
Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1

MAXIMIZED RESULT RATE JOIN ALGORITHM
1HEMALATHA GUNASEKARAN, 2THANUSHKODI K

1Research Scholar, Anna University, India
2Director, Akshaya College of Engineering and Technology, India

E-mail: 1hemalatha2107@gmail.com, 2thanush13@gmail.com

ABSTRACT

A large number of interactive queries are being executed day by day. The user expects for an answer
without no time after the execution. Even in scientific executions the user needs the intial query results for
analysis without waiting for the entire process to complete. The state-of-art join algorithms are not ideal for
this settings as most of the algorithms are hash/sort based algorithms, which requires some pre-work before
it can produce the results. We propose a new join algorithm, Maximized Result Rate Join Algorithm
(MRR), which produces the first few results without much delay. It also produces the maximum join query
results during the early stage of the join operation; this is achieved by exploiting the histogram, which is
available in database statistics. Histogram provides the frequency of the attribute in a table. The tuples
which have high frequency of occurrences are joined during the early stages of the join operation. Further
using the histogram, the join operation can be terminated when the required matching tuples are obtained.
This improves the overall join performance. Experiment results shows that the new MRR join algorithm
produces 60% more resultant tuples than the hash and sort-merge join algorithms. It also produces the
result 30-35% early than the traditional join algorithms.

Keywords: Join Query Optimization; Early Result Rate; Maximized Query Result; Histogram; Query
Optimization.

1. INTRODUCTION

The primary concern of a join algorithm (other than
producing an accurate join) is to produce the result
quickly by efficiently using the available memory
[1]. Traditional join algorithms do not consider the
memory limitations and it is optimized to produce
the entire joining results. But the internet users will
be interested to see first few results without any
delay. Thus traditional join algorithms are not ideal
for this type of settings [6]. All the recent
algorithms which produce result early before it
reads the entire input have been proposed based on
sorting and hashing. As we know sorting and
hashing requires more system resources (memory
and CPU time), these algorithms are more suitable
only when there is a network latency, delay or
source blocking. In such joining algorithms delay in
producing the joining result is matched with the
delay in the arrival of the input tulles [1]. But these
algorithms perform poorly for predictable inputs in
centralized database join processing.

 In our contribution, we concentrated on
achieving the following three objectives:

1. Producing results early without any major
pre-work.

2. Maximize the result rate of the join query
during the early stage of the join operation.

3. Terminating the join operation once the
no. of matching tuples are found.

The organization of this paper is as follows. In
section 2, I described previous and related work. In
section 3 I also have described the outline of
histogram and the implementation details of the
MRR join algorithm. In section 4 I discussed the
experimental results, and finally with conclusion
and references.

2. RELATED WORKS

In this section, we give a brief overview of the join
algorithms. The first three join algorithm: Nested
Loop Join, Sort Merge Join and Hash Join are the
traditional join algorithms, which are followed by
new early hash based join algorithms.

The Nested Loop Join In a nested loop join each
row of the outer table will be compared with every
row of the inner tuple. The comparison in nested
loop join is the cross product of the inner and the
outer table.

The Sort Merge Join In sort merge join algorithm,

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2

the join attribute column of the inner and the outer
relation are first sorted. The sorted rows of the
outer table are compared with the every row of the
inner table. When there is a mismatch the outer row
is incremented by one, this process is continued
until all the rows of the outer table are processed.

The Hash Join In hash join algorithm the smaller
relation is selected as the build relation and the
other relation is selected as the probe relation. An
in-memory hash table is constructed for the build
relation; a hash function is selected and applied to
the join attribute value of a tuple. Based on the hash
value of the tuple, it is distributed in to different
buckets. The same hash function is applied to the
inner table and the tuples which map to the same
buckets are joined.

Early Hash Join [1] Early hash join algorithm
works in two modes. In one mode the algorithm is
optimized to produce the join results earlier, this
happens when there is enough memory available
for the join operation. In another mode the
algorithm is optimized to reduce the overall
execution time, this is done when the memory is
full. The algorithm has different reading and
flushing policy which can be customized according
to the need of the applications.

