaction or as a number of
processes (Withdrawal, Inquiry, Transfer, Others).
Similarly POS can simply be represented as single
Process Sales or as a number of processes (Login,
Scan Items, Calculate Total, Do Payment).

Figure 3: ATM and POS Use Case Diagram

representation level

3. PROPOSED METHOD

The proposed method for block identification is
divided into three stages: domain analysis, sub-
domain analysis and block analysis.

Domain Analysis:

The domain analysis consist the following steps
and procedure:

� Identify main actors: the main actors in the
domain are identified together with the use
case interaction between the identified
actors.

� Create boundaries by identifying actors
interested in: the targeted actors and
processes are highlighted and the rest are
ignored.

� Refine the domain by adding more related
actors and use cases (the targeted use cases
are more refined).

� Create boundaries of subdomain if any (here
if more than sub domain targeted, the
bounders of each subdomain are
highlighted).

SubDomain Analysis:

The subdomain analysis consist the following
steps and procedures:

� Select the target subdomain (after use cases
are identified and boundaries are
highlighted, the target subdomain is
selected).

� Refine that particular subdomain (here
abstracted uses case are more analysed and
the extended and used use cases are
identified).

� Create class diagram (here the class
diagrams are identified to represent the real
world problem in an object oriented manner.

Block Analysis:

� Identify scenarios (all the possible scenarios
of each use case are identified, thus, the
relationship between actors, use case, with
possible alternatives and relationship are
identified as shown in table 1).

� Create Use Case flow (all the possible
alternatives are identified)

� Create Tickets (Create CRUD Matrix,
identify the relationship between use cases
and classes as shown in table 2).

� Identify Blocks and Refine (based on the
strong relationship identified in CRUD
Matrix the blocks are identified and then
refinement is done if needed to compose
blocks together).

� Block Specification (finally, the required
blocks are identified and each block
specification is illustrated in standard doc
called required Block Specification).

The complete successful (happy) scenarios in use
case are identified and then the possible alternatives
and relationship between use cases and classes in a
target subdomain represented in CRUD matrix.
Since CRUD stands for C Create, R Read, U
Update, or D Delete, each level is represented by a
value 1 – 4 based on the operation (R=1, C=2, U=3,
D=4).

4. CASE STUDY

The feasibility of the proposed methodology is
illustrated through a case study. We have selected

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

50

the Business Domain to be studied since the
requirement for this domain is clearly specified.

4.1 DOMAIN ANALYSIS
Domain analysis involves five steps as follows:

Identify main actors: Through use case
analysis, main actors in business domain and
interaction between these actors can be identified,
as shown in Figure 5.

Accountent

Customer

Admin

Store maintainer

Bank

Inventory Manager

HR Manager

Report Manager

Update Accounts

Capture Deals

Seller

Set Limits

deliver Product
Supplier

Order Product

Mantain Store
Product

warehouse
Supervisour

Manage System

Manage Staff

Manage Reports

Provide Online
Payment

Process Payment

Extends

Billing

Extends

View Order

Extends

Uses

Uses

View Report

Uses

 Figure 5: Main Actors in Business Domain and
Boundary

Create a domain boundary: The domain
boundary is determined by identifying required
actors and use cases. Figure 5 illustrates that the
required actors (Sellers, Customers, Suppliers and
Admin) and use cases are highlighted and their use
cases.

Accountent

Customer

Admin

Store maintainer

Bank

Inventory Manager

HR Manager

Report Manager

Update Accounts

Capture Deals

Seller

Set Limits

deliver Product

Supplier

Order Product

Mantain Store
Product

warehouse
Supervisour

Manage System

Manage Staff

Manage Reports

Provide Online
Payment

Process Payment

Extends

Billing

Extends

View Order

Extends

Uses

Uses

View Report

Uses

Display Sales
information

Extends

Validate
Payment

Uses
Uses

Calculate Totals
& Tax

Extends

Delivery
Acknowledgment

Check Stock

Figure 6: Business Domain Boundary and Use Case
Refinement

Refine domain: After main actors and use cases

have been identified, a series of refinement of the
intended use cases can be carried out in order to
describe processes in more detail and identify all
required and extended use case as shown in figure 6
such as capture deals extends the payment
validation and billing use cases.

