
Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

119

A SYSTEMATIC LITERATURE REVIEW OF END-USER
PROGRAMMING FOR THE WEB MASHUP

RODZIAH LATIH1, AHMED PATEL2, ABDULLAH MOHD. ZIN3
Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
E-mail: 1rodziah@ftsm.ukm.my, 2amp@ftsm.ukm.my, 3amz@ftsm.ukm.my

ABSTRACT

End-user Programming for the web is currently of interest because Web 2.0 technologies have resulted in a
vast array of tools available for mashup making. This paper presents a Systematic Literature Review of
EUP for web mashups. Its objective is to outline a comprehensive review and synthesis of the literature
related to EUP for web mashups. A Systematic Literature Review was performed of peer reviewed
published studies that focused on research in EUP for Web mashups. A review was conducted on 21
relevant articles, mostly recent (published between January 1st 2000 and December 31st 2012) and
published in English. Five EUP approaches for web mashups were identified from the studies; browsing,
programming by demonstration or example, spreadsheet, widget, data-flow and block-based approach.
Other researches regarding EUP for web mashups were also identified, such as ubiquitous platform
mashups, users’ support functions, data extraction techniques, and process-oriented mashups.

Keywords: SLR, End User Programming, Web 2.0, Web Meshup

1. INTRODUCTION

The term ‘End-user Programming’ (EUP)

was established by [1] referring to some of the
programming tasks i.e. modifying or extending
the software applications that were given to end-
users. This group of users is called ‘end-user
programmers’. End-user programmers are
experts in their domains and have taught
themselves to program [2]. They can be
mechanical engineers, doctors, physicists,
teachers, accountants etc., but they write
computer programmes in order to help
themselves in their primary jobs. They may be
experienced computer users, but they are not
experienced in conventional programming
languages such as C, C++, Java, etc. Other terms
used referring to end-users are power users and
casual users. Power users are a group of users
who have no programming skills but have
detailed functional knowledge about a specific
tool or a set of tools. On the other hand, casual
users are a group of users who only have the
skills to use the functionality of the web browser
and are able to navigate through the web [3].

Spreadsheet applications are the most

popular end-user system environment [4] and as
predicted by [5], about 60% of 90 million
American end-users will utilize spreadsheet and

database applications in the year 2012. This
prediction shows the growing number of end-
user programmers as well.

The emergence of Web 2.0 has changed the

way software developers and end-users use the
web [6]. The term Web 2.0 is commonly
associated with web applications that facilitate
interactive information sharing, interoperability,
user-centred designs, and collaborations on the
World Wide Web (WWW). People can share
their thoughts, interests, photos, video clips, and
others through social network applications like
Facebook, MySpace, Flickr, Instagram, and
Twitter. They publish their views in blogs and
get instant responses and feedback from the e-
communities. The deployment of Web 2.0
technologies resulted in the exponential growth
of the number of end-user programmers
compared to the number of software
professionals because most web users are end-
users. Web 2.0 technologies also support web
customization and integration and this has led to
the development of web mashup applications.
The emergence of Web 3.0 technologies later on
will definitely also support these necessities
through semantic web, data mining, micro
formats etc.

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

120

Web mashup applications are an interesting
genre of interactive web applications that has
become common recently. Web mashup
applications are applications that integrate
various data, presentations, and functionalities
from two or more sources through Application
Program Interfaces (APIs). Web mashup
applications were developed by professional
programmers because it involved multifaceted
programming skills, thus requiring high
programming skills. Therefore, to assist end-
users in developing mashup applications,
mashup tools can be used. Most mashup tools
employ EUP techniques like scripting, data-
flows, widgets, spreadsheets and Programming
by Demonstration (PBE) to guide end-users in
developing web mashup applications [3].

A Systematic Literature Review (SLR) was

conducted to outline a comprehensive review
and synthesis of the literature related to EUP for
web mashups. The SLR is a systematic review of
all available research results which aims to
aggregate all existing evidence on research
questions, leading to potential issues in
identifying research gaps and contributions. It is
believed that the results from this study can be
used to improve both the mashup tools and the
EUP techniques.

2. REVIEW METHOD

The review protocol for this SLR was

developed by following the guidelines as
proposed by [7]. The steps in this protocol are
shown in Table 1.

Table 1: Phases and detailed SLR process steps.

Phase Detailed steps
Planning • Identify the need for SLR

• Formulate review research
questions.

Conducting • Carry out a comprehensive search
for primary studies.

• Assess and record the criteria of
included studies.

• Classify data needed to answer the
research questions.

• Extract data from each included
study.

• Summarize and synthesise study
results.

• Interpret results to determine their
applicability.

Documenting • Write up study as a report.

This method includes three main phases;

planning, conducting and documenting. In the
planning phase, the need for conducting this
review is identified and the Research Questions
(RQ) that assist in the aim of this work are
formulated based on the reasons that initiated
this review. During this phase, the databases that
will be used in the search for the articles, the
main keywords, and the final search string for
similar studies are identified.

The second phase is conducting the SLR

process. The articles are searched for based on
the search keywords and then scanned based on
the inclusion and exclusion criteria. Then the
articles are classified to answer the research
questions (RQ). A data extraction form is used to
record the data (Table 2). The third phase is
documenting the process and findings.

Table 2: The data extracted from each study.

• The source and full references
• Classification of the study (research report or

empirical study)
• Main topic area
• Summary of the study

The review protocol of this SLR has been

checked and evaluated by a few researchers with
good experience in conducting literature reviews.
Moreover, parts of this protocol have been
previously used and established by several
researchers in SLR [8] [9] [10].

2.1. Research questions

The SLR was conducted to obtain an
overview of the research reported in the field of
EUP for web mashups. In this review, the
following research questions were addressed:

RQ 1: What studies are being addressed in the

field of mashup tools development?
RQ 2: Which EUP technique has been

commonly used?
RQ 3: Is there evidence that mashup tools are

difficult to use by end-users?