Hybrid Hash Join [2] In hybrid hash join, the hash
function is applied to the smaller relation such that
the hash table for each partition of the smaller
relation fits into the memory. Now both the outer
and the inner table is probed to the hash table in the
memory and the corresponding buckets are joined
to produce the resultant tuples.

Dynamic Hash Join [3] In hybrid hash join the
partition size are pre determined before the join. In
the case of dynamic hash join the partition size are
varied during the execution. In dynamic hash join
as much as inner relation is retained in the memory.
When the memory is full, buckets are selected at
random to be flushed in to the disk. This process is
repeated until the entire inner relation is partitioned.
There will be some partitions of the inner relation
still available in the memory. Now the outer
relation is read to the memory and partitioned. The
tuples which falls to the partition of the inner table
which is available in the memory is joined to
produce the result.

HistoJoin [3] In dynamic hash join the partitions
are selected at random to be flushed to disk. It does
not consider skew in the join relation. But histojoin
exploits the skew distribution of the data to
improve the performance of the join operation. In
histojoin the tuples which produce more join results

are identified by exploiting the histogram and are
retained in the memory without flushing to the disk.
This algorithm maximizes the join result rate during
the early join operation and also reduces the I/O
cost.

3. MAXIMIZED RESULT RATE JOIN

3. 1 Introduction to Histogram

A histogram holds the data distribution of values
within a column of a table. It holds the number of
occurrences for a specific value/range. This
histogram is mainly used by CBO to optimize a
query. There are two types of histogram:

• Frequency Histogram

• Height-Balanced Histogram

To create a histogram we need to specify the no. of
buckets. This number of buckets controls the type
of the histogram created. If the distinct value of a
column is less than 254 then frequency histogram is
created otherwise height-balanced histogram is
created.

3.1.1Frequency Histogram [4]

Figure 1 Frequency Histogram

In frequency histogram each value of the column
corresponds to a single bucket of the histogram.
Each bucket will contain the frequency of that
single value. In order to build a frequency
histogram (FH) the size N must be <=254, that is
FH can be collected only if the column has
num_distinct <=254. EP and the Value in Fig 1 are
from dba_histograms. The Count derived by
computing the difference between the current value
and the previous one.

Count (1) = 2 – 0 = 2

Count (2) = 3 – 2 = 1

Count (3) = 7 – 3 = 4

3.1.2 Height-balanced histogram [5]

In height-balanced histogram, the column values
are divided into bands so that each band contains

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3

approximately the same number of rows. If the no.
of distinct value of the Join column is very large ie.,
greater than 254, height-balanced histogram will be
created. To generate height balanced histogram, the
rows must be sorted by the join column value. The
rows are filled into the buckets, “lapping” into the
next bucket as each one fills. Thus a bucket can
represent rows for many columns values, or the
rows for one column values can spill into several
buckets. The column value that spills into several
buckets is called the popular values.

Fig 2 Height Balanced Histogram

EP and Value are from dba_histograms. EP is zero
for the first value sampled and indicates that this is
the EPth sample.

Count (i) = num_rows * diff_ep(i)

 max_ep

max_ep = max (EP)

diff_ep (i) = current (EP) – previous (EP)

3.2 Frame Work of MRR Join

The Fig 3 shows the frame work of the
MRR join algorithm. This algorithm will be more
efficient when there is a limitation in the memory to
perform the join operation. Let M be the memory
available to perform the join operation. Based on
the available memory the window size W is
decided. Let R and S are the source relations to be
joined. If |R|+|S| > M, then the entire input relations
cannot be brought to the memory to perform the
join operation. As the objective of the MRR join
algorithm is to maximize the resultant rate during
the early stages of the join operation, we need to
determine which tuples from R and S can be
brought to the memory to perform the join
operation. The histogram is generated for the
relation S on the join attribute column and sorted in

the descending order of the frequency of the
buckets. For example if the window size W is 3
then top 3 join attribute values is read from
histogram and given as input to the read operator.
The read operator just read the top 3 tuples which
has the maximum join result from R in to the
memory to perform join operation. Now the
matching tuples from S has to be brought to
memory to perform the join operation. To find the
matching tuples the Histojoin [3] performs two
methods Binary search [3] and bit array method [3]
which will add overhead to the join operation.

