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ABSTRACT 
 

Cloud  Computing  is one of the emerging field  for deploying scalable applications at low cost. This paper 
presents a scenario of the challenges faced by application developers for building scalable web applications 
and provides two ways in  which scalability can be achieved. First is using data partitioning which plays 
important role in optimizing the performance and improving scalability of data stores. Second  approach 
works without explicit data partitioning. We  have surveyed the design choices of various cloud data stores 
and analyse the requirements of applications and data access patterns and how these requirements  are 
fulfilled by scalable database management systems. It also presents design model for dynamic  workload-
aware partitioning. In dynamic partitioning, workload is analyzed from transaction logs and frequent item 
sets are found out. These frequent item sets are grouped together and collocated on one partition to improve 
scalability. We also provide the implementation of our partitioning scheme in SimpleDB running in 
Amazon Cloud and Hbase.We are using industry standard TPC-C benchmark for evaluation of  our 
partitioning scheme. We present the experimental results of our partitioning scheme by executing TPC-C 
benchmark. 
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1. INTRODUCTION  
 

Data management in the cloud is basically done 
in two ways. i) Online Transaction Processing 
(OLTP) is used for recording business transactions 
and ii) Online Analytical Processing (OLAP) is 
used for analysis of large databases and finding the 
useful patterns. Transactions in OLTP are small. 
Each operation is simple select or update query that 
manipulate small amount of data. Update operation 
is significant part of OLTP workloads.These 
operations are frequent or repetitive and are known 
in advanced. This will not work for the applications 
which needs to access and manipulate large 
amounts of data. On the other hand is OLAP which 
access huge amount of data. The operations are not 
in advance. OLAP queries are read intensive and 
updates very few amount of data. This paper 
presents work on OLTP data stores. 

      Building scalable and consistent database 
system is a challenge for database researchers.  
Traditional enterprise infrastructure settings 
provides full featured ACID properties but difficult 
to scale out to thousands of low cost commodity 
servers. This introduces the need of NO-SQL Data 

stores. Researchers have been investigated different 
partitioning algorithms such as schema level, graph 
partitioning. All of these data partitioning 
algorithms are useful when the data access pattern 
of the web application is static. Therefore we 
propose to design a dynamic  partitioning scheme  
based on the data access pattern of the web 
applicatons.In this paper, design model for 
achieving scalability of OLTP cloud data stores 
without compromising consistency is presented. 

The Contributions of our work are as follows 
• We propose the design of dynamic 

workload-aware partitioning. We 
demonstrate how this workload-aware 
partitioning can be used to restrict 
transaction to one partition. 

• We provide an implementation of    
dynamic workload-aware partitioning in 
SimpleDB running in Amazon Cloud and 
Hbase and evaluating this partitioning 
scheme using TPC-C benchmark. 

The rest of this paper is organized as follows. We 
perform analysis of various key-value stores in 
Section2, discuss scalable transactions in OLTP 



Journal of Theoretical and Applied Information Technology 
 10th February 2014. Vol. 60 No.1 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
90 

 

Cloud Data Stores in Section 3, presents the design 
of dynamic workload-aware data partitioning 
scheme in Section 4 and implementation in Section 
5, we show experimental evaluation in Section 6, 
results in Section 7 and conclusion in Section 8. 

 

2. KEY VALUE STORES 
 
In this section, we discuss the design model of the 
following cloud data stores such as Google 
Bigtable[1],Yahoo PNUT [2] and Amazon 
Dynamo[3]. In Bigtable, Tablet contains different 
row ranges, which are unit of distribution and load 
balancing. Each tablet is managed by a tablet 
server. To improve scalability, Bigtable uses range 
partitioning. 
   PNUT tables are horizontally partitioned into 
tablets. Each Tablet contains number of rows. 
PNUT stores tablets in servers called storage units. 
The tablet controller maintains the mapping of 
tablets to servers. This mapping is copied to 
multiple routers, which periodically contact the 
tablet controller to check for mapping updates. 
Scalability is achieved by, hash or range 
partitioning. 
         Dynamo [3] was designed to be a highly 
scalable key-value store that is highly available to 
reads but particularly for writes. Amazon 
Dynamo’s partitioning scheme relies on a variant of 
consistent hashing mechanism to distribute the load 
across multiple storage hosts. High Scalability is 
achieved by using hash partitioning. 
      Key-value store provides high scalability, 
availability but limited consistency guarantees and 
lack efficient partitioning scheme for transaction 
processing. To overcome this, various approaches 
have been proposed to strengthen these key/value 
store with more powerful design models of data 
partitioning. 
 