2.2. Data source and search strategy

The strategy for collecting the relevant

literature in this review is using a keyword
search in a list of electronic databases of specific

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

121

conference proceedings and journals papers. The
data sources for this review are:
• ACM Digital Library (dl.acm.org)
• ScienceDirect – Elsevier

(www.sciencedirect.com)
• IEEE Xplore (ieexplore.org)
• Directory of Open Access Journals

(www.doaj.org)
• ISI Web of Science

(www.isiknowledge.com)
• Springer LNCS (www.springer.com/lncs)
• Google Scholar (scholar.google.com.my/)

2.3. Keywords for Searching

Publications on web mashup tools
development from the specific journals and
conference proceedings were identified by
searching through a variety of digital libraries.
Only papers published in English between Jan 1st
2000 and December 31st 2012 were considered.
To avoid overlooking relevant publications, all
searches were carried out using two main search
terms; “mashup” and “end-user programming.”
There are different spellings for the word
“mashup” like “mash up” (without a hyphen)
and “mash-up” (with a hyphen). These variants
were also included in the search process. The
term “end-user programming” is a common term
referring to the programming techniques used by
end-users. Therefore, the three words were used
as one search keyword. The searches were
conducted from April 2013 until May 2013. The
bibliography for all the publications is stored in
EndNote.

2.4. Inclusion and Exclusion Criteria

The selected papers collected should commit
to a set of inclusion criteria as follows:
• The papers should be written in English.
• The papers should be published between

January 1st 2000 and December 31st 2012.
• The papers should address web mashup

development as an area of research.
Therefore, the keywords “mashup” and
“end-user programming” should exist either
in the title, abstract or in a list of keywords.

• Only proceedings and journals were
considered.

Accordingly, web pages, transactions, news,

interviews, blogs, workshops, forums, reviews,
discussions, posters, letters, tutorial or overhead
presentations, opinion pieces, viewpoints,

comments or purely anecdotal, technical reports,
thesis, books or book chapters were not
considered.

3. COLLECTING PROCESS

The SLR process is carried out in four steps

(Table 3). The summary of the four steps of the
review process and the number of articles
identified at each step are shown in Figure 1.

Table 3: Four steps in SLR process.

Step Tasks
1 Collecting all the articles.

All articles from the identified digital libraries
were searched using the keywords. Only articles
published in the English language were
downloaded. However, some articles could not be
retrieved and these were considered as rejected.

2 Applying inclusion and exclusion criteria.
The downloaded articles were then screened and
articles that were not in the form of proceedings
or journals were rejected.

3 Verifying included articles.
The articles selected from the previous steps were
skimmed and those that were not related to the
topic of web mashup were rejected. A check was
also done for repeated studies to ensure there are
no duplications; for example if the same study is
published in two different journals with different
first authors, only one study would be included,
usually the most comprehensive study or the most
recent study.

4 Extracting the data.
Lastly, the data from the selected articles were
extracted and the name of the mashup tool and the
EUP technique used were identified.

Figure 1: Literature Review Processes

Total references listed, n = 204

Total references retrieved, n = 185

Total abstract screened, n = 175

Total full text extracted, n = 21

Step 2

Step 3

Step 4

Step 1

Exclusion and inclusion
criteria. Rejected r =10

Not related.
Rejected, r = 154

Not in English, Cannot be
accessed. Rejected, r = 19

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

122

In step 1, 204 articles were found based on

the search keywords. Three articles that were
published in a non-English language and another
16 that could not be retrieved were rejected. In
step 2, articles that were in the form of
proceedings or journals were verified and articles
that were in the form of book chapters, thesis,
web pages, news, interviews, blogs, workshops,
forums, reviews, discussions, posters, letters,
tutorials or overhead presentations, opinion
pieces, viewpoints, comments and purely
anecdotal were excluded. 10 papers were
rejected and only 175 papers were considered for
the next stage.

In step 3, the output from the previous stage

was skimmed and the abstracts of the articles
were scanned. Research articles on EUP for web
mashups were included and those that were not
related to the topic or did not clearly explain the
EUP techniques used were rejected. A check for
repeated studies was also done to ensure there
were no duplications; for example if the same
study is published in two different journals with
different first authors, only one study would be
included, usually the most comprehensive study
or the most recent study. As a result, only 21
articles regarding the research topics were
identified and 154 articles that were not relevant
to the study were rejected. Lastly in step 4, the
data to identify the category for the articles, the
main research focus, and the EUP paradigm used
were extracted.

4. ANALYSIS

The total of the full texts extracted in this

work was 21 articles only (Appendix A). Even
though a criteria was set that searched articles
must be published between January 1st 2000 and
December 31st 2012, the earliest published
articles retrieved was from the year 2007, the
articles by (5) [11] and (17) [12]. The
distribution of the articles according to the
published year is as in Table 4.

Table 4: Distribution of retrieved articles.

Year Articles Number of

articles
2007 (5,17) 2
2008 (2,3,13) 2
2009 (1,6,8,16) 4
2010 (9,12,14,15,20,21) 6
2011 (4,7,11,18,19) 5

2012 (10) 1

This section is organized according to the

research questions. The articles are classified as
in Table 5.

Table 5: The articles grouped according to the results.

Group Subgroup Articles
Research
article

Browsing
PBD
Spreadsheet
Widget
Data-flow
Ubiquitous platform
Support func.
Extraction
Process-oriented
Block-based

(2, 17)
(1)
(8, 14)
(3, 7)
(5, 6)
(4, 9)
(10)
(13)
(18)
(19)

Survey
article

 (11, 12, 15, 16,
20, 21)

4.1. Studies being addressed in the field of

mashup tools development (RQ1)

The accessed articles were grouped into two
groups; research and survey articles. However,
only 10 out of 15 research articles discussed
EUP approaches in making mashups. Those EUP
approaches are browsing, programming-by-
demonstration (PBD), spreadsheet, widget, data-
flow, and block-based approach. Articles that did
not discuss any of the EUP approaches were
grouped according to the article’s main focus
such as ubiquitous platform mashups, users’
support functions, data extraction techniques,
and process-oriented mashups.

