
Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

138

HIGH THROUGHPUT HARDWARE IMPLEMENTATION FOR
RC4 STREAM CIPHER

1 M.RAMKUMAR RAJA, 2 DR. K. THANUSHKODI, 3 S.ARUL JOTHI

1Assistant Professor, Department of ECE, CIET, Tamilnadu, India

2 Director, Akshaya College of Engineering & Technology, Tamilnadu, India
3Assistant Professor, Department of ECE, SREC, Tamilnadu, India

E-mail: 1ramkumarrajavlsi@gmail.com , 2 thanush12@gmail.com , 3arulbe2005@gmail.com

ABSTRACT

This RC4 is the most popular stream cipher in the domain of cryptology. In this paper, we present a
systematic study of the hardware implementation of RC4, and propose the fastest known architecture for the
cipher. We combine the ideas of hardware pipeline and loop unrolling to design an architecture that produces
two RC4 key stream bytes per clock cycle. We have optimized and implemented our proposed design using
Verilog description, synthesized with 45nm technology. The proposed design has a total area of 138459um2

and shows a power consumption of 382.0935mW.The proposed circuit has a higher operating frequency of
1.387GHz compared to 1.22GHz which is 8.37% higher than the conventional RC4 circuit. The throughput
of the proposed RC4 circuit is found to be 22.192Gbps.

Keywords: High Throughput, Cipher, Rc4 Stream, 45nm, 1.387GHZ

1. INTRODUCTION

Stream ciphers are broadly classified into two
parts depending on the platform most suited to the
implementation; namely software stream ciphers
and hardware stream ciphers [1]. RC4 is one of the
widely used stream ciphers that is mostly
implemented in software. Though several other
efficient and secure stream ciphers have been
discovered after RC4, it is still the most popular
stream cipher algorithm due to its simplicity, ease
of implementation[2,3], and speed. The RC4 stream
cipher was designed by Ron Rivest for RSA Data
Security in 1987. In this paper we study several
aspects of the hardware implementation of RC4,
with respect to its efficient implementation, and
present two new hardware designs which allow fast
generation of RC4 key stream.

 It uses S-box S, an array of length N, where
each location of S stores one byte(typically, N =
256). A secret key k of size l bytes isused to
scramble this permutation (typically, 5 ≤ l ≤
16).Array K of length N holds the main key, with
secret key k repeated as K[y] = k[y mod l], for 0 ≤ y
≤ N − 1.RC4 has two components, namely the Key
Scheduling Algorithm (KSA) and the Pseudo-
Random Generation Algorithm (PRGA). The KSA
uses the key K to generate a pseudo-random
permutation S of {0, 1, . . . , N −1} and PRGA uses
this pseudo-random permutation to generate

arbitrary number of pseudo-random key stream
bytes [4].

2. RC4 ALGORITHM

RC4 Algorithm

The algorithm uses a series data dependent rotations
heavily to We consider the generation of two
consecutive values of Z together, for the two
consecutive plaintext bytes to be encrypted.
Assume that the initial values of the variables i, j
and S are i0, j0 and S0, respectively. After the first
execution of the PRGA loop, these values will be
i1, j1 and S1, respectively and the output byte is Z1
[5]. Similarly, after the second execution of the
PRGA loop, these will be i2, j2, S2 and Z2,
respectively. Thus, for the first two loops of
execution to complete, we have to perform the
operations shown in Table 1.

