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ABSTRACT 
 

A large number of interactive queries are being executed day by day. The user expects for an answer 
without no time after the execution. Even in scientific executions the user needs the intial query results for 
analysis without waiting for the entire process to complete. The state-of-art join algorithms are not ideal for 
this settings as most of the algorithms are hash/sort based algorithms, which requires some pre-work before 
it can produce the results. We propose a new join algorithm, Maximized Result Rate Join Algorithm 
(MRR), which produces the first few results without much delay. It also produces the maximum join query 
results during the early stage of the join operation; this is achieved by exploiting the histogram, which is 
available in database statistics. Histogram provides the frequency of the attribute in a table. The tuples 
which have high frequency of occurrences are joined during the early stages of the join operation. Further 
using the histogram, the join operation can be terminated when the required matching tuples are obtained. 
This improves the overall join performance. Experiment results shows that the new MRR join algorithm 
produces 60% more resultant tuples than the hash and sort-merge join algorithms. It also produces the 
result 30-35% early than the traditional join algorithms. 

Keywords: Join Query Optimization; Early Result Rate; Maximized Query Result; Histogram; Query 
Optimization. 

 
1. INTRODUCTION  
 
The primary concern of a join algorithm (other than 
producing an accurate join) is to produce the result 
quickly by efficiently using the available memory 
[1]. Traditional join algorithms do not consider the 
memory limitations and it is optimized to produce  
the entire joining results. But the internet users will 
be interested to see first few results without any 
delay. Thus traditional join algorithms are not ideal 
for this type of     settings [6]. All the recent 
algorithms which produce result early before it 
reads the entire input have been proposed based on 
sorting and hashing. As we know sorting and 
hashing requires more system resources (memory 
and CPU time), these algorithms are more suitable 
only when there is a network latency, delay or 
source blocking. In such joining algorithms delay in 
producing the joining result is matched with the 
delay in the arrival of the input tulles [1]. But these 
algorithms perform poorly for predictable inputs in 
centralized database join processing.   

              In our contribution, we concentrated on 
achieving the following three objectives: 

1. Producing results early without any major 
pre-work. 

2. Maximize the result rate of the join query 
during the early stage of the join operation.  

3. Terminating the join operation once the 
no. of matching tuples are found. 

The organization of this paper is as follows. In 
section 2, I described previous and related work. In 
section 3 I also have described the outline of 
histogram and the implementation details of the 
MRR join algorithm. In section 4 I discussed the 
experimental results, and finally with conclusion 
and references. 

2. RELATED WORKS 
 
In this section, we give a brief overview of the join 
algorithms.  The first three join algorithm: Nested 
Loop Join, Sort Merge Join and Hash Join are the 
traditional join algorithms, which are followed by 
new early hash based join algorithms. 

The Nested Loop Join In a nested loop join each 
row of the outer table will be compared with every 
row of the inner tuple. The comparison in nested 
loop join is the cross product of the inner and the 
outer table. 

The Sort Merge Join In sort merge join algorithm, 
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the join attribute column of the inner and the outer 
relation are first sorted. The sorted rows of the 
outer table are compared with the every row of the 
inner table. When there is a mismatch the outer row 
is incremented by one, this process is continued 
until all the rows of the outer table are processed.  

The Hash Join In hash join algorithm the smaller 
relation is selected as the build relation and the 
other relation is selected as the probe relation. An 
in-memory hash table is constructed for the build 
relation; a hash function is selected and applied to 
the join attribute value of a tuple. Based on the hash 
value of the tuple, it is distributed in to different 
buckets. The same hash function is applied to the 
inner table and the tuples which map to the same 
buckets are joined.  

Early Hash Join [1] Early hash join algorithm 
works in two modes. In one mode the algorithm is 
optimized to produce the join results earlier, this 
happens when there is enough memory available 
for the join operation. In another mode the 
algorithm is optimized to reduce the overall 
execution time, this is done when the memory is 
full. The algorithm has different reading and 
flushing policy which can be customized according 
to the need of the applications.  