3. SCALABLE TRANSACTIONS IN OLTP  
       CLOUD DATA STORES 
 

There are two ways in which scalability can be 
achieved. The primary approach to achieve 
scalability is using data partitioning and another 
approach works without data partitioning. 
We now discuss the work carried out in the data 
partitioning.Many real life applications such as 
banking or ecommerce applications have static data 
access patterns. These applications works better, 
when transactions are limited to single partition. 
Researchers are facing the challenges in building 
these systems as scalable, consistent, highly 
available .Many researchers have designed the 

systems with this goal and driven by notion that the 
data items which are accessed frequently are kept 
on the same partition. This minimizes the number 
of distributed transactions.   

Sudipto Das et. al   presented ElasTras[4], where 
scalability is accomplished by schema pattern 
called as schema level partitioning. ElasTras 
partitioning scheme is derived from TPC-C schema, 
so it is called as schema level partitioning. In  
schema level  partitioning, related  rows  of  tables  
are  put  together on  single partition and distributed 
transactions are reduced. 

      P. A. Bernstein[12] et. al presented, Cloud SQL 
Server is a Relational database where scalability is 
accomplished by scaling out to low cost servers. It 
also uses static partitioning where transactions are 
enforced to execute on one partition. In Cloud SQL 
Server, partition is normally a table group, keyless 
or keyed. For Keyed table group, all the tables in 
the table group has common partitioning key. Row 
group is collection of related rows that has common 
partitioning key. 

     Curino et. al proposes design of Relational 
Cloud[8] with the common objective as 
ElasTras[4].The key feature of Relational Cloud is 
it uses workload-aware approach with graph 
partitioning [5]. In graph partitioning[5], the related 
rows which are accessed by transactions are kept on 
single partition.  

        J.Baker et. al presented, Megastore[9] in 
which also uses static data partitioning scheme 
where abstractions are called as entity groups. 
Entity groups are put on a single node so that 
transaction can access only single node. 
 
    As discussed before, these systems are designed 
with the similar objective where related rows are 
kept on single partition. All the four systems 
discussed above uses static partitioning scheme 
suitable for web applications whose data access 
pattern is static. But there are some applications 
such as online games where frequently accessed 
data items changed dynamically with time and 
therefore Sudipto Das et. al proposed G-Store [7], 
where the keys from group on different node are 
put together and formed a new group on single 
partition. Another approach works without data 
partitioning. These particular class of systems do 
not use any partitioning scheme. 

       Aguilera et al. [6] presented Sinfonia, in which 
transactions are divided into sub transactions called 
as mini transactions. It presents minitransaction and 
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guarantees transactional semantics on a tiny set of 
operations. 

       Wei et. al Proposes system, Cloud TPS [11] 
which disperse transaction management into Local 
Transaction Managers(LTMs).Cloud TPS is 
suitable when the transactions are short, and 
predefined in an advanced. 

        D.Lomet et. al suggested design, Deuteronomy 
[10] in which scalability is accomplished by 
decomposing functions of a database storage engine 
kernel in two different component, transaction and 
data management.  Transaction component 
executes transactions, concurrency control and 
recovery but not aware of physical location of data 
and data component. The key aspect of 
Deuteronomy is data can be any where in the 
Cloud. But In Deuteronomy, the entire load is on 
single transaction component for handling all the 
requests, so there is bottleneck for larger cloud 
deployments. 

      Researchers have discussed two different 
approaches for improving the scalability of 
databases. In this paper, we have surveyed four 
different systems which uses static data partitioning 
scheme suitable only for the web applications 
whose data access pattern is static. Therefore 
dynamic partitioning is proposed but creates 
overhead in creation of groups. An efficient 
partitioning scheme will minimize access to 
different database partitions and reduces distributed 
transactions. Therefore there is need to design 
efficient dynamic workload aware partitioning 
scheme, which will partitioned the database based 
on their workload. 

4. DESIGN OF DYNAMIC WORKLOAD-  

         AWARE DATA PARTITIONING 
In this section, we discuss the database 

partitioning to allow the cloud data stores to scale 
out. Partitioning is a method by which scalability is 
achieved. It is used specially for scaling update 
transactions. Workload-Aware Partitioning allows 
designing real life and useful applications. The 
motivation for Workload-Aware Partitioning is that 
in large number of applications, transaction requires 
few related data items which are located across 
different tables. Workload-Aware Partitioning is 
used to collocate the related data item together and 
kept on the same partition. In this scheme, 
workload is analyzed from transaction log and 
frequent item sets are determined. The warehouses 
(wid) of these frequent item sets are collocated at 
one partition. So that the distributed transactions 