The EUP approaches will be discussed in

the following section on the next research
question, RQ2. One of the retrieved articles
discussed ubiquitous platform mashups. An
ubiquitous platform mashup is a mashup that is
developed on an ubiquitous platform like a
mobile (4) [13] or a smart device (9) [14]. [13]
described their work on mobile multimedia
mashups as an ecosystem. The proposed
ecosystem architecture consists of three domains;
home domain, mobile domain and cloud domain.
Likewise, another article [14] discussed an
intermediate web based architecture in the
context of a smart device. The proposed

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

123

architecture is called User Language Domain
which uses a domain-specific embedded
language approach.

In article (10) which is categorized in the

users’ support functions category, [15] proposed
an approach called the “idea garden” which helps
users to help themselves when composing data.
The data extraction technique category also has
an article (13) by [16] in which they proposed a
method to integrate general web applications.
This method considers both websites that
provide public APIs (Application Programming
Interfaces) and websites that do not. This is
because current mashups are created by
integrating only websites that provide public
APIs like Google Maps, You Tube, and Amazon,
while most existing websites do not provide this
service. The last category is the process-oriented
enterprise mashup. The example article (18) is
by [17] which proposed the design of the
process-oriented enterprise mashup. They
argued that enterprise mashups can be formed in
two ways; data-oriented and process-oriented.

4.2. EUP techniques in mashup tools (RQ2)

The EUP techniques used in mashup tools
that were found in the review are browsing,
programming-by-demonstration (PBD),
spreadsheet, widget, data-flow, and block-based
approach (Table 5).

The browsing paradigm was discussed in

two articles; (2) [18] and (17) [12]. In the article
[18], the researchers discussed the facet
browsing approach used in their mashup tool
called Potluck. The facet browsing approach
allows the user to explore and identify subsets of
data of interest or subsets of data that need
alignment and clean up. The article by [12] on
the other hand describes the browsing paradigm
as an extension of normal browsing habits,
where users work directly on the data found on
the web and create the mashup immediately
while browsing. Their mashup tool is called the
MashMaker.

Programming by Demonstration (PBD) as

discussed by (1) [19] is a technique to
automatically populate spreadsheet-like tables
with information collected from various
websites. Using this technique, the user
demonstrates a series of actions on how to fill
the columns. These actions are recorded into

scripts, which can be re-executed immediately on
other rows in the table.

The spreadsheet paradigm is inspired by a

spreadsheet-like programming pattern which
works on the columns and the rows of a table.
The article by (8) [20] introduced the Mashroom,
a mashup development environment that uses the
spreadsheet paradigm with an expressive data
structure and a set of formally-defined mashup
operators. They proposed nested tables as data
models for the extracted data services. The
advantage is that this nested table is simple and
allows access to the underlying data sources
intuitively. In their article (14) [21] also
proposed the use of the spreadsheet paradigm in
making mashups. However, they introduced a
two-level programming model that combined
spreadsheet-like visual programming and data
flow chart programming to record the order of
operations and data dependencies during the
mashing process.

The widget paradigm was implemented in

two articles; (3) [22] and (7) [23]. The article by
[22] discussed the composition of widgets to
make mashups in a situational mashup system. A
widget is a small application with limited
functionalities that is executed on the user’s
website. The widget paradigm works either
through a pure program or by calling on other
web services. In their article,[23] introduced
fladget or a Flash widget which refers to RIA
(Rich Internet Applications) oriented Wiki add-
ons.

Another EUP paradigm that was found in

this review is the data-flow paradigm. Two
articles on data-flow paradigm were found which
were articles by (5) [11] and (6) [24]. The article
by [11] discussed the data-flow paradigm, the
idea of which they adopted from the UNIX pipe.
Web services are represented by blocks called
operators. The operators need to be connected to
each other and the data will flow from one block
to another block. Therefore each block should
have an input and an output. However, the
article by [24] proposed a combination of data-
flow paradigm and scripting paradigm in making
mashups. The selected components or widgets
are wired together and the user can write a
simple script for customizing. The last approach
found is the block-based development approach
that was introduced by (19)[25]. The block-based
development approach is a combination of end-

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

124

user programming techniques with component-
based software development. The block-based
development approach allows users to develop
an application by integrating several blocks.
These blocks are pre-developed blocks that
support certain tasks or functions.

4.3. Empirical studies on mashup tools

(RQ3)

Six survey articles were found that matched
the search keywords; (11) [26], (12) [27], (15)
[28], (16) [29], (20) [30], and (21) [31]. The
article by (11) [26] presented a qualitative
empirical result of the end-user mashup
programming study from the perspective of the
end-user programmers’ problem-solving
processes. Programming is difficult for end-
users. Besides, problem solving, creativity, and
design thinking are also barriers for end-users in
the programming environment. To overcome
these problems, they proposed that end-users
initiate and refine their own ideas. The result
from their empirical study shows that end-users
need help and support to become confident along
the process. The article by (12) [27] on the other
hand presented results from a survey conducted
to explore the factors that motivate end-users to
learn about and explore remix tools. The finding
suggests that end-users are much more socially
motivated. Therefore, there is a need to look
towards social solutions when building tools to
support them.

The article by (15) [28] is the only article

retrieved that reports a review on mashup tools.
This article presented review results of ten
mashup tools; Yahoo Pipes, iGoogle, Apatar,
IBM Lotus Mashups, Intel MashMaker,
Marmite, Vegemite and Dapper. In their review,
they found that some mashup tools are not really
simple enough to handle and require the end-
users to have a computer programming
background to learn and understand its platform
infrastructures and mechanisms. The article by
(16) [29] presented a review of mashup literature
to classify the subtopics in mashup researches.
They found five common themes across multiple
research studies; mashup aggregate content from
disparate sources, integration as a technical
challenge when developing mashups,
information overload, ability of end-users to
create custom mashup applications and finally a
set of issues like security, availability and
quality. In their article (20) [30] presented their

think-aloud study with ten end-users creating a
web mashup. The objective was to explore their
design of a theory-based approach in order to
understand and investigate programming by the
end-user. The results showed opportunities for
the environment to support end-users
programming as a design activity.