Hybrid Hash Join [2] In hybrid hash join, the hash 
function is applied to the smaller relation such that 
the hash table for each partition of the smaller 
relation fits into the memory. Now both the outer 
and the inner table is probed to the hash table in the 
memory and the corresponding buckets are joined 
to produce the resultant tuples. 

Dynamic Hash Join [3] In hybrid hash join the 
partition size are pre determined before the join. In 
the case of dynamic hash join the partition size are 
varied during the execution. In dynamic hash join 
as much as inner relation is retained in the memory. 
When the memory is full, buckets are selected at 
random to be flushed in to the disk. This process is 
repeated until the entire inner relation is partitioned. 
There will be some partitions of the inner relation 
still available in the memory. Now the outer 
relation is read to the memory and partitioned. The 
tuples which falls to the partition of the inner table 
which is available in the memory is joined to 
produce the result.  

HistoJoin [3] In dynamic hash join the partitions 
are selected at random to be flushed to disk. It does 
not consider skew in the join relation. But histojoin 
exploits the skew distribution of the data to 
improve the performance of the join operation. In 
histojoin the tuples which produce more join results 

are identified by exploiting the histogram and are 
retained in the memory without flushing to the disk. 
This algorithm maximizes the join result rate during 
the early join operation and also reduces the I/O 
cost. 

3. MAXIMIZED RESULT RATE JOIN  

3. 1 Introduction to Histogram 

A histogram holds the data distribution of values 
within a column of a table. It holds the number of 
occurrences for a specific value/range. This 
histogram is mainly used by CBO to optimize a 
query. There are two types of histogram: 

• Frequency Histogram  

• Height-Balanced Histogram 

To create a histogram we need to specify the no. of 
buckets. This number of buckets controls the type 
of the histogram created. If the distinct value of a 
column is less than 254 then frequency histogram is 
created otherwise height-balanced histogram is 
created. 

3.1.1Frequency Histogram [4] 

 
Figure 1 Frequency Histogram 

 
In frequency histogram each value of the column 
corresponds to a single bucket of the histogram. 
Each bucket will contain the frequency of that 
single value. In order to build a frequency 
histogram (FH) the size N must be <=254, that is 
FH can be collected only if the column has 
num_distinct <=254. EP and the Value in Fig 1 are 
from dba_histograms. The Count derived by 
computing the difference between the current value 
and the previous one. 

Count (1) = 2 – 0 = 2 

Count (2) = 3 – 2 = 1 

Count (3) = 7 – 3 = 4 
 
3.1.2 Height-balanced histogram [5] 

In height-balanced histogram, the column values 
are divided into bands so that each band contains 
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approximately the same number of rows. If the no. 
of distinct value of the Join column is very large ie., 
greater than 254, height-balanced histogram will be 
created. To generate height balanced histogram, the 
rows must be sorted by the join column value. The 
rows are filled into the buckets, “lapping” into the 
next bucket as each one fills. Thus a bucket can 
represent rows for many columns values, or the 
rows for one column values can spill into several 
buckets. The column value that spills into several 
buckets is called the popular values. 

 

Fig 2 Height Balanced Histogram 
 

EP and Value are from dba_histograms. EP is zero 
for the first value sampled and indicates that this is 
the EPth sample. 

Count (i) = num_rows * diff_ep(i) 

                             max_ep 

max_ep = max (EP) 

diff_ep (i) = current (EP) – previous (EP)  

 

3.2 Frame Work of MRR Join 

The Fig 3 shows the frame work of the 
MRR join algorithm. This algorithm will be more 
efficient when there is a limitation in the memory to 
perform the join operation. Let M be the memory 
available to perform the join operation. Based on 
the available memory the window size W is 
decided. Let R and S are the source relations to be 
joined. If |R|+|S| > M, then the entire input relations 
cannot be brought to the memory to perform the 
join operation. As the objective of the MRR join 
algorithm is to maximize the resultant rate during 
the early stages of the join operation, we need to 
determine which tuples from R and S can be 
brought to the memory to perform the join 
operation. The histogram is generated for the 
relation S on the join attribute column and sorted in 

the descending order of the frequency of the 
buckets. For example if the window size  W is 3 
then top 3 join attribute values is read from 
histogram and given as input to the read operator. 
The read operator just read the top 3 tuples which 
has the maximum join result from R in to the 
memory to perform join operation. Now the 
matching tuples from S has to be brought to 
memory to perform the join operation. To find the 
matching tuples the Histojoin [3] performs two 
methods Binary search [3] and bit array method [3] 
which will add overhead to the join operation.  

