
Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

89

 DYNAMIC WORKLOAD-AWARE PARTITIONING IN OLTP
CLOUD DATA STORES

1SWATI AHIRRAO, 2RAJESH INGLE

1Symbiosis International University, Computer Science & Information Technology, Pune, India

2 Pune Institute of Computer Technology, Computer Engineering, Pune, India

E-mail: 1swatia@sitpune.edu.in, 2Ingle@ieee.org

ABSTRACT

Cloud Computing is one of the emerging field for deploying scalable applications at low cost. This paper
presents a scenario of the challenges faced by application developers for building scalable web applications
and provides two ways in which scalability can be achieved. First is using data partitioning which plays
important role in optimizing the performance and improving scalability of data stores. Second approach
works without explicit data partitioning. We have surveyed the design choices of various cloud data stores
and analyse the requirements of applications and data access patterns and how these requirements are
fulfilled by scalable database management systems. It also presents design model for dynamic workload-
aware partitioning. In dynamic partitioning, workload is analyzed from transaction logs and frequent item
sets are found out. These frequent item sets are grouped together and collocated on one partition to improve
scalability. We also provide the implementation of our partitioning scheme in SimpleDB running in
Amazon Cloud and Hbase.We are using industry standard TPC-C benchmark for evaluation of our
partitioning scheme. We present the experimental results of our partitioning scheme by executing TPC-C
benchmark.

Keywords: Cloud, Scalability, Oltp, Data Partitioning

1. INTRODUCTION

Data management in the cloud is basically done
in two ways. i) Online Transaction Processing
(OLTP) is used for recording business transactions
and ii) Online Analytical Processing (OLAP) is
used for analysis of large databases and finding the
useful patterns. Transactions in OLTP are small.
Each operation is simple select or update query that
manipulate small amount of data. Update operation
is significant part of OLTP workloads.These
operations are frequent or repetitive and are known
in advanced. This will not work for the applications
which needs to access and manipulate large
amounts of data. On the other hand is OLAP which
access huge amount of data. The operations are not
in advance. OLAP queries are read intensive and
updates very few amount of data. This paper
presents work on OLTP data stores.

 Building scalable and consistent database
system is a challenge for database researchers.
Traditional enterprise infrastructure settings
provides full featured ACID properties but difficult
to scale out to thousands of low cost commodity
servers. This introduces the need of NO-SQL Data

stores. Researchers have been investigated different
partitioning algorithms such as schema level, graph
partitioning. All of these data partitioning
algorithms are useful when the data access pattern
of the web application is static. Therefore we
propose to design a dynamic partitioning scheme
based on the data access pattern of the web
applicatons.In this paper, design model for
achieving scalability of OLTP cloud data stores
without compromising consistency is presented.

The Contributions of our work are as follows
• We propose the design of dynamic

workload-aware partitioning. We
demonstrate how this workload-aware
partitioning can be used to restrict
transaction to one partition.

• We provide an implementation of
dynamic workload-aware partitioning in
SimpleDB running in Amazon Cloud and
Hbase and evaluating this partitioning
scheme using TPC-C benchmark.

The rest of this paper is organized as follows. We
perform analysis of various key-value stores in
Section2, discuss scalable transactions in OLTP

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

90

Cloud Data Stores in Section 3, presents the design
of dynamic workload-aware data partitioning
scheme in Section 4 and implementation in Section
5, we show experimental evaluation in Section 6,
results in Section 7 and conclusion in Section 8.

2. KEY VALUE STORES

In this section, we discuss the design model of the
following cloud data stores such as Google
Bigtable[1],Yahoo PNUT [2] and Amazon
Dynamo[3]. In Bigtable, Tablet contains different
row ranges, which are unit of distribution and load
balancing. Each tablet is managed by a tablet
server. To improve scalability, Bigtable uses range
partitioning.
 PNUT tables are horizontally partitioned into
tablets. Each Tablet contains number of rows.
PNUT stores tablets in servers called storage units.
The tablet controller maintains the mapping of
tablets to servers. This mapping is copied to
multiple routers, which periodically contact the
tablet controller to check for mapping updates.
Scalability is achieved by, hash or range
partitioning.
 Dynamo [3] was designed to be a highly
scalable key-value store that is highly available to
reads but particularly for writes. Amazon
Dynamo’s partitioning scheme relies on a variant of
consistent hashing mechanism to distribute the load
across multiple storage hosts. High Scalability is
achieved by using hash partitioning.
 Key-value store provides high scalability,
availability but limited consistency guarantees and
lack efficient partitioning scheme for transaction
processing. To overcome this, various approaches
have been proposed to strengthen these key/value
store with more powerful design models of data
partitioning.