The last article retrieved in the survey

article category was an article by (21) [31]. In
this article, he reported the results of a pilot
experiment on open-ended mashup assignments
using Yahoo Pipes, an end-user web-based
visual development environment. The
respondents stated that the tool was useful,
interesting, appropriate and of the right level of
difficulty. They also indicated that they were
able to learn the tool in a short period of time.
5. DISCUSSION

The purpose of this study is to provide an

overview of EUP for web mashups by reviewing
and analysing published research articles. This
work has been done based on the SLR guidelines
as proposed by [7]. In this section, three main
topics are discussed based on the findings of the
study; mashup, EUP and EUP for web mashups.
The keyword relationship model is as in Figure
2.

5.1. Mashup

The term mashup was actually derived from

the music industry, where the original contents
from various artists are remixed to create new
material [32]. However, in the field of Computer
Science, the term mashup can be defined as
websites that combine multiple websites to
support unique tasks through APIs [11]. It not
only combines the data but also the process or
view from several websites to provide
information that could not be easily obtained by
manually browsing the websites separately [12,
19].

Making mashups can be difficult even for

those with programming experience because it
requires knowledge of more than one
programming language, several markup
languages, and an understanding of how to
assemble those elements together on the web.
Making mashups involve five processes; data
retrieval, source modelling, data cleaning, data
integration and data display [33]. However, a
study by [34] has divided the processes into three

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

125

stages; data gathering, data manipulation and
data visualization. Their findings show that data
manipulation was the most difficult step to
understand and implement in making mashups.

Consequently, several mashup tools were

developed to help end-users who lack
programming skills in making mashups. In this
review, several mashup tools were noted, such as
Vegemite [19], Potluck [18], Marmite [11],
MashMaker [12], Mashroom [35], SituMash
[22], Lively Fabrik [24] and Whip [25]. The
other tools that are also mentioned in this review
are Karma [33], MASH [36], MaxMash [37],
Xtractorz [38] and SpiderCharlotte [39]. From
this review only two articles were found; articles
(15) [28] and (21) [31] that reported the results
of mashup tools reviews and evaluations. The
article by (21) [31] reported the results of a pilot
experiment on open-ended mashup assignments
using Yahoo Pipes and found that the mashup
tool they used is easy to learn. However, article
(15) by [28] stated that in a study of ten mashup
tools, it was found that some mashup tools are
difficult to handle and require end-users to have
a computer programming knowledge. Their
review criteria were programming skills
requirement, prompt suggestion to use,
operability, share-ability and reusability, service,
type and target users. Other studies that also
stated the same findings are those of [40], [41]
and [42]. These articles are not on the list of
reviewed articles for this study. In their article
[40] reported their user experiment studied three
mashup tools; Yahoo Pipes, Open Mashup
Studios and Dapper. Their evaluation criteria are
visibility, hard mental operation, diffuseness,
abstraction gradient, consistency, error-
pronounce, role-expressiveness, progressive
evaluation, viscosity, and provisionality and
premature commitment.

Mashup tools also have been developed for

mobiles and smart devices [13, 14]. In contrast
with desktop-based mashup tools, these mobile
and smart device mashup tools execute within a
lightweight framework which supports both
desktop and mobile devices [43]. Most
lightweight mashup tools use simple interfaces
like a widget programming approach to create
mashups.

5.2. End-user Programming

EUP refers to programming activities by
end-users (which are any computer users). End-
users who write a program are called end-user
programmers. However they are not professional
programmers. They write a program or explicitly
modify the software primarily for personal use or
for a small group of users rather than for public
use [44]. EUP can be seen in many areas like
engineering, accounting, and education. End-
users modify the application to complement their
work. Recently with the popularity of smart
phones, smart devices and Web 2.0, EUP also
has been adopted in ubiquitous and web
computing. It is well-known that conventional
programming languages are hard to learn and
use, demanding skills that many people do not
have. In an attempt to make the programming
easier, several approaches were introduced such
as programming by example (also called
programming by demonstration), visual
programming, and scripting languages [45].

Programming by Example is a way of

programming where the user of the system
writes a programme by giving an example of
what the programme should do. The system
records the sequence of actions and performs it
again. Programming by example allows a user to
create programmes without doing conventional
programming. [46] described Programming by
Example precisely as “Do What I Did.” Other
terms for Programming by Example are
Programming by Demonstration and
Programming by Sample.

Another approach for EUP is visual

programming. [47] defined visual programming
as a programme in two or more dimensional
fashions and [48] defined visual programming as
visual representations to accomplish what would
otherwise have to be written in a traditional one-
dimensional programming language. The
characteristics of visual programming languages
are that they have fewer concepts to programme,
a concrete programming process, an explicit
depiction of relationships and immediate visual
feedbacks [49]. Examples of visual programming
are ClockWorks [50], RAPTOR [51] and
LabVIEW [52].

Writing small programmes called scripts or

macros have been widely used in many
commercial systems like Microsoft Word and

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

126

Excel. It is helpful for automating repetitive
tasks and documenting what the user did. A
macro or a script is a type of application-specific
language as it is a part of the software
application facilities or a part of the
programming language. A macro or a script is
written in a special language called scripting
language like tcl/tk, Python, Perl, and JavaScript.
Scripting languages are interpreted languages
and are supposed to be a simplified from
general-purpose programming languages like C,
C++ or Java, because they are intended for a
specific domain or environment. Moreover, some
of the languages are designed for end-users.
However, because of its powerful library, it is
difficult for end-users to understand and use it.

The spreadsheet paradigm is another EUP

approach that is widely used by end-users. The
spreadsheet paradigm was initially from
spreadsheet calculations, a fast process to
express data and make calculations for the data
on two-dimensional sheets [53]. The well-known
example of the spreadsheet system is Microsoft
Excel where users can use either a calculation
formula or a script to perform several tasks. The
spreadsheet paradigm offers several advantages
like a direct manipulation interface that is easy to
view, navigate and interact with the data [54].
The spreadsheet paradigm also provides a feature
called “What You See Is What You Test”
(WYSIWYT) which offers an immediate
automatic visual feedback, a declarative
approach to programming and has a dependence-
driven characteristic [55, 56].