Table 1: First And Second Iterations Of Prga

First Loop Second Loop
i1 = i0 + 1 i2 = i1 + 1 = i0 + 2
j1 = j0 + S0[i1] j2 = j1 + S1[i2] = j0 +

S0[i1] + S1[i2
Swap S0[i1] ↔

S0[j1]
Swap S1[i2] ↔ S1[j2]

Z1 = S1[S0[i1] +
S0[j1]]

Z2 = S2[S1[i2] + S1[j2]]

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

139

Fig.1 PRGA Circuit Structure For Proposed Architecture

3. PROPOSED RC4 CIRCUIT

3.1 Architecture of PRGA and KSA stage

The schematic diagrams for PRGA and
KSA circuits in the proposed design are shown
in Fig.1 and Fig.2 respectively. The PRGA
circuit operates as per the 2-stage pipeline
structure, where the increments of indices take
place in the first stage, and so does the double-
swap operation for the S-box. In the same
stage, the addresses for the two consecutive
output bytes Zn and Zn+1 are calculated as the
swap does not change the outcomes of the
additions S[in] + S[jn] or S[in+1] + S[jn+1]. In
the second stage of the pipeline, the output
addresses zn_addr and zn+1_addr are used to
read the appropriate keystream bytes from the
updated S-box [6].The circuit for KSA operates
similarly, but has no pipeline feature as the
operation happens in a single stage. Here, the
increment of indices and swap are done for two

consecutive rounds of KSA in a single clock
cycle, thereby producing a speed of 2-rounds-
per-cycle [7]. Based on this schematic diagram
for the circuits, and the port sharing logic, we
now attempt the hardware implementation of
our new design.Combining our KSA and
PRGA architectures, we can obtain 2N output
streambytes in 2N + 259 clock cycles, counting
the initial delay of 1 cycle for KSA and 2
cycles for PRGA[8]. The hardware
implementation of RC4 described in [9] and
[10] provides an output of N bytes in 3N +768
clock cycles. A formal comparison of the
timings is shown in Table 4. One can easily
observe that for large N, the throughput of our
RC4 architecture is 3 times compared to the
existing design.

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

140

Fig.2 Circuit For KSA Stage Of The Proposed RC4 Architecture

4. IMPLEMENTATION

We have implemented the proposed structure
for RC4 stream cipher, using synthesizable
VERILOG description. The S-register box and
K-register box are implemented as array of
master-slave flip-flops, and are synthesized as
standard-cell memory architecture (register-
based implementation). The entire Verilog
code consists of approximately 900 lines .A
major area impact of the circuit originates from
the large number of accesses to the S-box and
the K-box from the KSA and PRGA circuit.
Since the PRGA and KSA will not run in
parallel, we shared the read and write ports of
S-box and K-box between PRGA and KSA.
From KSA, 1 read access to K-box, 2 read
accesses to S-box and 2 write accesses to S-
box are needed. From PRGA, 6 read accesses
to S-box and 4 write accesses to S-box are
needed. The 2 read accesses correspond to
simultaneous generation of two Z values at the
last step of PRGA. The 4 read and write
accesses correspond to the double swap
operation. While sharing the mutually
exclusive accesses, all the accesses from KSA
can be merged amongst the PRGA accesses.
Therefore, the total number of read ports to K-
box is 1, the total number of read ports to S-
box is 6 and the total number of write ports to
S-box is 4.

4.1 ISSUES WITH KSA: Note that the
general KSA routine runs for 256 iterations to
produce the initial permutation of the S-box.
Moreover, the steps of KSA are quite similar
to the steps of PRGA, apart from the
following:
• Calculation of j involves key K along with S
and i.
• Computing Z1, Z2 is neither required nor
advised.
We propose the use of our loop-unrolled
PRGA architecture for the KSA as well, with
some minor modifications, as follows:
1) K-register bank: Introduce a new register
bank for key K. It will contain l number of 8-
bit registers, where 8 ≤ l ≤ 15 in practice.
2) K-register MUX: To read key values K[i1
mod l] and K[i2 mod l] from the K-registers,
we introduce two 16 to 1 multiplexer unit. The
first l input lines of this MUX will be fed data
from registers K[0] to K[l − 1], and the rest (16
− l) inputs can be left floating (recall that 8 ≤ l
≤ 15). The control lines of these MUX units
will be i1 mod l and i2 mod l respectively, and
hence the floating inputs will never be
selected.
3) Modular Counters: To obtain modular
indices i1 mod l and i2 mod l, we incorporate
two modular counters (modulo l) for the
indices. These are synchronous counters and