4.2 SUBDOMAIN ANALYSIS
Since the business domain is large, a subdomain

analysis can be carried out to identify the
subdomain that need to focus in the block
development process. Subdomain analysis can be
done as follows:

Chosen Subdomain Refinement: In this step
the intended actors and use case identified and the
boundary is created as shown in the following
figure 7.

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

51

Customer

Admin

Capture Deals

Seller

Set Limits

deliver Product

Supplier

Order Product

Manage System

Manage Staff

Process Payment

Billing

Extends

View Order

View Report

Display Sales
information

Extends

Validate
Payment

Uses
Uses

Calculate Totals
& Tax

Extends

Delivery
Acknowledgment

Check Stock

Figure 7: Chosen business Subdomain

The next step is to describe use case each use
case process. For example the description for Order
Product is shown in Table 1:

Table 1: Use Case Description for Order Product.

1.0
Use Case Order
Product

SubBusiness
Domain

Summary
Customer may order product or
collect product from sellers.

Actors Customer

Trigger Select the target products

Basic Flow

1. The customer can order
products through email, SMS,
Fax, etc.(A1: Offline Order).

2. The customer can go directly to
seller’s store.

3. Then, select product available in
the store (E1: Unavailable
Items).

4. Go to the casher counter.
5. Casher shall accumulate items.
6. Use case continues.

Alternatives

A1: Offline Order:
1. The customer shall write the

name, quantity, and date of
order.

2. The customer shall send the
complete order to intended
seller.

3. The use case continues.

Exceptions

E1: Unavailable Items:
1. Notify the seller about the

unavailable product.
2. Seller shall register item.

3. Use case continues.

Post
Condition

The target product selected and
ordered successfully.

Create Class diagrams: From the use case
descriptions, we can identify that this particular
subdomain has (User, Seller, Customer, Products,
Delivery, Payment, Order, Stock Management,
Product Catalog) classes. The class diagram for
these classes is shown in Figure 8.

UpdateP()
getP()

Pname
PID
pCat
PDoE

Products

LogPayment()
Mtype()
ValidateT()

TID
Tdate
Ttotle
TDetails

Payment

CheckOrder()
OrderStaus()
getOrder()

OrID
OrDate
Or_to_add
OrTTL
OrStatus

Order

ChangePStatus()
ReserveP()
CheckItem()

PID
Pquantity
Remark

StockManager

AddCat()
updateCat()

PCname
PCID
Cat

ProductCataloge
*

*

-1

*

-1..*

*

-1*

-1*

Ustatus()
ValidateUser()
CheckType()

UID
PWD
Status

User

ManageP()
ManageProfile()

Fname
LName
Add
Phone

Seller

1

*

orderP()
ManageProfile()

Fname
LName
Add
Phone

Customer

1

*

1..*
11..*

1

updateItemQty()
changeOrStatus()

OrID
PID
DoOr
DoDelv
DelvAdd
DelvID

Delivery

1..* 1

1

*

1
1

 Figure 8: the subdomain class diagram

4.3 BLOCK ANALYSIS
Here the block analysis will take place. Where

the use case scenarios identified and the alternative
and exceptions as will, then the relationship
between use case and classes will identify the
strong relationship in order to cluster the strong
relationship in the same block

Identify Scenarios: In this step the alternative
scenarios will be identified. Thus, the following
Table 2 illustrates the use case scenarios and
identifies the alternatives and exceptions if any.

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

52

Table2. Block Identification.

Actor Use Case Alt,
Exp,

CRU
D

Relationsh
ip

Seller

Capture
Deals

 1

Process
Payment

Exceptio
n

3 Exception

Display
Info.

 1

Calculate
Tax

 1

Billing 1

Supplier

View
Order

 1

Check
Stock

 1

Deliver
Product

 3

Customer

Process
Payment

Alt 3 Alternative

Order
Product

 3

Acknowl
edge

 3

Identify Process Flow: The sub domain process

flow is designed to identify the possible paths as
shown in the following Figure 10.

