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ABSTRACT

This RC4 is the most popular stream cipher in the domain of cryptology. In this paper, we present a 
systematic study of the hardware implementation of RC4, and propose the fastest known architecture for the 
cipher. We combine the ideas of hardware pipeline and loop unrolling to design an architecture that produces 
two RC4 key stream bytes per clock cycle. We have optimized and implemented our proposed design using 
Verilog description, synthesized with 45nm technology. The proposed design has a total area of 138459um2 

and shows a power consumption of 382.0935mW.The proposed circuit has a higher operating frequency of 
1.387GHz compared to 1.22GHz which is 8.37% higher than the conventional RC4 circuit. The throughput 
of the proposed RC4 circuit is found to be 22.192Gbps. 
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1. INTRODUCTION 

Stream ciphers are broadly classified into two 
parts depending on the platform most suited to the 
implementation; namely software stream ciphers 
and hardware stream ciphers [1]. RC4 is one of the 
widely used stream ciphers that is mostly 
implemented in software. Though several other 
efficient and secure stream ciphers have been 
discovered after RC4, it is still the most popular 
stream cipher algorithm due to its simplicity, ease 
of implementation[2,3], and speed. The RC4 stream 
cipher was designed by Ron Rivest for RSA Data 
Security in 1987. In this paper we study several 
aspects of the hardware implementation of RC4, 
with respect to its efficient implementation, and 
present two new hardware designs which allow fast 
generation of RC4 key stream. 

 It uses S-box S, an array of length N, where 
each location of S stores one byte(typically, N = 
256). A secret key k of size l bytes isused to 
scramble this permutation (typically, 5 ≤ l ≤ 
16).Array K of length N holds the main key, with 
secret key k repeated as K[y] = k[y mod l], for 0 ≤ y 
≤ N − 1.RC4 has two components, namely the Key 
Scheduling Algorithm (KSA) and the Pseudo-
Random Generation Algorithm (PRGA). The KSA 
uses the key K to generate a pseudo-random 
permutation S of {0, 1, . . . , N −1} and PRGA uses 
this pseudo-random permutation to generate 

arbitrary number of pseudo-random key stream 
bytes [4].  

2. RC4 ALGORITHM 

RC4 Algorithm 

The algorithm uses a series data dependent rotations 
heavily to We consider the generation of two 
consecutive values of Z together, for the two 
consecutive plaintext bytes to be encrypted. 
Assume that the initial values of the variables i, j 
and S are i0, j0 and S0, respectively. After the first 
execution of the PRGA loop, these values will be 
i1, j1 and S1, respectively and the output byte is Z1 
[5]. Similarly, after the second execution of the 
PRGA loop, these will be i2, j2, S2 and Z2, 
respectively. Thus, for the first two loops of 
execution to complete, we have to perform the 
operations shown in Table 1. 
 

Table 1: First And Second Iterations Of Prga 
 

First Loop Second Loop 
i1 = i0 + 1 i2 = i1 + 1 = i0 + 2 
j1 = j0 + S0[i1] j2 = j1 + S1[i2] = j0 + 

S0[i1] + S1[i2 
Swap S0[i1] ↔ 

S0[j1] 
Swap S1[i2] ↔ S1[j2] 

Z1 = S1[S0[i1] + 
S0[j1]] 

Z2 = S2[S1[i2] + S1[j2]] 
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Fig.1 PRGA Circuit Structure For Proposed Architecture 
 

3. PROPOSED RC4 CIRCUIT 
 
3.1 Architecture of PRGA and KSA stage  

The schematic diagrams for PRGA and 
KSA circuits in the proposed design are shown 
in Fig.1 and Fig.2 respectively. The PRGA 
circuit operates as per the 2-stage pipeline 
structure, where the increments of indices take 
place in the first stage, and so does the double-
swap operation for the S-box. In the same 
stage, the addresses for the two consecutive 
output bytes Zn and Zn+1 are calculated as the 
swap does not change the outcomes of the 
additions S[in] + S[jn] or S[in+1] + S[jn+1]. In 
the second stage of the pipeline, the output 
addresses zn_addr and zn+1_addr are used to 
read the appropriate keystream bytes from the 
updated S-box [6].The circuit for KSA operates 
similarly, but has no pipeline feature as the 
operation happens in a single stage. Here, the 
increment of indices and swap are done for two 

