Journal of Theoretical and Applied Information Technology
10" February 2014. Vol. 60 No.1 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

DYNAMIC WORKLOAD-AWARE PARTITIONING IN OLTP
CLOUD DATA STORES

'SWATI AHIRRAO,’RAJESH INGLE
'Symbiosis International University, Computer Scidcinformation Technology, Pune, India

2 Pune Institute of Computer Technology, Computagifering, Pune, India

E-mail: ‘swatia@sitpune.edu,ifingle@ieee.org

ABSTRACT

Cloud Computing is one of the emerging field deploying scalable applications at low cost. Tgaper
presents a scenario of the challenges faced bycafiph developers for building scalable web amilans
and provides two ways in which scalability candohieved. First is using data partitioning whichysl
important role in optimizing the performance ancioving scalability of data stores. Second approac
works without explicit data partitioning. We haserveyed the design choices of various cloud dates
and analyse the requirements of applications and decess patterns and how these requirements are
fulfilled by scalable database management systénaéso presents design model for dynamic workioad
aware partitioning. In dynamic partitioning, wordlb is analyzed from transaction logs and frequemt i
sets are found out. These frequent item sets argpgd together and collocated on one partitiomjgrove
scalability. We also provide the implementation afr partitioning scheme in SimpleDB running in
Amazon Cloud and Hbase.We are using industry stand®C-C benchmark for evaluation of our
partitioning scheme. We present the experimentllte of our partitioning scheme by executing TPC-C
benchmark.

Keywords: Cloud, Scalability, Oltp, Data Partitioning

1. INTRODUCTION stores. Researchers have been investigated differen
partitioning algorithms such as schema level, graph
Data management in the cloud is basically dongartitioning. All of these data partitioning
in two ways. i) Online Transaction Processingalgorithms are useful when the data access pattern
(OLTP) is used for recording business transactionsf the web application is static. Therefore we
and ii) Online Analytical Processing (OLAP) ispropose to design a dynamic partitioning scheme
used for analysis of large databases and findiag tilhased on the data access pattern of the web
useful patterns. Transactions in OLTP are smalapplicatons.In this paper, design model for
Each operation is simple select or update quety thachieving scalability of OLTP cloud data stores
manipulate small amount of data. Update operationithout compromising consistency is presented.
is significant part of OLTP workloads.These _—
operations are frequent or repetitive and are know-Flhe Contributions of our work are as follows .
in advanced. This will not work for the application We propose the deS|_g_n _Of dynamic
which needs to access and manipulate large workload-aware partitioning. We
amounts of data. On the other hand is OLAP which dem_qns’_[rate how this workload-awa_lre
access huge amount of data. The operations are not partitioning ~can be . .used to restrict
in advance. OLAP queries are read intensive and transacuon_ to one par_tmon. ,
We provide an implementation of

updates very few amount of data. This paper
P y pap dynamic workload-aware partitioning in

presents work on OLTP data stores.) e
Building scalable and consistent database SimpleDB running in Amazon Cloud and
Hbase and evaluating this partitioning

system is a challenge for database researchers. ,
Traditional enterprise infrastructure settings scheme using TPC-C benchmark.

provides full featured ACID properties but diffitul The rest of this paper is organized as follows. We
to scale out to thousands of low cost commoditgerform analysis of various key-value stores in
servers. This introduces the need of NO-SQL Da®ection2, discuss scalable transactions in OLTP

s
89

Journal of Theoretical and Applied Information Technology
10" February 2014. Vol. 60 No.1 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

Cloud Data Stores in Section 3, presents the desiggstems with this goal and driven by notion that th
of dynamic workload-aware data partitioningdata items which are accessed frequently are kept
scheme in Section 4 and implementation in Sectioon the same partition. This minimizes the number
5, we show experimental evaluation in Section 6&f distributed transactions.