Figure 10: sub domain process flow

Identify Relationship Using CRUD Matrix:
Here the relationship between classes and use case
is identified through a CRUD Matrix, based on the
strong relationship the classes’ clustering is

achieved. The following Table 3 shows that, the
class repeated in the same task and crossed different
use case are circled with oval shape as shown in
figure 3. Thus, class (order, seller, customer, Stock)
has repeated cross more than one use case.
Therefore, the four classes represent strong
relationship cross the use cases is analyzed. The
remaining classes which cross different use case in
different tasks can be grouped at the end, such as
Product class which highlighted in doted rectangle.
Finally, the other classes joined based on their use
case.

Table3. CRUD Matrix.

T
ask

Classes

C
ustom

er

O
rder

P
roduct

P
aym

ent

U
ser

Stock

seller

P
roduct

C
atalog

Use
cases

1 Capture
Deals

 X X

X
X

1 Process
Payment X X X X

1 Display
Info X

1 Calculat
e Tax X

1 Billing X
2 View

Order X X

2 Check
Stock X X

2 Deliver
Product

X X

3 Process
Payment X X X X

3 Order
Product X X

3 Acknow
ledge X X

Identify Blocks: The previous table 3 illustrate
the relationship between use cases and classes, thus,
the use case sharing the same classes can be
grouped together. Therefore, the blocks identified
are Capture deals, Process Payment, Manage
Product, and Manage Order.

Create the block requirement specification:

Here the block requirement specification document
is created, thus, each block identified in the
previous section will have a single specification

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

53

document describing the use case diagram and
description, properties, behavior and contract type.
The block requirement specification for Capture
Deals is described in Table 4, Figure 11, and Table
5 as below.

Table 4: Block Requirement Specification

Block
Name

Capture Deals

Block Id B-E-C-10001
Contract
Type

Sequential

Actors Seller
Properties Background, printer, font-Color.
Features Change printer, change text color,

change Tax schema, and switch to
invoice option.

Use Cases Capture Deals, Display sales info,
and calculate Tax.

Remark The switch invoice option should
be enabled at run time.

Capture Deals

Seller

Billing

Extends

Display Sales
information

Extends

Calculate Totals
& Tax

Extends

Figure 11: Block Capture Deals Use Case Diagram

Figure 5 represents the use case diagram for

block identified “Capture Deals”. The use case is
refined and its description is shown in Table 5.

2.1 Block
Capture
Deals Use
Case

SubBusiness
Domain

Summar
y

Seller shall accumulate items
cost, display total, calculate tax
and print receipt.

Actors Seller
Trigger Scan item code
Basic
Flow

1. The seller shall check
ordered products offline
availability (A1: prepare
invoice).

2. If customer present product
to casher counter then
seller start by login.

3. The seller shall scan

product (E1: unregistered
barcode).

4. The seller display items
details (E2: Cancel Item).

5. Seller shall accumulate
items cost.

6. The Calculator adds
automatically the tax
percentage based on
standard tax enabled.

7. Repeat step 3,4 & 5 until
items finish.

8. Seller Display total cost.
9. The seller click/ press

finish button.
10. The invoice is generated

automatically.
11. The bill is printed (E3:

Printing Error).
12. Use case continues.

Alternat
ives

A1: Prepare invoice:
1. The seller shall write the

details of the product
invoice.

2. The seller shall
acknowledge the customer
with invoice of delivery.

3. The use case continues.
Exceptio
ns

E1: unregistered barcode
1. If item code cannot be

scanned, Seller shall key in
the item number.

2. Use case continues.
E1: Cancel Item
1. If item cancelled, the seller

shall remove item from list.
2. The total cost updated.
3. The Use case continues.
E3: Printing Error:
1. The error source is

displayed.
2. The activity log is

registered.
3. Use case continues.

Post
Conditio
n

The target products captured
and the total cost displayed
including Tax and receipt is
printed.