3. SCALABLE TRANSACTIONS IN OLTP
 CLOUD DATA STORES

There are two ways in which scalability can be
achieved. The primary approach to achieve
scalability is using data partitioning and another
approach works without data partitioning.
We now discuss the work carried out in the data
partitioning.Many real life applications such as
banking or ecommerce applications have static data
access patterns. These applications works better,
when transactions are limited to single partition.
Researchers are facing the challenges in building
these systems as scalable, consistent, highly
available .Many researchers have designed the

systems with this goal and driven by notion that the
data items which are accessed frequently are kept
on the same partition. This minimizes the number
of distributed transactions.

Sudipto Das et. al presented ElasTras[4], where
scalability is accomplished by schema pattern
called as schema level partitioning. ElasTras
partitioning scheme is derived from TPC-C schema,
so it is called as schema level partitioning. In
schema level partitioning, related rows of tables
are put together on single partition and distributed
transactions are reduced.

 P. A. Bernstein[12] et. al presented, Cloud SQL
Server is a Relational database where scalability is
accomplished by scaling out to low cost servers. It
also uses static partitioning where transactions are
enforced to execute on one partition. In Cloud SQL
Server, partition is normally a table group, keyless
or keyed. For Keyed table group, all the tables in
the table group has common partitioning key. Row
group is collection of related rows that has common
partitioning key.

 Curino et. al proposes design of Relational
Cloud[8] with the common objective as
ElasTras[4].The key feature of Relational Cloud is
it uses workload-aware approach with graph
partitioning [5]. In graph partitioning[5], the related
rows which are accessed by transactions are kept on
single partition.

 J.Baker et. al presented, Megastore[9] in
which also uses static data partitioning scheme
where abstractions are called as entity groups.
Entity groups are put on a single node so that
transaction can access only single node.

 As discussed before, these systems are designed
with the similar objective where related rows are
kept on single partition. All the four systems
discussed above uses static partitioning scheme
suitable for web applications whose data access
pattern is static. But there are some applications
such as online games where frequently accessed
data items changed dynamically with time and
therefore Sudipto Das et. al proposed G-Store [7],
where the keys from group on different node are
put together and formed a new group on single
partition. Another approach works without data
partitioning. These particular class of systems do
not use any partitioning scheme.

 Aguilera et al. [6] presented Sinfonia, in which
transactions are divided into sub transactions called
as mini transactions. It presents minitransaction and

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

91

guarantees transactional semantics on a tiny set of
operations.

 Wei et. al Proposes system, Cloud TPS [11]
which disperse transaction management into Local
Transaction Managers(LTMs).Cloud TPS is
suitable when the transactions are short, and
predefined in an advanced.

 D.Lomet et. al suggested design, Deuteronomy
[10] in which scalability is accomplished by
decomposing functions of a database storage engine
kernel in two different component, transaction and
data management. Transaction component
executes transactions, concurrency control and
recovery but not aware of physical location of data
and data component. The key aspect of
Deuteronomy is data can be any where in the
Cloud. But In Deuteronomy, the entire load is on
single transaction component for handling all the
requests, so there is bottleneck for larger cloud
deployments.

 Researchers have discussed two different
approaches for improving the scalability of
databases. In this paper, we have surveyed four
different systems which uses static data partitioning
scheme suitable only for the web applications
whose data access pattern is static. Therefore
dynamic partitioning is proposed but creates
overhead in creation of groups. An efficient
partitioning scheme will minimize access to
different database partitions and reduces distributed
transactions. Therefore there is need to design
efficient dynamic workload aware partitioning
scheme, which will partitioned the database based
on their workload.