Figure 3 Frame Work of MRR Join Algorithm

The MRR algorithm uses a simple concept
of least common divisor to retrieve the matching
tuples from S. Lcm is calculated for the join
attribute values in the window W and the tuples
whose join attribute value is completely divisible
by the calculated LCM is read from S. If there is an
in-sufficient memory to hold the tuples of S then,
only the part of the matching tuples from S which
can be accommodated in memory are read to
perform the join operation. Once the required tuples
are brought to the memory, the simplest join nested
loop join is used to perform the join operation.
During the second phase of the join operation the
remaining tuples which are left over during the
previous phase are brought to the memory. During
the join process when the sufficient matching tuples
are found the join operation is terminated, without
further comparison, as it will not yield any resultant
tuples.

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4

3.3 Steps in MRR Join Algorithm

Figure 4 Join Operations on R and S

Case 1: No Memory Overflow

 Fig 5.1 Join Phase I

Fig 5.2 Join Phase II

Case 2: Memory Overflow

Fig 5.3 Join Phase 1

Fig 5.4 Join Phase II

Fig 5.5 Join Phase III

Figure 5 Steps of MRR Join Algorithm

 The maximized result rate join algorithm
produces the result earlier and it produces the
maximum join results during the earlier stage of the
join operation. This algorithm is designed to
perform one-to-many join as this is the one of the
most common type of join that occurs in real-time
applications. Consider a primary-to-foreign key
join between R (A) and S (B, A) on A, where R is
the smaller relation and A is the join attribute.
Histogram is collected for the relation S on attribute
A. If the distinct value of attribute A is less than
254 then frequency histogram (FH) will be
generated, where each bucket value is the join
attribute value and the frequency of the bucket is
the frequencies of the join attribute value. The
histogram is sorted in decreasing order of the
frequency of the bucket.

 Consider a join memory size of M tuples. If
there is a memory constraint then both the join
relations R and S cannot be accommodated in the
available memory most of the time. So which tuples
from R and S can be joined first to produce
maximized join result has to be determined. To
achieve the maximized join result during the early
stage of join the tuple which has the maximum
frequency of occurs in the table S is joined first.
But how many such tuples can be brought to the
memory for join is another major question. So a
window of size W is fixed. For example if W is 3,

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5

then top three tuples which has the highest
frequency in the histogram is read from the table R
into the window. Smaller values are selected as
window size W; this is to give more space for the
matching tuples to accommodate. If the memory is
still free after accommodating the tuples from W
and the matching tulles from S. The window size
can be increased when the user need the result in no
time, it is always better to select smaller values as
window size. If the user can accommodate the
delay in producing the result but needs the memory
to be used to its maximum then the window size
can be increased. Let R1...RW be the tuples which
has the maximum join tuples in table S. Now a
range checking is performed for each tuple in
window W to find the matching tuple in table S. In
histojoin algorithm [3], range check is implemented
in two methods. The first methods sorts the ranges
and performs a binary search [3] using a given
value to find if it is any of the ranges. The second
approach for integer values uses a bit array [3].
This method requires hashing the input value and
check if the bit is set in the bit array. To perform
the binary search method sorting is required. To
perform bit array method hashing the input value
and checking if the bit is set in the bit array is
required. This may delay the production of resultant
tuple.