7 CONCLUSIONS

The BBSD methodology consists of two main
phases are the block development and block
integration. This case study illustrates the block
identification methodology in the first phase. There

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

54

are the three steps involved in this phase: (i)
Domain Analysis (ii) Subdomain Analysis, (iii) and
finally the Block Analysis. In this paper we have
shown the feasibility of the methodology through a
case study. In the case study, the process of domain
analysis, subdomain analysis and block analysis
have been described. Finally the required blocks for
a particular subdomain have been identified.

REFRENCES:

[1] S. N. Sarif, S. Idris, and A. M. Zin, "The design

of blocks integration tool to support end-user
programming," in Electrical Engineering and
Informatics (ICEEI), 2011 International
Conference on, 2011, pp. 1-5.

[2] A. M. Zin, "Block-Based Approach for End-
User Software Development," Asian Journal of
Information Technology, vol. 10, pp. 249-258,
2011.

[3] A. Ismail, N. Omar, and A. Mohd Zin,
"Developing learning software for children with
learning disabilities through Block-Based
development approach," in Electrical
Engineering and Informatics, 2009. ICEEI'09.
International Conference on, 2009, pp. 299-303.

[4] S. Mahmood, R. Lai, and Y. S. Kim, "Survey of
component-based software development,"
Software, IET, vol. 1, pp. 57-66, 2007.

[5] D. Birkmeier and S. Overhage, "On component
identification approaches–classification, state of
the art, and comparison," Component-Based
Software Engineering, pp. 1-18, 2009.

[6] Z. Wang, X. Xu, and D. Zhan, "A survey of
business component identification methods and
related techniques," International Journal of
Information Technology, vol. 2, pp. 229-238,
2005.

[7] S. D. Kim and S. H. Chang, "A systematic
method to identify software components," 2004,
pp. 538-545.

[8] Z. Cai, X. Yang, X. Wang, and Y. Wang, "A
systematic approach for layered component
identification," 2009, pp. 98-103.

[9] M. S. Choi and E. S. Cho, "A component
identification technique from object-oriented
model," Computational Science and Its
Applications–ICCSA 2005, pp. 117-130, 2005.

[10] M. Choi and E. Cho, "Component identification
methods applying method call types between
classes," Journal of information science and
engineering, vol. 22, p. 247, 2006.

[11] C. Kobryn, "UML 2001: a standardization
odyssey," Communications of the ACM, vol.
42, pp. 29-37, 1999.

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E.
Novak, and A. S. Peterson, "Feature-oriented
domain analysis (FODA) feasibility study,"
DTIC Document1990.

[13] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin,
and M. Huh, "FORM: A feature-; oriented reuse
method with domain-; specific reference
architectures," Annals of Software Engineering,
vol. 5, pp. 143-168, 1998.

[14] K. C. Kang, J. Lee, and P. Donohoe, "Feature-
oriented product line engineering," Software,
IEEE, vol. 19, pp. 58-65, 2002.

[15] M. L. Griss, J. Favaro, and M. d'Alessandro,
"Integrating feature modeling with the RSEB,"
in Software Reuse, 1998. Proceedings. Fifth
International Conference on, 1998, pp. 76-85.

[16] S. D. Lee, Y. J. Yang, F. S. Cho, S. D. Kim, and
S. Y. Rhew, "COMO: A UML-based
component development methodology," in
Software Engineering Conference,
1999.(APSEC'99) Proceedings. Sixth Asia
Pacific, 1999, pp. 54-61.

[17] R. Ganesan and S. Sengupta, "O2BC: A
technique for the design of component-based
applications," in Technology of Object-Oriented
Languages and Systems, 2001. TOOLS 39. 39th
International Conference and Exhibition on,
2001, pp. 46-55.

[18] G. Booch, J. Rumbaugh, and I. Jacobson,
Unified Modeling Language–User’s Guide:
Addison-Wesley Reading, MA, 1999.

[19] B. Selic, "Using UML for modeling complex
real-time systems," 1998, pp. 250-260.

[20] I. Jacobson, "The use-case construct in object-
oriented software engineering," Scenario-based
design: envisioning work and technology in
system development, pp. 309-336, 1995.

[21] S. W. Ambler and M. Lines, Disciplined Agile
Delivery: A Practitioner's Guide to Agile
Software Delivery in the Enterprise: IBM Press,
2012.