results in Section 7 and conclusion in Section 8. Sudipto Das et. al presented ElasTras[4], where
scalability is accomplished by schema pattern
called as schema level partitioning. ElasTras
partitioning scheme is derived from TPC-C schema,
In this section, we discuss the design model of the, It is called as schema level partitioning. In

following cloud data stores such as Googleschema level partitioning, related rows of ¢abl

Bigtable[1],Yahoo PNUT [2] and Amazon ?rfnsglétti;?]ge;?:rr: dnucs(;r&gle partition and disted
Dynamol[3]. In Bigtable, Tablet contains different '
row ranges, which are unit of distribution and load P. A. Bernstein[12] et. al presented, Clo@LS
balancing. Each tablet is managed by a tableServer is a Relational database where scalabdlity i
server.TO improve scalability, Bigtable uses rangeaccomplished by scaling out to low cost servers. It
partitioning. also uses static partitioning where transactioes ar
PNUT tables are horizontally partitioned intoenforced to execute on one partition. In Cloud SQL
tablets. Each Tablet contains number of rowsServer, partition is normally a table group, kegles
PNUT stores tablets in servers called storage .unitdf keyed. For Keyed table group, all the tables in
The tablet controller maintains the mapping ofhe table group has common partitioning key. Row
tablets to servers. This mapping is copied t@roup is collection of related rows that has common
multiple routers, which periodically contact thepartitioning key.

tablet controller to check for mapping updates. cyrino et. al proposes design of Relational

Scalability is achieved by, hash or rangeioyg[g] with the common objective as

partitioning. _ . _ElasTras[4].The key feature of Relational Cloud is
Dynamo [3] was designed to be a highly; ,ses workload-aware approach with graph

scalable key-value store that is highly availalde tpartitioning [5]. In graph partitioning[5], the eekd

reads but particularly for writes. Amazon,s which are accessed by transactions are kept on
Dynamo’s partitioning scheme relies on a variant °§ingle partition.

consistent hashing mechanism to distribute the load
across multiple storage hosts. High Scalability is ~ J.Baker et. al presented, Megastore[9] in
achieved by using hash partitioning. which also uses static data partitioning scheme
Key-value store provides high scalabilitywhere abstractions are called as entity groups.
availability but limited consistency guarantees an&ntity groups are put on a single node so that
lack efficient partitioning scheme for transactiorfransaction can access only single node.
processing. To overcome this, various approaches
have been proposed to strengthen these key/valueAs discussed before, these systems are designed
store with more powerful design models of datavith the similar objective where related rows are
partitioning. kept on single partition. All the four systems
discussed above uses static partitioning scheme
3. SCALABLE TRANSACTIONSIN OLTP suitable for web applications whose data access
CLOUD DATA STORES pattern is static. But there are some applications
such as online games where frequently accessed
There are two ways in which scalability can belata items changed dynamically with time and
achieved. The primary approach to achievéherefore Sudipto Das et. al proposed G-Store [7],
scalability is using data partitioning and anothewhere the keys from group on different node are
approach works without data partitioning. put together and formed a new group on single
We now discuss the work carried out in the dat@artition. Another approach works without data
partitioning.Many real life applications such aspartitioning. These particular class of systems do
banking or ecommerce applications have static daf®t use any partitioning scheme.

access patterns. These applications works better, Aguilera et al. [6] presented Sinfonia, ihigh

when transactions are limited to single partitionyanqactions are divided into sub transactionsdall
Researchers are facing the challenges in buildings inj transactions. It presents minitransactioth a
these systems as scalable, consistent, highly

available .Many researchers have designed the

2. KEY VALUE STORES

90

Journal of Theoretical and Applied Information Technology
10" February 2014. Vol. 60 No.1 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

guarantees transactional semantics on a tiny setarfe avoided and scalability is achieved. We have
operations. used TPC-C benchmark for evaluation of our