 In MRR join algorithm we propose a
simplified range checking method using the
concept of least common divisor. LCM (R1...RW) is
calculated, the tuples which is completely divisible
by LCM from table S (Let S1, S2 SN be the
matching tuples from S for the tuples R1...RW) is
read to the memory to join, if the condition |R1 ...
RW| + |S1, S2.... SN| <= M holds, else the the
matching tuples from S is read to memory until the
memory overflows and the join operation is
initiated. Once the join is completed the memory is
flushed out and the remaining matching tuples from
S which couldn’t accommodate in memory in the
previous phase are brought to memory to join.
Simple nested loop join is performed between the
tuples in the memory to perform the join operation.
The number of comparison required to produce the
phase 1 join result is |R1...RW|×|S1,S2....SN|. But
MRR join algorithm terminates the join operation
once the required matching tuples are found with
the help of histogram. So the no.of comparison will
be < |R1...RW|*|S1, S2....SN|. This feature will
differentiate MRR join algorithm with the histojoin
and it produces the maximum resultant tuples with
less delay than the Histojoin.

 In the case of height balanaced histogram,
the values that are sampled more than once are the
popular values. In Fig 2 VALUE=9 is sampled
twice, but it is reported only once in the histogram,
but the EP is increased by 2, not by one. The EP
will be increased by k times if it is sampled k times.
So the values which are sampled more number of
times are selected as the top values from the
histogram. Those values are read to the memory to
join first.

 Consider the Fig 4.1; it includes a Window
W of size 3 and a memory M of size 10 tuples. The
histogram on table S on the join attribute t1 is
shown in the figure 3. The histogram is arranged in
the descending order of the frequency. Based on the
size of the window, the top three join attribute
values are selected from the histogram ie., 6, 2 and
8. The matching tuples from R which has the
maximum frequency in the histogram is read to the
window W to join. All the tuples which fall in the
range of the tuples in Window W is read from table
S. The range check is done using the concept of
LCM. LCM is calculated for the tuples in windows
(6, 2 and 8) and the LCM is 24. All the tuples from
R which is completely divisible by the LCM are
read from R and brought to the memory to join with
the tuples in the window W. If the size of the
memory is limited as in fig 4.3 (Memory size = 6
tuples) there is no enough space to accommodate
all the tuples in range in the memory, so the join
happens in two phases. When the first phase is
completed, the memory is cleared and the
remaining matching tuples are brought to the
memory to join with the tuples in window W.
During the join phase the number of matches for
each join attribute can be determined from the
histogram and the join operation can be terminated
when the required matching tuples are found. For
example in Fig 4.3, the join operation for the join
attribute 2 is terminated without comparing with all
the tuples in memory as the no. of required matches
are found. The no. of required matches can be
determined from the histogram.

3.4 Algorithm

Input: RA Outer table, RB Inner table, K Distinct
joins keys in RB, Histogram (which contains the
frequency of the join keys in RB arranged in
increasing order of the frequency of the join key),
Lcm least common multiplier, W window size, M
Join memory size.
Output: Join result for RA RB

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6

While (RA.size()>0) // Until there are elements in
RA
{
 Buffer.clear();
 Window.clear();
 for (i=1; i<W; i++)
 {
 Buffer.add(Histogram.get(i));
 RA.delete(Histogram.get(i));
 }
// calculate the lcm for the elements in the buffer
Lcm = lcm (Histogram);
for(k=1;k<RB.size();k++)
{
 Mode=LCM % (Integer)RB.get(k);

 If(mode==0) & (Window.size()<M)
 Window.add(RB.get(k));
 Else

{
 Print (“Memory overflow”)
 Remain=k;
 Break;
}

//now join the tuples in buffer and the window
Case 1:
//nested loop join between RA and RB
for (i=0;i<Buffer.size();i++)
 for (j=0;j<window.size();j++)
//Checks if the required matches are found
 If(Buffer.get(i).frequency(i)<match)
 If(window.get(i)==Buffer.get(i))
 Print(“Match Found”)
 Match++;
 Else
 Print(“No Matching”)
 Else
 {
 Break case 1;
 }
}