 
Figure 3 Frame Work of MRR Join Algorithm 

The MRR algorithm uses a simple concept 
of least common divisor to retrieve the matching 
tuples from S. Lcm is calculated for the join 
attribute values in the window W and the  tuples 
whose join attribute value is completely divisible 
by the calculated LCM is read from S. If there is an 
in-sufficient memory to hold the tuples of S then, 
only the part of the matching tuples from S which 
can be accommodated in memory are read to 
perform the join operation. Once the required tuples 
are brought to the memory, the simplest join nested 
loop join is used to perform the join operation.  
During the second phase of the join operation the 
remaining tuples which are left over during the 
previous phase  are brought to the memory. During 
the join process when the sufficient matching tuples 
are found the join operation is terminated, without 
further comparison, as it will not yield any resultant 
tuples. 
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3.3 Steps in MRR Join Algorithm 

 
Figure 4 Join Operations on R and S 

Case 1: No Memory Overflow 

 
  Fig 5.1 Join Phase I 

 

 
Fig 5.2 Join Phase II 

Case 2: Memory Overflow 

 
Fig 5.3 Join Phase 1 

 
Fig 5.4 Join Phase II 

 
Fig 5.5 Join Phase III 

Figure 5 Steps of MRR Join Algorithm 
 

           The maximized result rate join algorithm 
produces the result earlier and it produces the 
maximum join results during the earlier stage of the 
join operation. This algorithm is designed to 
perform one-to-many join as this is the one of the 
most common type of join that occurs in real-time 
applications. Consider a primary-to-foreign key 
join between R (A) and S (B, A) on A, where R is 
the smaller relation and A is the join attribute. 
Histogram is collected for the relation S on attribute 
A. If the distinct value of attribute A is less than 
254 then frequency histogram (FH) will be 
generated, where each bucket value is the join 
attribute value and the frequency of the bucket is 
the frequencies of the join attribute value. The 
histogram is sorted in decreasing order of the 
frequency of the bucket.  
 
           Consider a join memory size of M tuples. If 
there is a memory constraint then both the join 
relations R and S cannot be accommodated in the 
available memory most of the time. So which tuples 
from R and S can be joined first to produce 
maximized join result has to be determined. To 
achieve the maximized join result during the early 
stage of join the tuple which has the maximum 
frequency of occurs in the table S is joined first. 
But how many such tuples can be brought to the 
memory for join is another major question. So a 
window of size W is fixed. For example if W is 3, 
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then top three tuples which has the highest 
frequency in the histogram is read from the table R 
into the window. Smaller values are selected as 
window size W; this is to give more space for the 
matching tuples to accommodate. If the memory is 
still free after accommodating the tuples from W 
and the matching tulles from S. The window size 
can be increased when the user need the result in no 
time, it is always better to select smaller values as 
window size. If the user can accommodate the 
delay in producing the result but needs the memory 
to be used to its maximum then the window size 
can be increased.  Let R1...RW be the tuples which 
has the maximum join tuples in table S. Now a 
range checking is performed for each tuple in 
window W to find the matching tuple in table S. In 
histojoin algorithm [3], range check is implemented 
in two methods. The first methods sorts the ranges 
and performs a binary search [3] using a given 
value to find if it is any of the ranges. The second 
approach for integer values uses a bit array [3]. 
This method requires hashing the input value and 
check if the bit is set in the bit array. To perform 
the binary search method sorting is required. To 
perform bit array method hashing the input value 
and checking if the bit is set in the bit array is 
required. This may delay the production of resultant 
tuple.  
 
