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ABSTRACT

A large number of interactive queries are beingcated day by day. The user expects for an answer
without no time after the execution. Even in sdfenexecutions the user needs the intial queryltesor
analysis without waiting for the entire procesgdmplete. The state-of-art join algorithms areidetl for
this settings as most of the algorithms are hastifssed algorithms, which requires some pre-wefloie

it can produce the results. We propose a new jigorithm, Maximized Result Rate Join Algorithm
(MRR), which produces the first few results withoutich delay. It also produces the maximum join guer
results during the early stage of the join opemtibis is achieved by exploiting the histogram,ichkhis
available in database statistics. Histogram pravithe frequency of the attribute in a table. Theles
which have high frequency of occurrences are joihadng the early stages of the join operation thar
using the histogram, the join operation can be itgatad when the required matching tuples are obthin
This improves the overall join performance. Expenresults shows that the new MRR join algorithm
produces 60% more resultant tuples than the hadhsart-merge join algorithms. It also produces the
result 30-35% early than the traditional join algons.

Keywords: Join Query Optimization; Early Result Rate; Maxied2uery Result; Histogram; Query
Optimization.

1. INTRODUCTION 2. Maximize the result rate of the join query
during the early stage of the join operation.
The primary concern of a join algorithm (other than
producing an accurate join) is to produce the tesul
quickly by efficiently using the available memory
[1]. Traditional join algorithms do not consideeth The organization of this paper is as follows. In
memory limitations and it is optimized to producesection 2, | described previous and related work. |
the entire joining results. But the internet usgils  section 3 | also have described the outline of
be interested to see first few results without anfiistogram and the implementation details of the
delay. Thus traditional join algorithms are notatle MRR join algorithm. In section 4 | discussed the
for this type of settings [6]. All the recentexperimental results, and finally with conclusion
algorithms which produce result early before itand references.
reads the entire input have been proposed based.on
sorting and hashing. As we know sorting and™ RELATED WORKS
hashing requires more system resources (memolr
and CPU time), these algorithms are more suitabg

only when there is a network latency, delay o oop Join, Sort Merge Join and Hash Join are the

source blocking. In such joining algorithms delay i v - ; .
producing the joining result is matched with thetradmonal join algorithms, which are followed by

delay in the arrival of the input tulles [1]. Binese new early hash based join algorithms.

algorithms perform poorly for predictable inputs inThe Nested Loop Join In a nested loop join each
centralized database join processing. row of the outer table will be compared with every
row of the inner tuple. The comparison in nested
loop join is the cross product of the inner and the
outer table.

Terminating the join operation once the
no. of matching tuples are found.

this section, we give a brief overview of thénjo
gorithms. The first three join algorithm: Nested

In our contribution, we concentrated
achieving the following three objectives:

1. Producing results early without any majo

r ) - .
pre-work. The Sort Merge Join In sort merge join algorithm,
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the join attribute column of the inner and the outeare identified by exploiting the histogram and are
relation are first sorted. The sorted rows of theetained in the memory without flushing to the disk
outer table are compared with the every row of th&€his algorithm maximizes the join result rate dgrin
inner table. When there is a mismatch the outer rothe early join operation and also reduces the 1/O
is incremented by one, this process is continuegbst.

until all the rows of the outer table are processed

The Hash Join In hash join algorithm the smaller 3. MAXIMIZED RESULT RATE JOIN
relation is selected as the build relation and th8. 1 Introduction to Histogram

other relation is selected as the probe relatiam. A . L
in-memory hash table is constructed for the build® histogram holds the data distribution of values

relation; a hash function is selected and appled 'ywthm a column of a tabIe._I_t holds the number Qf
the join attribute value of a tuple. Based on thsth oceurrences for_ a specific value/rang_e. : This
value of the tuple, it is distributed in to diffete histogram is mainly used by .CBO to .opt|m|ze a
buckets. The same hash function is applied to tHEery: There are two types of histogram:

inner table and the tuples which map to the same « Frequency Histogram

buckets are joined. ) )
) o ) * Height-Balanced Histogram
Early Hash Join [1] Early hash join algorithm

works in two modes. In one mode the algorithm id © create a histogram we need to specify the no. of
optimized to produce the join results earlier, thi®uckets. This number of buckets controls the type

happens when there is enough memory availab® the histogram created. If the distinct valueaof
for the join operation. In another mode thecolumn is less than 254 then frequency h|stogram is
algorithm is optimized to reduce the overallcreated otherwise height-balanced histogram is
execution time, this is done when the memory i§reated.

full. _The a_llgorith_m has different_reading aﬂd3.1.1FrequencyHistogram [4]

flushing policy which can be customized according

and the inner table is probed to the hash tabiken
memory and the corresponding buckets are joined
to produce the resultant tuples.

Dynamic Hash Join [3] In hybrid hash join the

partition size are pre determined before the jbin. In frequency histogram each value of the column

the case of dynamic hash join the partition size a.‘rcorresponds to a single bucket of the histogram.

varied during the exequti(_)n. In _dyna_mic hash jOIrEach bucket will contain the frequency of that
as much as inner relation is retained in the mem°r¥ingle value. In order to build a frequency

When the memory is full, buckets are selected ?ﬁstogram (FH) the size N must be <=254, that is
random to be flushed in to the disk. This process EH can be collected only if the colum'n has

repeated until the entire inner relation is pantigd. num_distinct <=254. EP and the Value in Fig 1 are

There will be some partitions of the inner reIationfrom dba_histograms. The Count derived by

St'lll t_ava_llabled Itn ttr:]e memory. (Ij\low t_:_he gm_ﬁr]computing the difference between the current value
relation is read to the memory and partitioned. Thg, e brevious one,

tuples which falls to the partition of the innebl&a
which is available in the memory is joined toCount(1)=2-0=2

produce the result. Count(2)=3-2=1

HistoJoin [3] In dynamic hash join the partitions 7 _a—

are selected at random to be flushed to disk. eBdOCount (@)=7-3=4

not consider skew in the join relation. But histojo —— :

exploits the skew distribution of the data t03'1'2 Height-balanced histogram [5]
improve the performance of the join operation. Inn height-balanced histogram, the column values
histojoin the tuples which produce more join resultare divided into bands so that each band contains

to the need of the applications. 1]
Hybrid Hash Join [2] In hybrid hash join, the hash L } —L I;:P SOL =
function is applied to the smaller relation suchtth 12 ] 3 5 I
the hash table for each partition of the smaller 3 3 7 132
relation fits into the memory. Now both the outer EX

3

3

Figure 1 Frequency Histogram
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approximately the same number of rows. If the ndhe descending order of the frequency of the
of distinct value of the Join column is very laige  buckets. For example if the window size W is 3
greater than 254, height-balanced histogram will béhen top 3 join attribute values is read from
created. To generate height balanced histogram, thestogram and given as input to the read operator.
rows must be sorted by the join column value. Th&he read operator just read the top 3 tuples which
rows are filled into the buckets, “lapping” intoeth has the maximum join result from R in to the
next bucket as each one fills. Thus a bucket canemory to perform join operation. Now the
represent rows for many columns values, or thmatching tuples from S has to be brought to
rows for one column values can spill into severainemory to perform the join operation. To find the
buckets. The column value that spills into severahatching tuples the Histojoin [3] performs two
buckets is called the popular values. methods Binary search [3] and bit array method [3]
which will add overhead to the join operation.

(1] s
| VALUE | EP | COUNT .
2 1 0 |0 emon
] 3 1 3 R S H
el 9 3 |6 D X
i [ A [
9
|| S1:kSh
i — Lcm
9 Read
T R:.{Rw 'Y
9] s
L Window =@m<

Size W

Fig 2 Height Balanced Histogram

EP and Value are from dba_histograms. EP is zero
for the first value sampled and indicates that this
the EF' sample.