4. EXPERIMENTAL VALIDATION

We ran the experiments on an Intel®
corei5 2.50GHz processor, with 4GB real memory,
running windows7 and Java 1.7.0_09. We have
written a PL/SQL procedure to populate two tables
Project(Project_No, Project_Name, Location) with
250 rows and Employee (EmpNo, ProjectNo) with
1,00,000 rows respectively. Project_No from
Project table is the primary key and the ProjectNo
from the Employee table is the reference key.
Assuming this algorithm suits best when one-to-
many relationship holds between the relations. The
reference key column values are generated using

random generation method. The foreign key table
was loaded with 1,00,000, 2,00,000 and 3,00,000
rows respectively and the performance of the join
operation is compared. As shown in Fig 6 the
number of comparisons of the MRR join is 4%-5%
more than the hash and sort merge join but it is
promisingly better than the nested loop join. Even
though the comparison of the MRR join is more
than the hash join and the sort merge join the rate of
the resultant tuples produced by the MRR join is
more during the initial join phases.

Figure 6 compares the performance of the

MRR join algorithm with the traditional join
algorithms. We see that the no. of comparisons of
MRR join algorithm is less when compared to the
nested loop join but it is 4%-6% more than the hash
join and sort merge join. But in Figure 7 and Figure
8 we find that the rate of the resultant tuples
generated by the MRR join is 60% more than the
nested loop, hash and sort merge join. Figure 9
compares the time taken by the join algorithms to
produce the first tuple. This figure shows the pre-
work required by each algorithm before it could
produce the first resultant tuple. Hash join and sort
merge join requires hashing and sorting of the join
attribute value before it can produce the resultant
tuples. Nested loop join does not require any pre-
work to produce the join results, but it cannot be
preferred in many situations as it requires more
comparisons. MRR join produces 60% more tuples
during the earlier stages of the join when compared
to the traditional join methods. It also produces
20% early join results when compared to sort
merge join and 60% early when compared to hash
join. We have just compared our join algorithm
only with traditional join algorithm as all the recent
join algorithms are mostly based on sort and hash
based join algorithm.

Figure 6 Performance of MRR Join Vs Traditional Join
Algorithm

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7

 Figure 7 Rate Of The Resultant Tuples Produced By

MRR Join

Figure 8 Rate Of Resultant Tuples Produced By

Traditional Join Methods

 Figure 9 Time Taken To Produce The First Resultant
Tuple

5. CONCLUSION

 The MRR join algorithm can be used to
produce earlier and maximized join results. The
MRR join algorithm can be used when we need to
perform a join in limited available memory. In the
limited available memory MRR join algorithm
promises maximized early join results. This is
achieved with the help of histograms. The rows
which will produce the maximum join results are
identified in the inner table and are joined during
the earlier stages of the join operation. MRR join
algorithm does not require hashing or sorting this
reduces the memory and I/O overhead. It applies a
concept of LCM to find the matching tuples to

bring to the memory for the join operation. The
algorithm result shows that it requires 4%-5% more
comparison than the hash and sort-merge based join
algorithms but it is produces 60% more tuples in
the earlier stages of the join operation and the delay
in producing the first tuples are 30-35% less in
compared to hash and sort merge join algorithms.
In MRR join algorithm the join operation is
terminated when the required matching tuples are
found. This reduces the no.of comparisons required
to produce the join result, which in turn reduces the
time and I/O overhead.

REFERENCES:

[1] Ramon Lawerence, “Early Hash Join: A
configurable Algorithm for the Efficient and
Early Production of Join Results”, Proceedings
of 31st VLDB Conference, Trondheim,
Norway, 2005 pages 841-852.

[2] M. Mokbel, M. Lu, and W. Aref, “Hash-Merge
Join: A Nonblocking Join Algorithm for
Producing Fast and Early Join Results”, In
Proc ICDE 2004, pages 251–263.