Natural programming is an approach that

lets the non-professional programmer write a
programme using natural language [57]. The
goal is to make it possible for people to express
their ideas in the same way they think about it.
Examples of natural programming are HANDS
[58], Board Game Language - BGL [59] and
Grammatical Framework – GF [60]. Several
works attempt to develop spoken natural
language programming by integrating it with
speech recognition instead of typed textual input
[61].

Block-based programming is a new

software development approach proposed by
[62]. Block-based programming is derived from
the combination of Component-based Software
Development Approach with the EUP approach.
Application software can be developed by

integrating the pre-developed blocks. The blocks
are a simple unit and it is easy for end-users to
customize the blocks and build the application
for their needs. The block-based software
development approach involves two types of
developers; block developers and application
developers [63]. However, research in the block-
based software development approach is still in
progress. The list of EUPs is as in Table 6.

Table 6: List of EUP.

EUP Technique
Programming by Example/ Demonstration
Visual Programming
Macro programming/ Scripting
Natural paradigm
Spreadsheet Programming
Block-based programming

5.3. End-user Programming for the Web

Mashup

The emergence of the World Wide Web
(WWW) and specifically Web 2.0 has provided
the opportunity for end-users to automate and
customize selected web pages. Unfortunately, the
complexity of current web technologies prevents
most users from realizing this opportunity. To
overcome this problem mashup tools were
developed. The aim is to help the end-user create
mashups without conventional programming but
instead by using metaphors, formulae, sequence
of GUI actions, circuit diagrams or application-
specific languages or scripts. These alternative
approaches are called EUP approaches. EUP
approaches that are used within mashup tools are
PBD/PBE, data-flow, spreadsheet, scripting,
visual, widget, block-based and browsing
paradigms (Table 7).

Table 7: List of EUP for the Web Mashup.

EUP Technique for the Web Mashup
Programming by Example/ Demonstration
Visual Programming
Scripting Languages
Spreadsheet paradigm
Data-flow/ work-flow
Widget paradigm
Browsing paradigm
Block-based development approach

Several mashup tools use mixed paradigms

like Vegemite that combines PBD with the
spreadsheet paradigm [19]. Vegemite consists of
two main parts; the spreadsheet-like table called

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

127

Vegetable to store the data and the CoScripter
engine that runs the script for recording and
playback actions during data extraction. Marmite
also uses the mixed approach where it combines
a spreadsheet-like table with a data-flow or
work-flow approach [64]. Most mashup tools
decide on the spreadsheet paradigm for its “What
You See is What You Get” feature that is easy
for end-users to understand. The scripting
language is instead provided for customization.
The widget paradigm is mostly employed in
mobile and smart device mashup tools.

In this review, no reviews or empirical

study articles on EUP for web mashups were
found. However, there was an article [65] that
evaluated a set of data-flow selection strategies
in terms of efficiency and effectiveness. These
data-flow selection strategies are used in general
applications. In the data-flow paradigm,
operators have input and output and can be
connected together. The problem with the data-
flow paradigm is that users can get confused
with the role of the data and the operators [11].

6. CONCLUSION

The objective of this work is to outline a

comprehensive review and synthesis of the
current state-of-the-art related to EUP for the
web mashups. 204 articles were identified based
on the search keywords, of which 21 were found
to be relevant. The articles were divided into two
main groups; research articles and survey
articles. Six EUP approaches for web mashups
were identified from the studies; browsing,
programming-by-demonstration (PBD),
spreadsheet, widget paradigm, data-flow and
block-based approach. Other researches
regarding EUP for web mashups were identified,
such as ubiquitous platform mashups, users’
support functions, data extraction techniques and
process-oriented mashups. The findings show
that there are still many areas that need to be
explored such as ubiquitous platform mashups,
lightweight frameworks, enterprise mashups etc.
The developments of mashup tools that are
supposed to assist end-users in making mashups
still have limitations. While most mashup tools
have been developed to have a simple user
interface, to be easy to use and learn, to be
reusable and extendable and to be able to be
customized, and yet other outstanding criteria in
mashup tools are flexibility and adaptability.

REFERENCES:

[1] B. A. Nardi, A Small Matter of
Programming: Perspectives on End
User Computing: MIT Press, 1993.

[2] W. Harrison. (2004) The Dangers of
End-User Programming. IEEE
Software. 5-7.

[3] T. Fischer, F. Bakalov, and A. Nauerz,
"An Overview of Current Approaches
to Mashup Generation," in International
Workshop on Knowledge Services and
Mashups (KSM09), Solothurn,
Switzerland, 2009.

[4] B. A. Nardi and J. R. Miller, "The
spreadsheet interface: A basis for end-
user programming," in Human-
Computer Interaction: INTERACT '90,
Amsterdam: North-Holland, 1990.

[5] C. Scaffidi, M. Shaw, and B. Myers,
"Estimating the Numbers of End Users
and End User Programmers " in IEEE
Symposium on Visual Languages and
Human-Centric Computing
(VL/HCC’05), 2005.

[6] T. O’Reilly. (2005, Sep 30). What is
Web 2.0? Design Patterns and Business
Models for the Next Generation of
Software. 2005(30). Available:
http://oreilly.com/web2/archive/what-is-
web-20.html

[7] B. Kitchenham and S. Charters,
"Guidelines for performing Systematic
Literature Reviews in Software
Engineering," Keele University2007.

[8] B. Kitchenham, O. P. Brereton, D.
Budgen, M. Turner, J. Bailey, and S.
Linkman, "Systematic Literature
Reviews in Software Engineering - A
Systematic Literature Review,"
Information and Software Technology,
vol. 51, pp. 7-15, 2009.

[9] S. Beecham, N. Baddoo, T. Hall, H.
Robinson, and H. Sharp, "Motivation in
Software Engineering: A Systematic
Literature Review," Information and
Software Technology, vol. 50, pp. 860-
878, August 2008.