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

141

the one for i2 will have no clock input for the
LSB position.
4) Extra 2-input Parallel Adders: Two 2-input
parallel adders are appended to Fig. 2 for
adding K[i1 mod and K[i2 mod l] to j1 and j2
respectively
5) No Outputs: Circuits of Fig. 1 and Fig. 2
are removed from the overall structure, so that
no output byte is generated during KSA. If any

such byte is generated, the key K may be
compromised. Using this modified hardware
configuration, one can implement two rounds
of KSA in 2 clock cycles that is “one round per
clock”, after an initial lag of 1 cycle. Total
time required for KSA is 256 + 1 = 257 clock
cycles.

Table 2: Area report

Table 3: Power Report

Instance
Number of

cells
Power(nW)

Leakage
power(nW)

Total Power(nW)

Proposed RC4 1171 243.147 3820691.969 3820935.115

5. EXPERIMENTAL RESULTS AND
ANALYSIS OF THE STRUCTURE

The Verilog code for the proposed RC4 cipher

having a throughput of 1 byte per cycle and 2 byte
per cycle is written and is synthesized in Cadence
45nm technology and the functional simulation is
checked using SIMVISION. Timing analysis was
performed for the above proposed designs .Power,
area is found out using RTL compiler using 45 nm
design technology and it is being tabulated in table
2 and 3. Back end process for the above proposed
design was performed using cadence
ENCOUNTER. The synthesis results provide us the
best throughput for these three designs, obtained by
using strict clock period constraints during the
implementation
We have optimized and implemented our proposed
design using Verilog description, synthesized with
45nm technology. The proposed design has a total
area of 138459um2 and shows a power
consumption of 382.0935mW. The proposed
circuit has a higher operating frequency of
1.387GHz compared to 1.22GHz which is 8.37%

higher than the conventional RC4 circuit. The
throughput of the proposed RC4 circuit is found to
be 22.192Gbps.

Efficiency of PRGA
The hardware proposed for the PRGA stage of
RC4 in proposed design as shown in Fig. 1,
produces “one byte per clock” after an initial delay
of two clock cycles. Let us call the stage of the
PRGA circuit the nth stage. This actually denotes
the nth iteration of our model, which produces the
output bytes Zn+1 and Zn+2. The first block in fig
.2 operates at the trailing edge of φn, and
increments in to in+1, in+2.

During cycle φn+1, the combinational part of
Circuit operates to produce jn+1, jn+2. The trailing
edge of φn+1 releases the latches of type L1, and
activates the swap circuit. The combinational logic
of the swap circuit functions during cycle φn+2 and
the actual swap operation takes place at the trailing
edge of φn+2 to produce Sn+2 from Sn. The
combinational logic of these two circuits operate
during φn+3, and we get the outputs Zn+1 and
Zn+2 at the trailing edge of φn+3. This complete
block of architecture performs in a cascaded
pipeline fashion, as the indices i2, j2 and the state

Instance
Number of

cells
Cell Area Net Area

Proposed RC4 1171 138352 107

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

142

Sn+2 are fed back into the system at the end of
φn+2 (actually, in+2 is fed back at the end of φn+1
to allow for the increments at the trailing edge of
φn+2). The operational gap between two iterations
(e.g., nth and(n+2)th) of the system is thus two
clock cycles (e.g., φn to φn+2), and we obtain two
output bytes per iteration. Hence, the PRGA
architecture produces 2N bytes of output stream in
N iterations, over 2N clock cycles. Note that the
initial clock pulse φ0 is an extra one, and the
production of the output bytes lag the feedback

cycle by one clock pulse in every iteration (e.g.,
φn+3 in case of nth iteration).Therefore, our model
practically produces 2N output bytes in 2N clock
cycles, that is “one byte per clock”, after an initial
lag of two clock cycles. The performance
comparison is made in Table.4 and the complete
chip layout obtained after backend at Cadence
Encounter is displayed in Fig.3