             In MRR join algorithm we propose a 
simplified range checking method using the 
concept of least common divisor. LCM (R1...RW) is 
calculated, the tuples which is completely divisible 
by LCM from table S (Let S1, S2 .... SN be the 
matching tuples from S for the tuples R1...RW) is 
read to the memory to join, if the condition |R1 ... 
RW| + |S1, S2.... SN| <= M holds, else the the 
matching tuples from S is read to memory until the 
memory overflows and the join operation is 
initiated. Once the join is completed the memory is 
flushed out and the remaining matching tuples from 
S which couldn’t accommodate in memory in the 
previous phase are brought to memory to join. 
Simple nested loop join is performed between the 
tuples in the memory to perform the join operation. 
The number of comparison required to produce the 
phase 1 join result is |R1...RW|×|S1,S2....SN|. But 
MRR join algorithm terminates the join operation 
once the required matching tuples are found with 
the help of histogram. So the no.of comparison will 
be < |R1...RW|*|S1, S2....SN|. This feature will 
differentiate MRR join algorithm with the histojoin 
and it produces the maximum resultant tuples with 
less delay than the Histojoin.  
 

             In the case of height balanaced histogram, 
the values that are sampled more than once are the 
popular values. In Fig 2 VALUE=9 is sampled 
twice, but it is reported only once in the histogram, 
but the EP is increased by 2, not by one. The EP 
will be increased by k times if it is sampled k times. 
So the values which are sampled more number of 
times are selected as the top values from the 
histogram. Those values are read to the memory to 
join first.   
 
             Consider the Fig 4.1; it includes a Window 
W of size 3 and a memory M of size 10 tuples. The 
histogram on table S on the join attribute t1 is 
shown in the figure 3. The histogram is arranged in 
the descending order of the frequency. Based on the 
size of the window, the top three join attribute 
values are selected from the histogram ie., 6, 2 and 
8. The matching tuples from R which has the 
maximum frequency in the histogram is read to the 
window W to join. All the tuples which fall in the 
range of the tuples in Window W is read from table 
S. The range check is done using the concept of 
LCM. LCM is calculated for the tuples in windows 
(6, 2 and 8) and the LCM is 24. All the tuples from 
R which is completely divisible by the LCM are 
read from R and brought to the memory to join with 
the tuples in the window W. If the size of the 
memory is limited as in fig 4.3 (Memory size = 6 
tuples) there is no enough space to accommodate 
all the tuples in range in the memory, so the join 
happens in two phases. When the first phase is 
completed, the memory is cleared and the 
remaining matching tuples are brought to the 
memory to join with the tuples in window W. 
During the join phase the number of matches for 
each join attribute can be determined from the 
histogram and the join operation can be terminated 
when the required matching tuples are found. For 
example in Fig 4.3, the join operation for the join 
attribute 2 is terminated without comparing with all 
the tuples in memory as the no. of required matches 
are found. The no. of required matches can be 
determined from the histogram.   
 

3.4 Algorithm 

Input: RA Outer table, RB Inner table, K Distinct 
joins keys in RB, Histogram (which contains the 
frequency of the join keys in RB  arranged in 
increasing order of the frequency of the join key), 
Lcm least common multiplier, W window size, M 
Join memory size. 
Output: Join result for RA        RB  
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While (RA.size()>0)   // Until there are elements in 
RA 
{ 
      Buffer.clear(); 
      Window.clear(); 
      for (i=1; i<W; i++) 
      { 
           Buffer.add(Histogram.get(i)); 
 RA.delete(Histogram.get(i)); 
      } 
// calculate the lcm for the elements in the buffer 
Lcm = lcm (Histogram); 
for(k=1;k<RB.size();k++) 
{ 
         Mode=LCM % (Integer)RB.get(k); 
        
  If(mode==0) & (Window.size()<M) 
         Window.add(RB.get(k)); 
         Else 

{ 
       Print (“Memory overflow”) 
       Remain=k; 
       Break; 
} 

//now join the tuples in buffer and the window 
Case 1: 
//nested loop join between RA and RB 
for (i=0;i<Buffer.size();i++)  
  for (j=0;j<window.size();j++) 
//Checks if the required matches are found 
    If(Buffer.get(i).frequency(i)<match) 
       If(window.get(i)==Buffer.get(i)) 
          Print(“Match Found”) 
          Match++; 
          Else 
          Print(“No Matching”) 
    Else 
          { 
          Break case 1; 
          } 
} 