[10] T. Dyba and T. Dingseyr, "Empirical
Studies of Agile Development: A
Systematic Review," Information and
Software Technology, vol. 50, pp. 833-
859, August 2008.

[11] J. Wong, "Marmite: Towards End-User
Programming for the Web," in IEEE

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

128

Symposium on Visual Languages and
Human-Centric Computing, 2007.
VL/HCC 2007, 2007, pp. 270-271.

[12] R. Ennals and D. Gay, "User-friendly
functional programming for web
mashups," ACM Sigplan Notices, vol.
42, pp. 223-233, Sep 2007.

[13] A. Salminen, J. Kallio, and T.
Mikkonen, "Towards Mobile
Multimedia Mashup Ecosystem," in
IEEE International Conference on
Communications Workshops (ICC),
2011, pp. 1-5.

[14] N. Ahmadi, F. Lelli, and M. Jazayeri,
"Supporting Domain-Specific
Programming in Web 2.0: A Case Study
of Smart Devices," in 21st Australian
Software Engineering Conference
(ASWEC), 2010, pp. 215-223.

[15] J. Cao, "The idea garden: From a
qualitative evaluation toward an
quantitative evaluation and
generalization," in IEEE Symposium on
Visual Languages and Human-Centric
Computing (VL/HCC), 2012, pp. 219-
220.

[16] H. Han and T. Tokuda, "A Method for
Integration of Web Applications Based
on Information Extraction," in Eighth
International Conference on Web
Engineering (ICWE '08), 2008, pp. 189-
195.

[17] P. d. Vrieze, L. Xu, A. Bouguettaya, J.
Yang, and J. Chen, "Building enterprise
mashups," Future Generation Computer
Systems-the International Journal of
Grid Computing and Escience, vol. 27,
pp. 637-642, May 2011.

[18] D. F. Huynh, R. C. Miller, and D. R.
Karger, "Potluck: Data mash-up tool for
casual users," Journal of Web
Semantics, vol. 6, pp. 274-282, Nov
2008.

[19] J. Lin, J. Wong, J. Nichols, A. Cypher,
and T. A. Lau, "End-user programming
of mashups with Vegemite," in 14th
International Conference on Intelligent
User Interfaces (IUI'09), 2009.

[20] G. Wang, S. Yang, and Y. Han,
"Mashroom: end-user mashup
programming using nested tables,"
presented at the Proceedings of the 18th
international conference on World wide
web, Madrid, Spain, 2009.

[21] H. Lin, G. Wang, P. Zhang, J. Wang,
and Y. Han, "A Two-Level
Programming Model Based on
Spreadsheet and Data Flow Chart," in
7th Web Information Systems and
Applications Conference (WISA), 2010,
pp. 39-42.

[22] A. F. M. Huang, S. B. Huang, L.
E.Y.F., and S. J. H. Yang, "Improving
End User Programming with Situational
Mashups in Web 2.0 Environment," in
IEEE International Symposium on
Service-Oriented System Engineering
2008 (SOSE'08), Jhongli, 2008, pp. 62-
67.

[23] M. Tosic and M. Manic, "A RESTful
technique for collaborative learning
content transclusion by Wiki-style
mashups," in 5th IEEE International
Conference on e-Learning in Industrial
Electronics (ICELIE), 2011, pp. 38-43.

[24] J. Lincke, R. Krahn, D. Ingalls, and R.
Hirschfeld, "Lively Fabrik A Web-
based End-user Programming
Environment," in Seventh International
Conference on Creating, Connecting
and Collaborating through Computing,
2009, pp. 11-19.

[25] R. Latih, A. Patel, A. M. Zin, T. Yiqi,
and S. H. Muhammad, "Whip: A
framework for mashup development
with block-based development
approach," in International Conference
on Electrical Engineering and
Informatics (ICEEI), 2011, pp. 1-6.

[26] J. Cao, S. D. Fleming, and M. Burnett,
"An Exploration of Design
Opportunities for "Gardening" End-user
Programmers' Ideas," in IEEE
Symposium on Visual Languages and
Human-Centric Computing (VL/HCC),
2011, pp. 35-42.

[27] N. Zang, "Information Remix and the
Motivations of Everyday End-Users," in
Visual Languages and Human-Centric
Computing (VL/HCC), 2010 IEEE
Symposium on, 2010, pp. 212-215.

[28] A. Patel, L. Na, R. Latih, C. Wills, Z.
Shukur, and R. Mulla, "A Study of
Mashup as a Software Application
Development Technique with Examples
from an End User Programming
Perspective," Journal of Computer
Science, vol. 6, pp. 1406-1415, 2010.

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

129

[29] B. Beemer and D. Gregg, "Mashups: A
Literature Review and Classification
Framework," Future Internet, vol. 1, pp.
59-87, 2009.

[30] J. Cao, Y. Riche, S. Wiedenbeck, M.
Burnett, and V. Grigoreanu, "End-user
mashup programming: through the
design lens," presented at the
Proceedings of the SIGCHI Conference
on Human Factors in Computing
Systems, Atlanta, Georgia, USA, 2010.

[31] K.-B. Yue, "Experience on Mashup
Development with End User
Programming Environment " Journal of
Information Systems Education, vol. 21,
pp. 111-119, 2010.

[32] S. Murugesan, "Understanding Web
2.0," IT Professional, vol. 9, pp. 34-41,
2007.

[33] R. Tuchinda, C. A. Knoblock, and P.
Szekely, "Building Mashups by
Demonstration," Acm Transactions on
the Web, vol. 5, Jul 2011.

[34] N. Zang, "Mashups for the Web-active
User," in Visual Languages and
Human-Centric Computing, 2008.
VL/HCC 2008. IEEE Symposium on,
2008, pp. 276-277.

[35] G. Wang, S. Yang, and Y. Han,
"Mashroom: End-User Mashup
Programming Using Nested Tables," in
WWW 2009 MADRID, Madrid, Spain,
2009.