4. DESIGN OF DYNAMIC WORKLOAD-

 AWARE DATA PARTITIONING
In this section, we discuss the database

partitioning to allow the cloud data stores to scale
out. Partitioning is a method by which scalability is
achieved. It is used specially for scaling update
transactions. Workload-Aware Partitioning allows
designing real life and useful applications. The
motivation for Workload-Aware Partitioning is that
in large number of applications, transaction requires
few related data items which are located across
different tables. Workload-Aware Partitioning is
used to collocate the related data item together and
kept on the same partition. In this scheme,
workload is analyzed from transaction log and
frequent item sets are determined. The warehouses
(wid) of these frequent item sets are collocated at
one partition. So that the distributed transactions

are avoided and scalability is achieved. We have
used TPC-C benchmark for evaluation of our
partitioning scheme. It has nine tables. Warehouse,
District,Customer,History,Orders,Order_line,
New_order,Stock,Item.Item id is a primary key in
Item table which is foreign key in Order line
table.In TPC-C,all the items are populated in the
warehouse. We have made some changes to the
TPC-C scheme that we are distributing items on
different partitions. (only frequently purchased
items) are collocated on one partition. Orderlines
are monitored from transaction logs and items in an
orderline which are purchased together are kept
together on one partition.. For ex. If Ponds cream
and Lux soap is purchased together in many
transactions so these items (ol_i_id) are grouped
together on same partition.so that transaction can
access data from same partition.

5. IMPLEMENTATION

In this section, we are implementing our
partitioning scheme by executing TPC-C
benchmark. We are also comparing the results of
our scheme with normalized TPC-C benchmark

A. Implementation in Amazon SimpleDB

We have created only one domain in SimpleDB
for nine tables in TPC-C.Workload aware
partitioning have reduced the number of domains
accessed to only one. Domain in simpleDB
contains attributes of all nine tables in TPC-C.

B. Implementation in Hadoop Hbase

We have configured setup for a single node
Hadoop cluster where we have one master node,
data node and only one region server is
created.Only one table is created in hbase for nine
tables in TPC-C. Table in hbase contains attributes
of all nine tables in TPC-C.

6. EXPERIMENTAL EVALUATION

A. Mapping of TPC-C to the Cloud
TPC-C is a benchmark was designed as web

application using relational databases as a backend.
Therefore we need to map TPC-C to data Model of
SimpleDB. TPC-C consists of nine tables.
Warehouse, District, Customer, History, Orders,
Order_line, New_order, Stock, Item. These nine
tables of TPC-C are mapped to a only one Domain
in SimpleDB running in Amazon Cloud and one
table in Hbase

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

92

B. Experimental Setup

The experiments are performed on Amazon
SimpleDB and Hbase.We have created two
domains (tables) in SimpleDB running in Amazon
Cloud and two tables in Hbase

C. TPC-C Benchmark

We have evaluated workload-aware partitioning
by executing the TPC-C benchmark. It is standard
OLTP workload consists of read and write
transactions. There are five types of transactions.i)
NEW ORDER transaction which accepts and create
a new order from customer .It is mixture of read as
well as write transaction ii) PAYMENT transaction
which updates the balance of customer by reflecting
payment of order by customer.It is also read and
write transaction. iii) ORDER STATUS which
keeps track of status of customer’s most recent
orders. It is read only transaction.iv) DELIVERY
transaction finds batch of most recent 10 orders
which are not yet delivered to the customer. v)
STOCK level transaction which finds the recently
sold items which has got a stock below threshold. It
is read only transaction. In real life scenario,
typically 45% transactions are NEW ORDER, 43%
transactions are PAYMENT and 4% transactions
are ORDER STATUS, DELIVERY, and STOCK.

7. RESULT

In this section, we are evaluating the
performance of our partitioning scheme
experimentally on Amazon SimpleDB and Hbase
using TPC-C benchmark. We are evaluating the
performance using response time of individual
transactions. Dynamic workload-aware partitioning
can be evaluated using the following parameters. i.e
Response time and Throughput. Fig below shows
results of our partitioning scheme in SimpleDB. We
have kept the frequent itemset on one domain in
SimpleDB and measured the response time of
transaction.then we kept these frequently purchased
items on two different domains in simpleDB and
measured the response time of transaction.we
compared the response time of transaction in both
the cases and observed that response time is low
when these frequently purchased items are kept
together. There are five transactions in TPC-C
application. We have implemented all the five
transactions. Figure 1 shows response time for all
transactions in dynamic workload-aware vs
response time in TPC-C scheme.