Wei et. al Proposes system, Cloud TPS ugartitioning scheme. It has nine tables. Warehouse,
which disperse transaction management into Loc |str|ct,Customer,H|story,Or(.jer.s,Orde_r_Ilne, .
Transaction Managers(LTMs).Cloud TPS isNew_order,Stock,Item.Item id is a primary key in

suitable when the transactions are short, arem table which is foreign key in Order line
predefined in an advanced. table.In TPC-C,all the items are populated in the

) warehouse. We have made some changes to the
10 I_D.Lon;e_ztr?t. al slug_glg_este_d design, Dl_el:]te(;(ynl?”TPC-C scheme that we are distributing items on
[10] in which scalability ‘1s accomplishe Y different partitions. (only frequently purchased
decomposmg fgnctlons of a database storage engi gms) are collocated on one partition. Orderlines
kernel in two different component, transaction anr?tre monitored from transaction logs and items in an

data management. Transaction . compone derline which are purchased together are kept
executes transactions, concurrency control and P 9 P

recovery but not aware of physical location of dati°9ther on one partition.. For ex. If Ponds cream
and data component. The key aspect And Lux soap is purchased together in many

Deuteronomy is data can be any where in thansactions so these items (ol_i_id) are grouped
Cloud. But In Deuteronomy, the entire load is orfogether on same partition.so that transaction can
single transaction component for handling all théccess data from same partition.

requests, so there is bottleneck for larger cloud

deployments. 5. IMPLEMENTATION

Researchers have discussed two differentn this section, we are implementing our
approaches for improving the scalability ofPartitioning scheme by executing TPC-C
databases. In this paper, we have surveyed foBgnchmark. We are also comparing the results of
different systems which uses static data partitigni our scheme with normalized TPC-C benchmark
scheme suitable only for the web application% |mplementation in Amazon SimpleDB
whose data access pattern is static. Thereforé T
dynamic partitioning is proposed but creates We .have created .onIy one domain in SimpleDB
overhead in creation of groups. An efficientfor nine tables in TPC-C.Workload aware

partiioning scheme will minimize access toPartitioning have reduced the number of domains
different database partitions and reduces diseihut accessed to only one. Domain in simpleDB
transactions. Therefore there is need to desigiontains attributes of all nine tables in TPC-C.
efficient dynamic workload aware partitioning
scheme, which will partitioned the database baseéi

on their workload. We h i q) il g
e have configured setup for a single node
4. DESIGN OF DYNAMIC WORKL OAD- Hadoop cluster where we have one master node,

AWARE DATA PARTITIONING data node and only one region server is

In this section, we discuss the databasereated.Only one table is created in hbase for nine
partitioning to allow the cloud data stores to scaltables in TPC-C. Table in hbase contains attributes
out. Partitioning is a method by which scalabilgy of all nine tables in TPC-C.
achieved. It is used specially for scaling update
transactions. Workload-Aware Partitioning allowss, ExXPERIMENTAL EVALUATION
designing real life and useful applications. The .
motivation for Workload-Aware Partitioning is thatA' Mappm.g of TPC-C to the Cloud)
in large number of applications, transaction regmir 1PC-C is a benchmark was designed as web
few related data items which are located acros¥Pplication using relational databases as a backend
different tables. Workload-Aware Partitioning is Therefore we need to map TPC-C to data Model of

used to collocate the related data item together ap!MPleDB. TPC-C consists of nine tables.

kept on the same partition. In this SCheme\’Narehouse, District, Customer, History, Orders,
workload is analyzed from transaction log and’rder_line, New_order, Stock, ltem. These nine
frequent item sets are determined. The warehous@p!es of TPC-C are mapped to a only one Domain
(wid) of these frequent item sets are collocated # SimpleDB running in Amazon Cloud and one

one partition. So that the distributed transactiont@ble in Hbase

I mplementation in Hadoop Hbase

91

Journal of Theoretical and Applied Information Technology
10" February 2014. Vol. 60 No.1 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195
B. Experimental Setup 8. CONCLUSION

‘The experiments are performed on AmazoRye presented the design of dynamic workload-
SimpleDB and Hbase.We have created tW@ware partitioning.We have used TPC-C
domains (tables) in SimpleDB running in Amazorpenchmark and measured the performance of our
Cloud and two tables in Hbase scheme using the following metrics i.e . response
C. TPC-C Benchmark time and througput . We have observed that

... response time for transactions are low when items
We have evaluated workload-aware partitioningyre collocated at one partition.

by executing the TPC-C benchmark. It is standard

OLTP workload consists of read and write

transactions. There are five types of transactipns REFERENCES!