[36] L. Mariani and F. Pastore, "MASH: A
tool for end-user plug-in composition,"
in 34th International Conference on
Software Engineering (ICSE), 2012, pp.
1387-1390.

[37] M. Shevertalov and S. Mancoridis, "A
Case Study on the Automatic
Composition of Network Application
Mashups," in 23rd IEEE/ACM
International Conference on Automated
Software Engineering, 2008. ASE 2008,
2008, pp. 359-362.

[38] R. A. G. Gultom, R. F. Sari, and B.
Budiardjo, "Implementing web data
extraction and making Mashup with
Xtractorz," in Advance Computing
Conference (IACC), 2010 IEEE 2nd
International, 2010, pp. 385-393.

[39] G. Wang, S. Yang, and Y. Han, "A
Spreadsheet-like Construct for
Streamlining and Reusing Mashups," in
The 9th International Conference for

Young Computer Scientists, 2008, pp.
880-885.

[40] W. A. Sarraj and O. D. Troyer, "Web
mashup makers for casual users: a user
experiment," in The 12th International
Conference on Information Integration
and Web-based Applications & Services
(iiWAS '10:), 2010.

[41] L. Grammel and M.-A. Storey, "An End
User Perspective on Mashup Maker,"
University of Victoria, Victoria, BC,
CanadaSeptember 2008.

[42] G. D. Lorenzo, H. Hacid, H.-y. Paik,
and B. Benatallah, "Data Integration in
Mashups," Sigmod Record, vol. 38, pp.
59-66, Mar 2009.

[43] M. Albinola, L. Baresi, M. Carcano,
and S. Guinea, "Mashlight: A
Lightweight Mashup Framework for
Everyone," in WWW2009, Madrid,
Spain, 2009.

[44] A. J. Ko, R. Abraham, L. Beckwith, A.
Blackwell, M. Burnett, M. Erwig, C.
Scaffidi, J. Lawrance, H. Lieberman, B.
Myers, M. B. Rosson, G. Rothermel, M.
Shaw, and S. Wiedenbeck, "The State
of the Art in End User Software
Engineering," ACM Computing
Surveys, vol. 43, pp. 21-44, 2011.

[45] H. Lieberman, F. Paterno, M. Klann,
and V. Wulf, "End-User Development:
An Emerging Paradigm," in End-User
Development, H. Lieberman, F. Paterno,
and V. Wulf, Eds., 1 ed: Kluwer
Academic Publishers, 2006, pp. 1-8.

[46] D. C. Halbert, "Programming by
Example," PhD, Computer Science
Division, Dept of EE & CS,, University
of California, Berkeley, 1984.

[47] B. A. Myers, "Visual Programming,
Programming by Example and Program
Visualization: A Taxonomy," in The
SIGCHI Conference on Human Factors
in Computing Systems (CHI'86), 1986,
pp. 59-66.

[48] N. C. Shu, Visual Programming. New
York: Van Nostrand Reinhold Co.,
1988.

[49] M. M. Burnett, M. J. Baker, C. Bohus,
P. Carlson, S. Yang, and P. v. Zee,
"Scaling up Visual Programming
Languages," Computer, vol. 28, pp. 45-
54, 1995.

[50] T. C. N. Graham, C. A. Morton, and T.
Urnes, "ClockWorks: Visual

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

130

Programming of Component-based
Software Architectures," Journal of
Visual Languages and Computing, vol.
7, pp. 175-196, 1996.

[51] M. C. Carlisle, T. A. Wilson, J. W.
Humphries, and S. M. Hadfield,
"RAPTOR: A Visual Programming
Environment for Teaching Algorithmic
Problem Solving," in 36th SIGCSE
Technical Symposium on Computer
Science Education (SIGCSE'05), 2005,
pp. 176-180.

[52] R. Jamal and L. Wenzel, "The
Applicability of the Visual Programing
Language LabVIEW to Large Real-
World Applications," in 11th IEEE
International Symposium on Visual
Language, Darmstadt, 1995, pp. 99-
106.

[53] M. Tukiainen, "Uncovering Effects of
Programming Paradigms: Errors in Two
Spreadsheet Systems," in 12th
Workshop of the Psychology of
Programming Interest Group, Cozenza
Italy, 2000, pp. 247-266.

[54] E. H.-h. Chi, J. Riedl, P. Barry, and J.
Konstan, "Principles for Information
Visualization Spreadsheets," IEEE
Computer Graphics and Applications,
vol. 18, pp. 30-38, 1998.

[55] A. Ambler, M. Burnett, and B.
Zimmerman, "Operational Versus
Definitional: A Perspective on
Programming Paradigms.," Computer,
vol. 25, pp. 28-43, 1992.

[56] K. J. Rothermel, C. R. Cook, M. M.
Burnett, J. Schonfeld, T. R. G. Green,
and G. Rothermel, "WYSIWYT Testing
in the Spreadsheet Paradigm: An
Empirical Evaluation," in ICSE 2000,
Limerick, Ireland, 2000, pp. 230-239.

[57] B. A. Myers, "Natural Programming:
Project Overview and Proposal,"
Human-Computer Interaction Institute,
School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA
152131998.

[58] J. Pane and B. Myers, "More natural
programming languages and
environments," in End User
Development, e. Henry Lieberman et
al., Ed., ed: Springer, 2006, pp. 31-50.

[59] A. Riker, "Natural Language in
Programming An English Syntax-based
Approach for Reducing the Difficulty of

First Programming Language
Acquisition," Master’s Thesis,
Department of Computer Science, The
Faculty of the Graduate School of Arts
and Sciences, Brandeis University,
Waltham, Massachusetts, 2010.

[60] B. Bringert, "Programming Language
Techniques for Natural Language
Applications," Degree of Doctor of
Engineering, Department of Computer
Science and Engineering, Chalmers
University of Technology and
University of Gothenburg, Göteborg,
Sweden, 2008.

[61] H. Lieberman and H. Liu, "Feasibility
Studies For Programming In Natural
Language," in End-User Development,
H. Lieberman, F. Paterno, and V. Wulf,
Eds., ed: Kluwer Academic
Publishers/Springer, 2005.