Count (i) = num_rows * diff_ep(i)

max_ep

max_ep = max (EP)

diff_ep (i) = current (EP) - previous (EP) Figure 3 Frame Work of MRR Join Algorithm
The MRR algorithm uses a simple concept
3.2 Frame Work of MRR Join of least common divisor to retrieve the matching
) tuples from S. Lcm is calculated for the join
. _The Fig 3 shows the frame \_Nork of thettribute values in the window W and the tuples
MRR join algorithm. This algorithm will be more g6 join attribute value is completely divisible
efficient when there is a limitation in the memadoy by the calculated LCM is read from S. If therefis a
perform the join operation. Let M be the memory, ¢ ficient memory to hold the tuples of S then,
available to perform the join operation. Based OBnly the part of the matching tuples from S which

the ‘available memory the window sizé W iScan pe accommodated in memory are read to

decided. Let R and S are the source relations to B@ 5rm the join operation. Once the required tsiple
joined. If [R|+[S| > M, then the entire input relas 50 brought to the memory, the simplest join nested
cannot be brought to the memory to perform thf'oop join is used to perform the join operation.

join qpera_tion. As t.he. objective of the MRR jo,inDuring the second phase of the join operation the
algorithm is to maximize t.he result_ant rate d“”ngemaining tuples which are left over during the
the ear_ly stages of the join operation, we need evious phase are brought to the memory. During
determine which tuples from R and 3 can _b e join process when the sufficient matching taple
brought to the memory to perform the joiNge’taynd the join operation is terminated, without

operation. The histogram is generated for thg,her comparison, as it will not yield any resuit
relation S on the join attribute column and soited tuples

e ——
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3.3 Stepsin MRR Join Algorithm

R.t1 s.t1 Histogramon$
1] (2] S.tl | Frequency
2 | B8 6 3
3| 2] 2 2
4| B 8 2
5 | N 3] 3 1
16 | 6 | 7 1
7] B 5 1
8 | 6 |
E 7]

(10 g

Figure 4 Join Operations on R and S

Case 1: No Memory Overflow
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Fig 5.1 Join Phase |
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Fig 5.2 Join Phase Il

Case 2: Memory Overflow
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Fig 5.3 Join Phase 1
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Fig 5.4 Join Phase Il
Window Size W=3

3 5
7 3
5 7
Tuplesin W Tuples from S
LCM=105 M=6tuples
Memory

Fig 5.5 Join Phase Il
Figure 5 Steps of MRR Join Algorithm

The maximized result rate join algorithm
produces the result earlier and it produces the
maximum join results during the earlier stage ef th
join operation. This algorithm is designed to
perform one-to-many join as this is the one of the
most common type of join that occurs in real-time
applications. Consider a primary-to-foreign key
join between R (A) and S (B, A) on A, where R is
the smaller relation and A is the join attribute.
Histogram is collected for the relation S on atité
A. If the distinct value of attribute A is less tha
254 then frequency histogram (FH) will be
generated, where each bucket value is the join
attribute value and the frequency of the bucket is
the frequencies of the join attribute value. The
histogram is sorted in decreasing order of the
frequency of the bucket.

Consider a join memory size of M tuplds.
there is a memory constraint then both the join
relations R and S cannot be accommodated in the
available memory most of the time. So which tuples
from R and S can be joined first to produce
maximized join result has to be determined. To
achieve the maximized join result during the early
stage of join the tuple which has the maximum
frequency of occurs in the table S is joined first.
But how many such tuples can be brought to the
memory for join is another major question. So a
window of size W is fixed. For example if W is 3,
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then top three tuples which has the highest In the case of height balanaced histiog