NEW ORDER transaction which accepts and create

a new order from customer .It is mixture of read ag1] F. Chang, Dean, J., Ghemwat, S., Hsieh,
well as write transaction ii) PAYMENT transaction W. C., Wallach, D. A., Burrows, M.,
which updates the balance of customer by reflecting Chandra, T., Fikes, A., Gruber, R. E.
payment of order by customer.lt is also read and Bigtable: A distributed storage system for
write transaction. iii) ORDER STATUS which structured data. In 7th OSDI (Nov. 2006), pp.
keeps track of status of customer's most recent 205-218.

orders. It is read only transaction.iv) DELIVERY [2] Adam Silberstein,Jianjun Chen , David Lomax,
transaction finds batch of most recent 10 orders Brad McMillen,Masood Mortazavi, P.P.S
which are not yet delivered to the customer. v) .Narayan ,Raghu Ramakrishnan and Russell
STOCK level transaction which finds the recently ~ Sears PNUTS in Flight : Web—Scale Data
sold items which has got a stock below threshald. |~ Serving at Yahoo.

is read only transaction. In real life scenario[3] G. DeCandia, D. Hastorun, M. Jampani, G.
typically 45% transactions are NEW ORDER, 43% Kakulapati, A. Lakshman, A. Pilchin, S.
transactions are PAYMENT and 4% transactions Sivasubramanian, P. Vosshall, W. Vogels.

are ORDER STATUS, DELIVERY, and STOCK. Dynamo: Amazon’s highly available key-value
store. In SOSP, pages 205- 220, 2007.
7. RESULT [4] S. Das, S. Agarwal, D. Agrawal, and Al E

In thi i luati th Abbadi. ElasTraS: An Elastic, Scalable, and
n IS section, we are evalualing € self Managing Transactional Database for the

performance ~ of our partitioning scheme o4 Technical Report 2010-04, CS, UCSB,
experimentally on Amazon SimpleDB and Hbase 551

using TPC-C benchmark. We are evaluating th] Curino, E. Jones, Y. Zhang, and S. Madden,

performance using response time of individua Schism: A Workload- Driven Approach to
transactions. Dynamic workload-aware partitioning Databaée Replication and Partitioning. In

can be evaluated using the following parametegs. i. /| pg 2010.

Response time and Throughput. Fig below sho] M. K. Aguilera, A. Merchant, M. Shah, A
results of our partitioning scheme in SimpleDB. W Veitch. and C. amanolis. “Sinfonia: a new

have kept the frequent itemset on one domain in paradigm for building scalable distributed
SimpleDB and measured the response time of systems,” in Proc. SOSP, 2007

transaction.then we kept these frequently purchasofxﬁdJ S. Das, D. Agrawal, and A. EI Abbadi. G-store:

items on two different domgms In S|mpIeDB_ an a scalable data store for transactional multi key
measured the response time of transaction.we 5ccess in the cloud. In SoCC '10: Proceedings
compared the response time of transaction in both of the # ACM symposium on Cloud

the cases and observed that response time is Iow computing, pages 163-174, New York, NY,
when these frequently purchased items are kept yUSA, 2011
together. There are five transactions in TPC- Curino, E. Jones, R. Popa, N. Malviya, E.

application. We have implemented all the five = \wy s Madden, H.Balakrishnan, and N.
transactions. Figure 1 shows response time for all ze|dovich. Relational Cloud: A Database

transactions in dynamic workload-aware Vs Service for the Cloud. In CIDR, pages 235--240,
response time in TPC-C scheme. 2011

92

Journal of Theoretical and Applied Information Technology

10" February 2014. Vol. 60 No.1 N
© 2005 - 2014 JATIT & LLS. All rights reserved- L ———
7Y TT]
ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

[9] J. Baker, C. Bond, J. C. Corbett, J. Furman, A
Khorlin, J. Larson, J.-M.Leon, Y. Li, A. Lloyd,
V. Yushprakh. Megastore: Providing Scalable,
Highly Available Storage for Interactive
Services. In Proc. CIDR, 2011.