consecutive rounds of KSA in a single clock 
cycle, thereby producing a speed of 2-rounds-
per-cycle [7]. Based on this schematic diagram 
for the circuits, and the port sharing logic, we 
now attempt the hardware implementation of 
our new design.Combining our KSA and 
PRGA architectures, we can obtain 2N output 
streambytes in 2N + 259 clock cycles, counting 
the initial delay of 1 cycle for KSA and 2 
cycles for PRGA[8]. The hardware 
implementation of RC4 described in [9] and 
[10] provides an output of N bytes in 3N +768 
clock cycles. A formal comparison of the 
timings is shown in Table 4. One can easily 
observe that for large N, the throughput of our 
RC4 architecture is 3 times compared to the 
existing design.
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Fig.2 Circuit For KSA Stage Of The Proposed RC4 Architecture 

 
 
 

 
 

4. IMPLEMENTATION 
 
We have implemented the proposed structure 
for RC4 stream cipher, using synthesizable 
VERILOG description. The S-register box and 
K-register box are implemented as array of 
master-slave flip-flops, and are synthesized as 
standard-cell memory architecture (register-
based implementation). The entire Verilog 
code consists of approximately 900 lines .A 
major area impact of the circuit originates from 
the large number of accesses to the S-box and 
the K-box from the KSA and PRGA circuit. 
Since the PRGA and KSA will not run in 
parallel, we shared the read and write ports of 
S-box and K-box between PRGA and KSA. 
From KSA, 1 read access to K-box, 2 read 
accesses to S-box and 2 write accesses to S-
box are needed. From PRGA, 6 read accesses 
to S-box and 4 write accesses to S-box are 
needed. The 2 read accesses correspond to 
simultaneous generation of two Z values at the 
last step of PRGA. The 4 read and write 
accesses correspond to the double swap 
operation. While sharing the mutually 
exclusive accesses, all the accesses from KSA 
can be merged amongst the PRGA accesses. 
Therefore, the total number of read ports to K-
box is 1, the total number of read ports to S-
box is 6 and the total number of write ports to 
S-box is 4.  

4.1 ISSUES WITH KSA: Note that the 
general KSA routine runs for 256 iterations to 
produce the initial permutation of the S-box. 
Moreover, the steps of KSA are quite similar 
to the steps of PRGA, apart from the 
following: 
• Calculation of j involves key K along with S 
and i. 
• Computing Z1, Z2 is neither required nor 
advised. 
We propose the use of our loop-unrolled 
PRGA architecture for the KSA as well, with 
some minor modifications, as follows: 
1) K-register bank: Introduce a new register 
bank for key K. It will contain l number of 8-
bit registers, where 8 ≤ l ≤ 15 in practice. 
2) K-register MUX: To read key values K[i1 
mod l] and K[i2 mod l] from the K-registers, 
we introduce two 16 to 1 multiplexer unit. The 
first l input lines of this MUX will be fed data 
from registers K[0] to K[l − 1], and the rest (16 
− l ) inputs can be left floating (recall that 8 ≤ l 
≤ 15). The control lines of these MUX units 
will be i1 mod l and i2 mod l respectively, and 
hence the floating inputs will never be 
selected. 
3) Modular Counters: To obtain modular 
indices i1 mod l and i2 mod l, we incorporate 
two modular counters (modulo l) for the 
indices. These are synchronous counters and 
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the one for i2 will have no clock input for the 
LSB position. 
4) Extra 2-input Parallel Adders: Two 2-input 
parallel adders are appended to Fig. 2 for 
adding K[i1 mod  and K[i2 mod l] to j1 and j2 
respectively 
5) No Outputs: Circuits of Fig. 1 and Fig. 2 
are removed from the overall structure, so that 
no output byte is generated during KSA. If any 

such byte is generated, the key K may be 
compromised. Using this modified hardware 
configuration, one can implement two rounds 
of KSA in 2 clock cycles that is “one round per 
clock”, after an initial lag of 1 cycle. Total 
time required for KSA is 256 + 1 = 257 clock 
cycles. 
 