4. EXPERIMENTAL VALIDATION 

We ran the experiments on an Intel® 
corei5 2.50GHz processor, with 4GB real memory, 
running windows7 and Java 1.7.0_09. We have 
written a PL/SQL procedure to populate two tables 
Project( Project_No, Project_Name, Location) with 
250 rows and Employee (EmpNo, ProjectNo) with 
1,00,000 rows respectively. Project_No from 
Project table is the primary key and the ProjectNo 
from the Employee table is the reference key. 
Assuming this algorithm suits best when one-to-
many relationship holds between the relations. The 
reference key column values are generated using 

random generation method. The foreign key table 
was loaded with 1,00,000, 2,00,000 and 3,00,000 
rows respectively and the performance of the join 
operation is compared. As shown in Fig 6 the 
number of comparisons of the MRR join is 4%-5% 
more than the hash and sort merge join but it is 
promisingly better than the nested loop join. Even 
though the comparison of the MRR join is more 
than the hash join and the sort merge join the rate of 
the resultant tuples produced by the MRR join is 
more during the initial join phases. 

 
Figure 6 compares the performance of the 

MRR join algorithm with the traditional join 
algorithms. We see that the no. of comparisons of 
MRR join algorithm is less when compared to the 
nested loop join but it is 4%-6% more than the hash 
join and sort merge join. But in Figure 7 and Figure 
8 we find that the rate of the resultant tuples 
generated by the MRR join is 60% more than the 
nested loop, hash and sort merge join. Figure 9 
compares the time taken by the join algorithms to 
produce the first tuple. This figure shows the pre-
work required by each algorithm before it could 
produce the first resultant tuple. Hash join and sort 
merge join requires hashing and sorting of the join 
attribute value before it can produce the resultant 
tuples. Nested loop join does not require any pre-
work to produce the join results, but it cannot be 
preferred in many situations as it requires more 
comparisons. MRR join produces 60% more tuples 
during the earlier stages of the join when compared 
to the traditional join methods. It also produces 
20% early join results when compared to sort 
merge join and 60% early when compared to hash 
join. We have just compared our join algorithm 
only with traditional join algorithm as all the recent 
join algorithms are mostly based on sort and hash 
based join algorithm.  

 

 

Figure 6 Performance of MRR Join Vs Traditional Join 
Algorithm 
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 Figure 7 Rate Of The Resultant Tuples Produced By 

MRR Join 

 
Figure 8 Rate Of Resultant Tuples Produced By 

Traditional Join Methods 

 

   Figure 9 Time Taken To Produce The First Resultant 
Tuple 

5. CONCLUSION 

        The MRR join algorithm can be used to 
produce earlier and maximized join results. The 
MRR join algorithm can be used when we need to 
perform a join in limited available memory. In the 
limited available memory MRR join algorithm 
promises maximized early join results. This is 
achieved with the help of histograms. The rows 
which will produce the maximum join results are 
identified in the inner table and are joined during 
the earlier stages of the join operation. MRR join 
algorithm does not require hashing or sorting this 
reduces the  memory and I/O overhead. It applies a 
concept of LCM to find the matching tuples to 

bring to the memory for the join operation. The 
algorithm result shows that it requires 4%-5% more 
comparison than the hash and sort-merge based join 
algorithms but it is produces 60% more tuples in 
the earlier stages of the join operation and the delay 
in producing the first tuples are 30-35% less in 
compared to hash and sort merge join algorithms. 
In MRR join algorithm the join operation is 
terminated when the required matching tuples are 
found. This reduces the no.of comparisons required 
to produce the join result, which in turn reduces the 
time and I/O overhead. 

REFERENCES: 

[1] Ramon Lawerence, “Early Hash Join: A 
configurable Algorithm for the Efficient and 
Early Production of Join Results”, Proceedings 
of 31st VLDB Conference, Trondheim, 
Norway, 2005 pages 841-852.  

[2] M. Mokbel, M. Lu, and W. Aref, “Hash-Merge 
Join: A Nonblocking Join Algorithm for 
Producing Fast and Early Join Results”, In 
Proc ICDE 2004, pages 251–263. 