Table 4: Performance Analysis

Technology

(nm)
Design

Max clock
frequency(GHz)

KSA
(Cycles)

PRGA
(bytes/cycle

THROUHPUT
(Gbps)

45 Conventional RC4 cipher 1.22 256 1 9.76
45 Design 1 1.37 256 2 21.92
45 Proposed RC4 design 1.387 256 2 22.192

Fig. 3 Performance comparison of RC4 design with complete chip layout.

6. CONCLUSION

In this paper, we present a systematic study of the
hardware implementation of RC4, and propose the
fastest known architecture for the cipher. We
combine the ideas of hardware pipeline and loop
unrolling to design an architecture that produces
two RC4 key stream bytes per clock cycle. We
have optimized and implemented our proposed
design using Verilog description, synthesized with
45nm technology. The proposed design has a total
area of 138459um2 and shows a power
consumption of 382.0935mW. The proposed
circuit has a higher operating frequency of
1.387GHz compared to 1.22GHz which is 8.37%
higher than the conventional RC4 circuit. The
throughput of the proposed RC4 circuit is found to
be 22.192Gbps.

REFERENCES

[1] Software performance results from the e

STREAM Project. E STREAM, the ECRYPT
Stream Cipher Project.Available at
http://www.ecrypt.eu.org/stream/perf/
#results.

[2] The current e STREAM Portfolio. eSTREAM,
the ECRYPT StreamCipher
Project.(http://www.ecrypt.eu.org/stream/inde
x.html)

[3] S. R. Fluhrer and D. A McGrew. Statistical
Analysis of the Alleged RC4 Keystream
Generator. FSE 2000, LNCS, Springer-
Verlag, Vol.,1978, pp. 19–30, 2000.

[4] S. R. Fluhrer, I. Mantin and A. Shamir.
Weaknesses in the Key Scheduling

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

143

Algorithm of RC4. Selected Areas in
Cryptography 2001, LNCS, Springer-Verlag,
Vol. 2259, pp. 1–24, 2001.

[5] M. D. Galanis, P. Kitsos, G. Kostopoulos, N.
Sklavos and C. E. Goutis. Comparison of the
Hardware Implementation of Stream
Ciphers. Int. Arab J. Inf. Tech., Vol. 2, No. 4,
pp. 267–274,2005.

[6] J. Golic. Linear statistical weakness of alleged
RC4 keystream generator. EUROCRYPT
1997, LNCS, Springer-Verlag, Vol. 1233, pp.
226–238, 1997.

[7] T. Good and M. Benaissa. Hardware Results
for Selected Stream Cipher Candidates.
eSTREAM, ECRYPT Stream Cipher
Project,SASC, Report 2007/023, 2007.

[8] F. K. Gurkaynak, P. Luethi, N. Bernold, R.
Blattmann, V. Goode,M. Marghitola, H.
Kaeslin, N. Felber and W. Fichtner. Hardware
Evaluation of eSTREAM Candidates:
Achterbahn, Grain, MICKEY, MOSQUITO,
SFINKS, Trivium, VEST, ZK-Crypt.
eSTREAM, ECRYPT Stream Cipher Project,
Report 2006/015, 2006.

[9] P. Hamalainen, M. Hannikainen, T.
Hamalainen and J. Saarinen. Hardware
implementation of the improved WEP and
RC4 encryptionalgorithms for wireless
terminals. In Proc. of Eur. Signal Processing
Conf., pp. 2289–2292, 2000.

[10] P. Kitsos, G. Kostopoulos, N. Sklavos and O.
Koufopavlou. Hardware Implementation of
the RC4 stream Cipher. In Proc. of 46th IEEE
Midwest Symposium on Circuits & Systems
’03, Cairo, Egypt, 2003.