are avoided and scalability is achieved. We have 
used TPC-C benchmark for evaluation of our 
partitioning scheme. It has nine tables. Warehouse, 
District,Customer,History,Orders,Order_line, 
New_order,Stock,Item.Item id is a primary key in 
Item table which is foreign key in Order line 
table.In TPC-C,all the items are populated in the 
warehouse. We have made some changes to the 
TPC-C scheme that we are distributing items on 
different partitions. (only frequently purchased 
items) are collocated on one partition. Orderlines 
are monitored from transaction logs and items in an  
orderline which are purchased together are kept 
together on one partition.. For ex. If Ponds cream 
and Lux soap is purchased together in many 
transactions so these items (ol_i_id) are grouped 
together on same partition.so that transaction can 
access data from same partition. 

5. IMPLEMENTATION 

In this section, we are implementing our 
partitioning scheme by executing TPC-C 
benchmark. We are also comparing the results of 
our scheme with normalized TPC-C benchmark 

A. Implementation in Amazon SimpleDB 

We have created only one domain in SimpleDB 
for nine tables in TPC-C.Workload aware 
partitioning have reduced the number of domains 
accessed to only one. Domain in simpleDB 
contains attributes of all nine tables in TPC-C. 

 

B. Implementation in Hadoop Hbase 

We have configured setup for a single node 
Hadoop cluster where we have one master node, 
data node and only one region server is 
created.Only one table is created in hbase for nine 
tables in TPC-C. Table in hbase contains attributes 
of all nine tables in TPC-C. 

6. EXPERIMENTAL EVALUATION 

A. Mapping of TPC-C to the Cloud 
TPC-C is a benchmark was designed as web 

application using relational databases as a backend. 
Therefore we need to map TPC-C to data Model of 
SimpleDB. TPC-C consists of nine tables. 
Warehouse, District, Customer, History, Orders, 
Order_line, New_order, Stock, Item. These nine 
tables of TPC-C are mapped to a only one Domain 
in SimpleDB running in Amazon Cloud and one 
table in Hbase 
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B. Experimental Setup 

The experiments are performed on Amazon 
SimpleDB and Hbase.We have created two 
domains (tables) in SimpleDB running in Amazon 
Cloud and two tables in Hbase 

C. TPC-C Benchmark 

We have evaluated workload-aware partitioning 
by executing the TPC-C benchmark. It is standard 
OLTP workload consists of read and write 
transactions. There are five types of transactions.i) 
NEW ORDER transaction which accepts and create 
a new order from customer .It is mixture of read as 
well as write transaction ii) PAYMENT transaction 
which updates the balance of customer by reflecting 
payment of order by customer.It is also read and 
write transaction. iii) ORDER STATUS which 
keeps track of status of customer’s most recent 
orders. It is read only transaction.iv) DELIVERY 
transaction finds batch of most recent 10 orders 
which are not yet delivered to the customer. v) 
STOCK level transaction which finds the recently 
sold items which has got a stock below threshold. It 
is read only transaction. In real life scenario, 
typically 45% transactions are NEW ORDER, 43% 
transactions are PAYMENT and 4% transactions 
are ORDER STATUS, DELIVERY, and STOCK. 

7. RESULT 

In this section, we are evaluating the 
performance of our partitioning scheme 
experimentally on Amazon SimpleDB and Hbase 
using TPC-C benchmark. We are evaluating the 
performance using response time of individual 
transactions. Dynamic workload-aware partitioning 
can be evaluated using the following parameters. i.e 
Response time and Throughput. Fig below shows 
results of our partitioning scheme in SimpleDB. We 
have kept the frequent itemset on one domain in 
SimpleDB and measured the response time of 
transaction.then we kept these frequently purchased 
items on two different domains in simpleDB and 
measured the response time of transaction.we 
compared the response time of transaction in both 
the cases and observed that response time is low 
when these frequently purchased items are kept 
together. There are five transactions in TPC-C 
application. We have implemented all the five 
transactions. Figure 1 shows response time for all 
transactions in dynamic workload-aware vs 
response time in TPC-C scheme. 

 
 

8. CONCLUSION 

We  presented the design of dynamic workload-
aware partitioning.We have used TPC-C 
benchmark and measured the performance of our 
scheme using the following metrics i.e . response 
time and througput . We have observed that 
response time for transactions are low when items 
are collocated at one partition. 
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Figure 1.  Response Time Of Dynamic Workload-Aware Partitioning Vs. Response Time Of Normalized TPC-C 
Scheme. 

 
  
 

 
 