[3] B. Cutt and R. Lawrence, “Improving Join 
performance for Skewed Databases” in Proc 
IEEE Canadian Conference of Electrical and 
Computer Engineering, Canada, May 2008, 
pages 387-391. 

[4] Wolfgang Breitling, “Join, skew and 
Histograms”, Hotsos Conference, 2007. 

[5] Wolfgang Breitling, Histogram – Myth and 
Facts, Hostsos Conference, 2005. 

[6] P. J. Haas and J. M. Hellerstein, “Ripple joins 
for online aggregation”, In SIGMOD, pages 
287–298.  

[7] J.P. Dittrich, B. Seeger, D. S. Taylor, and P. 
Widmayer, “Progressive Merge Join: A 
Generic and Non-blocking Sortbased Join 
Algorithm”,  In Proceedings of the 
International Conference on Very Large Data 
Bases, VLDB, Hong Kong, Aug. 2002, pages 
299– 310.  

[8] Gang Luo, Curt J. Ellmann, Peter J. Haas, 
Jeffrey F. Naughton, “A Scalable Hash Ripple 
Join Algorithm”, in Proc. ACM SIGMOD, 
Wisconsin, USA , June 4-6 2002. 

[9] T. Urhan and M. Franklin, “XJoin: A 
Reactively Scheduled Pipelined Join 
Operator”, IEEE Data Engineering Bulletin, 
2000 23(2):7–18. 

[10] Stratis D. Viglas Jeffrey F. Naughton Josef 
Burger, “Maximizing the Output Rate of Multi-
Way Join Queries over Streaming Information 
Sources”, in Proc of the 29th VLDB 
Conference, Berlin, Germany, 2003.  



Journal of Theoretical and Applied Information Technology 
 10th February 2014. Vol. 60 No.1 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
8 
 

[11] M. Kitsuregawa, M. Nakayama, and M. 
Takagi, “The Effect of Bucket Size Tuning in 
the Dynamic Hybrid GRACE Hash Join 
Method”, in Proc VLDB, 1989, pages 257- 
266. 

[12] Dong Keun Shin, Arnold Charles Meltzer, 
“New Join Algorithm”, in Proc. ACM 
SIGMOD, USA, Dec. 1994, Volume 23 Issue 
4, Pages 13-20.  

[13] Bornea A.Mihaela,Vassalos Vasilis, Kotidis 
Yannis and Deligiannakis Antonios, “Adaptive 
Join Operators for Result Rate Optimization on 
Streaming Inputs”, IEEE transactions on 
knowledge and data engineering, volume 22, 
No.8, pp.1110-1125, August 2010.  

[14] Z. G. Ives, D. Florescu, M. Friedman, A. Y. 
Levy, and D. S. Weld,  “An Adaptive Query 
Execution System for Data Integration”,  In 
SIGMOD 1999, pages 299–310.  

[15] Y. E. Ioannidis, “The history of histograms 
(abridged)”, In Proc VLDB, pages 19-30, 2003. 

[16] W. Li, D. Gao, and R. T. Snodgrass, “Skew 
handling techniques in sort-merge join”, In 
Proc SIGMOD, 2002, pages 169 - 180.  

[17] Ron Avnur and Joseph M. Hellerstein “Eddies: 
Continuously Adaptive Query Processing”, in 
Proc the ACM SIGMOD International 
Conference on Management of Data, May 16-
18, 2000, volume 29, pages 261-272.  

[18] Y. Tao, M. L. Yiu, D. Papadias, M. 
Hadjieleftheriou, and N. Mamoulis. “RPJ: 
Producing Fast Join Results on Streams 
Through Rate-based Optimization”, In Proc of 
ACM SIGMOD Conference, Newyork, 2005, 
Pg: 371-382.  

[19] V. Zadorozhny, L. Raschid, M. Vidal, T. 
Urhan and L. Bright, “ Efficient evaluation of 
queries in a mediator for web sources” , in 
Proc. ACM SIGMOD International Conference 
on Data”, 2002, pg 85-96. 

[20] N. Bruno and S. Chaudhuri, “Exploiting 
Statistics on Query Expressions for 
Optimization”,  in Proc. ACM SIGMOD, USA, 
June 2002, pages 263-274. 

     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
     
  

 