[62] A. M. Zin, "Block-Based Approach for
End User Software Development,"
Asian Journal of Information
Technology, vol. 10, pp. 249-258, 2011.

[63] S. N. H. Mohamad, A. Patel, Y. Tew, R.
Latih, and Q. Qassim, "Principles and
Dynamics of Block-based Programming
Approach," in 2011 IEEE Symposium
on Computers and Informatics (ISCI
2011), Kuala Lumpur, Malaysia, 2011,
pp. 340-345.

[64] J. Wong and J. I. Hong, "Making
mashups with Marmite: Towards End-
User Programming for the web," in
SIGCHI Conference on Human Factors
in Computing Systems (CHI'07), New
York, USA, 2007, pp. 1435-1444.

[65] K. Winbladh and A. Ranganathan,
"Evaluating test selection strategies for
end-user specified flow-based
applications," in Automated Software
Engineering (ASE), 2011 26th
IEEE/ACM International Conference
on, 2011, pp. 400-403.

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

131

Appendix A: List of Reviewed Articles.

1. James Lin, Jeffrey Wong, Jeffrey

Nichols, Allen Cypher and Tessa A. Lau,
2009. End-user programming of mashups
with Vegemite, IUI '09: Proceedings of the
14th International Conference on Intelligent
User Interfaces.

2. David F. Huynh, Robert C. Miller and David
R. Karger, 2008. Potluck: Data mash-up tool
for casual users, Web Semantics: Science,
Services and Agents on the World Wide
Web, Volume 6, Issue 4, November
2008, pp. 274-282.

3. Angus F.M. Huang, Shin Bo Huang, Evan
Y.F. Lee and Stephen J.H. Yang, 2008.
"Improving End-User Programming with
Situational Mashups in Web 2.0
Environment,", IEEE International
Symposium on Service-Oriented System
Engineering 2008 (SOSE '08), pp.62-67.

4. A. Salminen, J. Kallio and T. Mikkonen,
2011. "Towards Mobile Multimedia Mashup
Ecosystem", IEEE International Conference
on Communications Workshops (ICC),
pp.1-5.

5. J. Wong, 2007. "Marmite: Towards End-
User Programming for the Web", IEEE
Symposium on Visual Languages and
Human-Centric Computing (VL/HCC
2007), pp.270-271.

6. Jens Lincke, Robert Krahn, Dan Ingalls, and
Robert Hirschfeld, 2009. "Lively Fabrik A
Web-based End-user Programming
Environment", Seventh International
Conference on Creating, Connecting and
Collaborating through Computing, (C5 '09),
pp.11-19.

7. Milorad Tosic and Milos Manic, 2011. "A
RESTful technique for collaborative
learning content transclusion by Wiki-style
mashups", 5th IEEE International
Conference on e-Learning in Industrial
Electronics (ICELIE), pp.38-43.

8. Guiling Wang, Shaohua Yang, and Yanbo
Han, 2009. "Mashroom: end-user mashup
programming using nested tables",
Proceedings of the 18th international

conference on World Wide Web, pp. 861-
870.

9. Navid Ahmadi, F. Lelli, and M. Jazayeri,
2010. "Supporting Domain-Specific
Programming in Web 2.0: A Case Study of
Smart Devices", 21st Australian Software
Engineering Conference (ASWEC), pp.215-
223.

10. Jill Cao, 2012. "The idea garden: From a
qualitative evaluation toward an quantitative
evaluation and generalization", IEEE
Symposium on Visual Languages and
Human-Centric Computing (VL/HCC),
pp.219-220.

11. Jill Cao, S.D Fleming, M. Burnett, 2011.
"An exploration of design opportunities for
“gardening” end-user programmers'
ideas," IEEE Symposium on Visual
Languages and Human-Centric Computing
(VL/HCC), pp.35-42.

12. Nan Zang, 2010. "Information Remix and
the Motivations of Everyday End-
Users", IEEE Symposium on Visual
Languages and Human-Centric Computing
(VL/HCC), pp.212-215.

13. Hao Han and Takehiro Tokuda, 2008. "A
Method for Integration of Web Applications
Based on Information Extraction", Eighth
International Conference on Web
Engineering (ICWE '08), pp.189-195.

14. Hailun Lin, Guiling Wang, Peng Zhang,
Jing Wang and Yanbo Han, 2010. "A Two-
Level Programming Model Based on
Spreadsheet and Data Flow Chart", 7th Web
Information Systems and Applications
Conference (WISA), pp.39-42.

15. Ahmed Patel, Liu Na, Rodziah Latih,
Christopher Wills, Zarina Shukur and Rabia
Mulla, 2010. “A Study of Mashup as a
Software Application Development
Technique with Examples from an End-User
Programming Perspective”, Journal of
Computer Science 6 (12): 1406-1415.

16. Brandon Beemer and Dawn Gregg, 2009.
“Mashups: A Literature Review and
Classification Framework”, Future Internet
2009, 1(1):59-87.

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

132

17. Rob Ennals and David Gay, 2007. “User-
friendly functional programming for web
mashups”, 12th ACM SIGPLAN
International Conference on Functional
Programming, 42(9):223-233.

18. Paul de Vrieze, Lai Xu, Athman
Bouguettaya, Jian Yang, and Jinjun Chen,
2011. "Building Enterprise Mashups."
Future Generation Computer Systems 27(5):
637-642.

19. Rodziah Latih, Ahmad Patel, Abdullah M.
Zin, Tew Yiqi, and Siti H. Muhammad,
2011. “Whip: A framework
for mashup development with block-based
development approach”, International
Conference on Electrical Engineering and
Informatics (ICEEI), pp.1 – 6.

20. Jill Cao, Yann Riche, Susan Wiedenbeck,
Margaret Burnett, and Valentina
Grigoreanu, 2010. "End-user mashup
programming: through the design lens",
Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems,
pp.1009-1018.

21. Kwok-Bun Yue, 2010. "Experience on
mashup development with end user
programming environment." Journal of
Information Systems Education, 21(1): 111-
119.