[3] B. Cutt and R. Lawrence, “Improving Join
performance for Skewed Databases” in Proc
IEEE Canadian Conference of Electrical and
Computer Engineering, Canada, May 2008,
pages 387-391.

[4] Wolfgang Breitling, “Join, skew and
Histograms”, Hotsos Conference, 2007.

[5] Wolfgang Breitling, Histogram – Myth and
Facts, Hostsos Conference, 2005.

[6] P. J. Haas and J. M. Hellerstein, “Ripple joins
for online aggregation”, In SIGMOD, pages
287–298.

[7] J.P. Dittrich, B. Seeger, D. S. Taylor, and P.
Widmayer, “Progressive Merge Join: A
Generic and Non-blocking Sortbased Join
Algorithm”, In Proceedings of the
International Conference on Very Large Data
Bases, VLDB, Hong Kong, Aug. 2002, pages
299– 310.

[8] Gang Luo, Curt J. Ellmann, Peter J. Haas,
Jeffrey F. Naughton, “A Scalable Hash Ripple
Join Algorithm”, in Proc. ACM SIGMOD,
Wisconsin, USA , June 4-6 2002.

[9] T. Urhan and M. Franklin, “XJoin: A
Reactively Scheduled Pipelined Join
Operator”, IEEE Data Engineering Bulletin,
2000 23(2):7–18.

[10] Stratis D. Viglas Jeffrey F. Naughton Josef
Burger, “Maximizing the Output Rate of Multi-
Way Join Queries over Streaming Information
Sources”, in Proc of the 29th VLDB
Conference, Berlin, Germany, 2003.

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8

[11] M. Kitsuregawa, M. Nakayama, and M.
Takagi, “The Effect of Bucket Size Tuning in
the Dynamic Hybrid GRACE Hash Join
Method”, in Proc VLDB, 1989, pages 257-
266.

[12] Dong Keun Shin, Arnold Charles Meltzer,
“New Join Algorithm”, in Proc. ACM
SIGMOD, USA, Dec. 1994, Volume 23 Issue
4, Pages 13-20.

[13] Bornea A.Mihaela,Vassalos Vasilis, Kotidis
Yannis and Deligiannakis Antonios, “Adaptive
Join Operators for Result Rate Optimization on
Streaming Inputs”, IEEE transactions on
knowledge and data engineering, volume 22,
No.8, pp.1110-1125, August 2010.

[14] Z. G. Ives, D. Florescu, M. Friedman, A. Y.
Levy, and D. S. Weld, “An Adaptive Query
Execution System for Data Integration”, In
SIGMOD 1999, pages 299–310.

[15] Y. E. Ioannidis, “The history of histograms
(abridged)”, In Proc VLDB, pages 19-30, 2003.

[16] W. Li, D. Gao, and R. T. Snodgrass, “Skew
handling techniques in sort-merge join”, In
Proc SIGMOD, 2002, pages 169 - 180.

[17] Ron Avnur and Joseph M. Hellerstein “Eddies:
Continuously Adaptive Query Processing”, in
Proc the ACM SIGMOD International
Conference on Management of Data, May 16-
18, 2000, volume 29, pages 261-272.

[18] Y. Tao, M. L. Yiu, D. Papadias, M.
Hadjieleftheriou, and N. Mamoulis. “RPJ:
Producing Fast Join Results on Streams
Through Rate-based Optimization”, In Proc of
ACM SIGMOD Conference, Newyork, 2005,
Pg: 371-382.

[19] V. Zadorozhny, L. Raschid, M. Vidal, T.
Urhan and L. Bright, “ Efficient evaluation of
queries in a mediator for web sources” , in
Proc. ACM SIGMOD International Conference
on Data”, 2002, pg 85-96.

[20] N. Bruno and S. Chaudhuri, “Exploiting
Statistics on Query Expressions for
Optimization”, in Proc. ACM SIGMOD, USA,
June 2002, pages 263-274.