8. CONCLUSION

We presented the design of dynamic workload-
aware partitioning.We have used TPC-C
benchmark and measured the performance of our
scheme using the following metrics i.e . response
time and througput . We have observed that
response time for transactions are low when items
are collocated at one partition.

REFERENCES:

 [1] F. Chang, Dean, J., Ghemwat, S., Hsieh,

W. C., Wallach, D. A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R. E.
Bigtable: A distributed storage system for
structured data. In 7th OSDI (Nov. 2006), pp.
205-218.

[2] Adam Silberstein,Jianjun Chen , David Lomax,
Brad McMillen,Masood Mortazavi, P.P.S
.Narayan ,Raghu Ramakrishnan and Russell
Sears PNUTS in Flight : Web–Scale Data
Serving at Yahoo.

[3] G. DeCandia, D. Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, W. Vogels.
Dynamo: Amazon’s highly available key-value
store. In SOSP, pages 205- 220, 2007.

[4] S. Das, S. Agarwal, D. Agrawal, and A. El
Abbadi. ElasTraS: An Elastic, Scalable, and
Self Managing Transactional Database for the
Cloud. Technical Report 2010-04, CS, UCSB,
2010

[5] Curino, E. Jones, Y. Zhang, and S. Madden.
Schism: A Workload- Driven Approach to
Database Replication and Partitioning. In
VLDB,2010.

[6] M. K. Aguilera, A. Merchant, M. Shah, A.
Veitch, and C. amanolis,“Sinfonia: a new
paradigm for building scalable distributed
systems,” in Proc. SOSP, 2007

[7] S. Das, D. Agrawal, and A. El Abbadi. G-store:
a scalable data store for transactional multi key
access in the cloud. In SoCC '10: Proceedings
of the 1st ACM symposium on Cloud
computing, pages 163-174, New York, NY,
USA, 2011

[8] Curino, E. Jones, R. Popa, N. Malviya, E.
Wu, S. Madden, H.Balakrishnan, and N.
Zeldovich. Relational Cloud: A Database
Service for the Cloud. In CIDR, pages 235--240,
2011

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

93

[9] J. Baker, C. Bond, J. C. Corbett, J. Furman, A.
Khorlin, J. Larson, J.-M.Leon, Y. Li, A. Lloyd,
V. Yushprakh. Megastore: Providing Scalable,
Highly Available Storage for Interactive
Services. In Proc. CIDR, 2011.

[10] J. J. Levandoski, D. Lomet, M. F. Mokbel, K.
K. Zhao. Deuteronomy: Transaction Support for
Cloud Data. In 5th Biennial Conf. on Innovative
Data Systems Research(CIDR), pages 123--133,
Asilomar, CA, USA, January 2011.

[11] Wei, G. Pierre, and C.-H. Chi. CloudTPS:
Scalable Transactions for Web
Applications in the Cloud Technical Report IR-
CS-053, Vrije Universiteit, Amsterdam, The
Netherlands, Feb. 2010.

[12] P. A. Bernstein, I. Cseri, N. Dani, N. Ellis, A.
Kalhan, G. Kakivaya, D.B. Lomet, R. Manner,
L. Novik, T. Talius. Adapting Microsoft SQL
Server for Cloud Computing. In ICDE, 2011.

[13] D. Agrawal, A. El Abbadi, S. Antony, and S.
Das. Data Management Challenges in Cloud
computing Infrastructures. In DNIS, 2010.

[14] S. Das, Scalable and Elastic Transactional
Data Stores for Cloud Computing Platforms.
PhD Thesis, 2011.

[15] S. Das, D. Agrawal, and A. E. Abbadi,
 “Elastras: An elastic transactional data
 store

Journal of Theoretical and Applied Information Technology
 10th February 2014. Vol. 60 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

94

Figure 1. Response Time Of Dynamic Workload-Aware Partitioning Vs. Response Time Of Normalized TPC-C
Scheme.