[10] J. J. Levandoski, D. Lomet, M. F. Mokbel, K.
K. Zhao. Deuteronomy: Transaction Support for
Cloud Data. In 5th Biennial Conf. on Innovative
Data Systems Research(CIDR), pages 123--133,
Asilomar, CA, USA, January 2011.

[11] Wei, G. Pierre, and C.-H. Chi. CloudTPS:
Scalable Transactions for Web
Applications in the Cloud Technical Report IR-
CS-053, Vrije Universiteit, Amsterdam, The
Netherlands, Feb. 2010.

[12] P. A. Bernstein, I. Cseri, N. Dani, N. Ellia,
Kalhan, G. Kakivaya, D.B. Lomet, R. Manner,
L. Novik, T. Talius. Adapting Microsoft SQL
Server for Cloud Computing. In ICDE, 2011.

[13] D. Agrawal, A. El Abbadi, S. Antony, and S.
Das. Data Management Challenges in Cloud
computing Infrastructures. In DNIS, 2010.

[14] S. Das, Scalable and Elastic Transactiona
Data Stores for Cloud Computing Platforms.
PhD Thesis, 2011.

[15] S. Das, D. Agrawal, and A. E. /ol
“Elastras: An elastic transactional tada

store

93

Journal of Theoretical and Applied Information Technology

th N
10™ February 2014. Vol. 60 No.1 S
© 2005 - 2014 JATIT & LLS. All rights reserved- TaTT
S0
ISSN: 1992-8645 www.jatit.org E-ISSI817-3195
Payment Transaction Delivery Transaction
30,000 48,000
25,600 42,800
1 Dynamic
Workload- & Dynamic
21,200 Aware 37,600 Waorkload-
o Partitioning @ Awgrg Data
%’ & 17500 18,000 Scheme g 5 Partitioning
2 i6po0 16380 B rCe o az200 ® Normaized
8" 1800 ﬁ__._— Scheme 87 32400 gy 3+24—34, Partiioning
il = " Scheme
12400 27,200 26,666
9,941 2, V"I
5754 8,400 9,400 8464 22670 2300 23200
8,000 + T T T 1 22,000 T
2 4 6 8 50 2 4 8 8 50
(C,Order Line Size) (C,Order Line size)
Stock level Transaction Order Status Transaction
10,000 30,000
26,400
9,000
4 Dynamic
’ 22,800 Waorkload-
& Dynamic Aware Data
8,000 Worklaad- E . Partitioning
” Qw;r; Qata § E & Normalized
@ artitioni itioni
< E 7,200) ng g 190 17500 17:900 Scheme
oE 7,0000 ® Normalized ¥ el
B 5400 6,900 " R 16,570 16,200 s i
r 7.000 p— Partitioning 16,300 A AR
6,455 0l Scheme — - 15030 15400
6,356 :-Waﬂn = 15,600 12240 TASE0 4700
A9 ;
6,000
12,000
2 4 6 8 50
(C,Order Line size)
5,000
2 4 8 8 50
(C,Order Line size)
New Order Transaction
220,000 215009,
180,000
140,000 4 Single
Partition
2 Transactions
Eg
a
@i & Distributed
& 100,000 Transactions

6 8
(C.Order Line size)

50

Figure 1. Response Time Of Dynamic Workload-Aware Partitioning Vs. Response Time Of Normalized TPC-C

Scheme.

94