frequency in the histogram is read from the table Ehe values that are sampled more than once are the
into the window. Smaller values are selected gsopular values. In Fig 2 VALUE=9 is sampled
window size W; this is to give more space for thawice, but it is reported only once in the histagra
matching tuples to accommodate. If the memory ibut the EP is increased by 2, not by one. The EP
still free after accommodating the tuples from Wwill be increased by k times if it is sampled k ¢&isn
and the matching tulles from S. The window siz&o the values which are sampled more number of
can be increased when the user need the resudt intimes are selected as the top values from the
time, it is always better to select smaller valass histogram. Those values are read to the memory to
window size. If the user can accommodate thgin first.
delay in producing the result but needs the memory
to be used to its maximum then the window size Consider the Fig 4.1; it includes andéw
can be increased. Let;.RRy be the tuples which W of size 3 and a memory M of size 10 tuples. The
has the maximum join tuples in table S. Now &istogram on table S on the join attribute t1 is
range checking is performed for each tuple ishown in the figure 3. The histogram is arranged in
window W to find the matching tuple in table S. Inthe descending order of the frequency. Based on the
histojoin algorithm [3], range check is implementedcsize of the window, the top three join attribute
in two methods. The first methods sorts the rangeslues are selected from the histogram ie., 6, an
and performs a binary search [3] using a giveB. The matching tuples from R which has the
value to find if it is any of the ranges. The setonmaximum frequency in the histogram is read to the
approach for integer values uses a bit array [3fvindow W to join. All the tuples which fall in the
This method requires hashing the input value angnge of the tuples in Window W is read from table
check if the bit is set in the bit array. To penfor S. The range check is done using the concept of
the binary search method sorting is required. ThCM. LCM is calculated for the tuples in windows
perform bit array method hashing the input valug6, 2 and 8) and the LCM is 24. All the tuples from
and checking if the bit is set in the bit array iR which is completely divisible by the LCM are
required. This may delay the production of resultarread from R and brought to the memory to join with
tuple. the tuples in the window W. If the size of the
memory is limited as in fig 4.3 (Memory size = 6
In MRR join algorithm we propose atuples) there is no enough space to accommodate
simplified range checking method using theall the tuples in range in the memory, so the join
concept of least common divisor. LCMRRy) is  happens in two phases. When the first phase is
calculated, the tuples which is completely divisibl completed, the memory is cleared and the
by LCM from table S (Let § S .... S be the remaining matching tuples are brought to the
matching tuples from S for the tuples.RRy) is memory to join with the tuples in window W.
read to the memory to join, if the conditiony|R  During the join phase the number of matches for
Rwl + |19, S.. Su| <= M holds, else the the each join attribute can be determined from the
matching tuples from S is read to memory until thdristogram and the join operation can be terminated
memory overflows and the join operation iswhen the required matching tuples are found. For
initiated. Once the join is completed the memory iexample in Fig 4.3, the join operation for the join
flushed out and the remaining matching tuples frorattribute 2 is terminated without comparing with al
S which couldn’'t accommodate in memory in thethe tuples in memory as the no. of required matches
previous phase are brought to memory to joinare found. The no. of required matches can be
Simple nested loop join is performed between thdetermined from the histogram.
tuples in the memory to perform the join operation.
The number of comparison required to produce t .
phase 1 join result is |RRy|%|S,S....S|- But h§4AIgor|thm
MRR join algorithm terminates the join operationinput: Ry Outer table, R Inner table, K Distinct
once the required matching tuples are found witjpins keys in B Histogram (which contains the
the help of histogram. So the no.of comparison willrequency of the join keys ingRarranged in
be < |R..Rw[*|S;, S2...8|. This feature will increasing order of the frequency of the join key),
differentiate MRR join algorithm with the histojoin Lcm least common multiplier, W window size, M
and it produces the maximum resultant tuples witBoin memory size.
less delay than the Histojoin. Output: Joinresult for RN R
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While (Ry.size()>0) // Until there are elements inrandom generation method. The foreign key table
Ra was loaded with 1,00,000, 2,00,000 and 3,00,000
{ rows respectively and the performance of the join