                                                
Table 2: Area report 

 
 
 
 

 
                                             

                                                    
 

Table 3: Power Report 
 

Instance 
Number of 

cells 
Power(nW) 

Leakage 
power(nW) 

Total Power(nW) 

Proposed RC4 1171 243.147 3820691.969 3820935.115 

 
 
 

5. EXPERIMENTAL RESULTS AND 
ANALYSIS OF THE STRUCTURE 

 
The Verilog code for the proposed RC4 cipher 

having a throughput of 1 byte per cycle and 2 byte 
per cycle is written and is synthesized in Cadence 
45nm technology and the functional simulation is 
checked using SIMVISION. Timing analysis was 
performed for the above proposed designs .Power, 
area is found out using RTL compiler using 45 nm 
design technology and it is being tabulated in table 
2 and 3. Back end process for the above proposed 
design was performed using cadence 
ENCOUNTER. The synthesis results provide us the 
best throughput for these three designs, obtained by 
using strict clock period constraints during the 
implementation 
We have optimized and implemented our proposed 
design using Verilog description, synthesized with 
45nm technology. The proposed design has a total 
area of 138459um2 and shows a power 
consumption of 382.0935mW. The proposed 
circuit has a higher operating frequency of 
1.387GHz compared to 1.22GHz which is 8.37% 

higher than the conventional RC4 circuit. The 
throughput of the proposed RC4 circuit is found to 
be 22.192Gbps. 
 
Efficiency of PRGA  
The hardware proposed for the PRGA stage of 
RC4 in proposed design as shown in Fig. 1, 
produces “one byte per clock” after an initial delay 
of two clock cycles. Let us call the stage of the 
PRGA circuit the nth stage. This actually denotes 
the nth iteration of our model, which produces the 
output bytes Zn+1 and Zn+2. The first block in fig 
.2 operates at the trailing edge of φn, and 
increments in to in+1, in+2.  
 
During cycle φn+1, the combinational part of 
Circuit operates to produce jn+1, jn+2. The trailing 
edge of φn+1 releases the latches of type L1, and 
activates the swap circuit. The combinational logic 
of the swap circuit functions during cycle φn+2 and 
the actual swap operation takes place at the trailing 
edge of φn+2 to produce Sn+2 from Sn. The 
combinational logic of these two circuits operate 
during φn+3, and we get the outputs Zn+1 and 
Zn+2 at the trailing edge of φn+3. This complete 
block of architecture performs in a cascaded 
pipeline fashion, as the indices i2, j2 and the state 

Instance 
Number of 

cells 
Cell Area Net Area 

Proposed RC4 1171 138352 107 
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Sn+2 are fed back into the system at the end of  
φn+2 (actually, in+2 is fed back at the end of φn+1 
to allow for the increments at the trailing edge of 
φn+2). The operational gap between two iterations 
(e.g., nth and(n+2)th) of the system is thus two 
clock cycles (e.g., φn to φn+2), and we obtain two 
output bytes per iteration. Hence, the PRGA 
architecture produces 2N bytes of output stream in 
N iterations, over 2N clock cycles. Note that the 
initial clock pulse φ0 is an extra one, and the 
production of the output bytes lag the feedback 

cycle by one clock pulse in every iteration (e.g., 
φn+3 in case of nth iteration).Therefore, our model 
practically produces 2N output bytes in 2N clock 
cycles, that is “one byte per clock”, after an initial 
lag of two clock cycles. The performance 
comparison is made in Table.4 and the complete 
chip layout obtained after backend at Cadence 
Encounter is displayed in Fig.3   
 

 

  
Table 4: Performance Analysis 

  
Technology 

(nm) 
Design 

Max clock 
frequency(GHz) 

KSA 
(Cycles) 

PRGA 
(bytes/cycle 

THROUHPUT 
(Gbps) 

45 Conventional RC4 cipher 1.22 256 1 9.76 
45 Design 1 1.37 256 2 21.92 
45 Proposed RC4 design 1.387 256 2 22.192 

 
 

      
                                                       

Fig. 3 Performance comparison of RC4 design with complete chip layout. 
 

6. CONCLUSION 

In this paper, we present a systematic study of the 
hardware implementation of RC4, and propose the 
fastest known architecture for the cipher. We 
combine the ideas of hardware pipeline and loop 
unrolling to design an architecture that produces 
two RC4 key stream bytes per clock cycle. We 
have optimized and implemented our proposed 
design using Verilog description, synthesized with 
45nm technology. The proposed design has a total 
area of 138459um2 and shows a power 
consumption of 382.0935mW. The proposed 
circuit has a higher operating frequency of 
1.387GHz compared to 1.22GHz which is 8.37% 
higher than the conventional RC4 circuit. The 
throughput of the proposed RC4 circuit is found to 
be 22.192Gbps. 
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