Buffer.clear();
Window.clear();
for (i=1; i<W; i++)

Buffer.add(Histogram.get(i));
Ra.delete(Histogram.get(i));

/I calculate the Icm for the elements in the buffer
Lecm = Iem (Histogram);
for(k=1;k<Rg.size();k++)
{
Mode=LCM % (Integeripet(k);

If(mode==0) & (Window.size()<M)
Window.add(§gRget(k));
Else

Print (“Memory overflow”)
Remain=k;
Break;

/Inow join the tuples in buffer and the window
Case 1:
//Inested loop join betweenBnd R
for (i=0;i<Buffer.size();i++)
for (j=0;j<window.size();j++)
/IChecks if the required matches are found
If(Buffer.get(i).frequency(i)<match)
If(window.get(i)==Buffer.get(i))
Print("Match Found”)
Match++;
Else
Print(“No Matching”)
Else
{
Break case 1;
}
}

4. EXPERIMENTAL VALIDATION

We ran the experiments on an Intel®
corei5 2.50GHz processor, with 4GB real memory
running windows7 and Java 1.7.0_09. We havi
written a PL/SQL procedure to populate two table:

operation is compared. As shown in Fig 6 the
number of comparisons of the MRR join is 4%-5%
more than the hash and sort merge join but it is
promisingly better than the nested loop join. Even
though the comparison of the MRR join is more
than the hash join and the sort merge join theahte
the resultant tuples produced by the MRR join is
more during the initial join phases.

Figure 6 compares the performance of the
MRR join algorithm with the traditional join
algorithms. We see that the no. of comparisons of
MRR join algorithm is less when compared to the
nested loop join but it is 4%-6% more than the hash
join and sort merge join. But in Figure 7 and Fegur
8 we find that the rate of the resultant tuples
generated by the MRR join is 60% more than the
nested loop, hash and sort merge join. Figure 9
compares the time taken by the join algorithms to
produce the first tuple. This figure shows the pre-
work required by each algorithm before it could
produce the first resultant tuple. Hash join and so
merge join requires hashing and sorting of the join
attribute value before it can produce the resultant
tuples. Nested loop join does not require any pre-
work to produce the join results, but it cannot be
preferred in many situations as it requires more
comparisons. MRR join produces 60% more tuples
during the earlier stages of the join when compared
to the traditional join methods. It also produces
20% early join results when compared to sort
merge join and 60% early when compared to hash
join. We have just compared our join algorithm
only with traditional join algorithm as all the et
join algorithms are mostly based on sort and hash
based join algorithm.

80000
70000
60000
50000

40000
30000 Hash Join

~4==Nested Loop Join

~{—Sort Merge Join

No.ofcomparisons X 100

20000 === MRR Join

Project( Project_No, Project_Name, Location) with 10000 //

250 rows and Employee (EmpNo, ProjectNo) with 0 5 n n
1,00,000 rows respectively. Project No from 1 2 3
Project table is the primary key and the ProjectNs No.of Rows in the inner table X 10°

from the Employee table is the reference key:

Assuming this algorithm suits best when one-to-Figure 6 Performance of MRR Join Vs TraditionalnJoi
many relationship holds between the relations. The Algorithm

reference key column values are generated using
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140 bring to the memory for the join operation. The
g 120 algorithm result shows that it requires 4%-5% more

[y
(=]
o

comparison than the hash and sort-merge based join
algorithms but it is produces 60% more tuples in
the earlier stages of the join operation and tHayde
in producing the first tuples are 30-35% less in
compared to hash and sort merge join algorithms.
In MRR join algorithm the join operation is
terminated when the required matching tuples are
Join Phase found. This reduces the no.of comparisons required
to produce the join result, which in turn redudas t
Figure 7 Rate Of The Resultant Tuples Produced By time and I/O overhead.

MRR Join

Resultant Tuples X
N B O O
O O O o

o

1234567 8 91011121314151617
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