
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

568

FAIRNESS OF THE TCP-BASED NEW AIMD CONGESTION
CONTROL ALGORITHM

HAYDER NATIQ JASEM, ZURIATI AHMAD ZUKARNAIN, MOHAMED OTHMAN,

SHAMALA SUBRAMANIAM

Faculty of Computer Science and Information Technology

University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

E-mail: hayder_n@yahoo.com , zuriati, mothman , shamala@fsktm.upm.edu.my

ABSTRACT

Congestion control is one of the fundamental issues in computer networks. In transport control protocol
(TCP) the performance of protocol is being measured based on fairness and efficiency. The fairness on
round trip time (RTT) can be measured using the algorithm based on two flows or more than that.
Congestion control is an effort to adapt the performance of a network to changes in the traffic load without
adversely affecting users perceived utilities. The traffic load in a network will effect the performance of a
network and the fairness of algorithm. Congestion control is an introduced effect that adapts the
performance. AIMD (Additive Increase Multiplicative Decrease) is an established algorithm in a set of
liner algorithms that it reflects good efficiency as well as good fairness. In this paper we propose an
evaluation method of fairness for New AIMD congestion control algorithm. The evaluation of fairness has
been done by using multiple flows start at the same time and also by considering each flow start at a
different time in other way.

Keyword: TCP, AIMD, Congestion control, Fairness.

1. INTRODUCTION

The Transmission Control Protocol (TCP) has been
the dominant reliable transport layer protocol ever
since the appearance of its original version in 1981
[1]. The motivation behind TCP was to add
reliability on top of an inherently unreliable IP
network. The original TCP incorporated a “sliding
window” mechanism, which, in conjunction with
packet acknowledgments and segment sequence
numbers, guaranteed a reliable data transmission as
well as flow control.

2. RELATED WORK

In the early 1980’s, network congestion did not
constitute a focus of concern due to the limited
number of interconnected hosts, and TCP’s original
version was deemed adequate. As the number of
hosts that joined the Internet increased, congestion
problems, caused by lack of available bandwidth,
became more and more evident. The deficiency of
the original TCP was the absence of a mechanism
that would adjust the sending rate responding to

changes in the network load, namely congestion
control. As a result, the network would flood and its
overall performance would be severely degraded,
leading to a series of ‘congestion collapses’ in the
mid 1980’s [2].

2.1. Congestion control

It was not until 1988 that a widely accepted
congestion control algorithm was finally suggested
[3]. This algorithm employed the Additive Increase
Multiplicative Decrease (AIMD) principle.
According to the AIMD, a protocol should increase
its sending rate by a constant amount and decrease
it by a fraction of its original value, each time an
adjustment is necessary. This mechanism is the
base of virtually all TCP implementations used in
today’s Internet, since it is proven to converge to
both a desirable level of efficiency as well as a
desirable level of fairness among competing flows
[4].
In the years that followed the establishment of
AIMD as the standard algorithm to be used in TCP,
Internet underwent numerous changes and rapidly

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

569

increasing popularity. With the availability of
widespread services such as e-mail and the World
Wide Web (WWW), the Internet became accessible
to a broader range of people, including users
lacking any particular familiarity with computers.
Although new competing technologies emerged and
the demands from a transport layer protocol were
highly increased, TCP not only survived but also
became an integral ingredient of the Internet,
experiencing only minor modifications. These
modifications reflect to the different in-use TCP
versions (TCP-Tahoe, TCP-Reno, TCP-NewReno)
[3, 5, 6], experimental TCP versions (TCP-SACK,
TCP-Vegas) [7, 8], as well as special-purpose TCP
versions (T/TCP) [9].

2.2. The AIMD principle

As mentioned earlier, the basic concept of AIMD
was proven to yield satisfactory results when the
network infrastructure consisted of hard-wire
connected components. One year after the
appearance of AIMD in 1988, the authors in [11]
provided a detailed analysis of different congestion
control strategies, as well as what renders the
existence of such a strategy in a transport protocol
crucial. Below we give a few important points
made in this work.
The major issue of concern to a transport protocol
is its efficiency. On a network link crossed by a
number of different flows running the same
protocol, the ideal situation is to utilize as much of
the available bandwidth without introducing
congestion (i.e. packets queuing up on the router).
In Figure 1, we see the achieved throughput as a
function of the network load. It becomes clear that
we need to avoid overloading the link, since the
achieved throughput will diminish. For a protocol
to operate in the area between the points labeled as
Knee and Cliff, a congestion control mechanism is
necessary. In [11] efficiency is defined as the
closeness of the total load to the Knee, which is a
good starting point.

Figure 1: Throughput as a function of load.

Besides utilizing a high portion of the available
bandwidth, a transport protocol must also be fair to
the rest of the flows traversing the same part of the
network. An efficient transport protocol does not
necessarily mean that it is also fair. A single flow
might take up the largest portion of the available
bandwidth while the rest remain idle. Obviously,
this is an undesirable behavior and in certain cases,
gaining higher fairness is worthwhile even at the
cost of reduced efficiency.
Intuitively, fairness is the closeness of the
throughput achieved by each flow to its fair share.
To measure fairness, the authors in [11] define a

fairness index as:
∑
∑=

)(
)(

)(2

2

i

i

xn
x

xF

Where, ix is the throughput of the thi flow and n is
the total number of flows. The fairness index of a
system ranges from 0 to 1, with 0 being totally
unfair and 1 being totally fair.
Along the lines of efficiency and fairness, as
determined in [16], four different scenarios were
tested: Additive Increase Additive Decrease,
Additive Increase Multiplicative Decrease,
Multiplicative Increase Additive Decrease, and
Multiplicative Increase Multiplicative Decrease.
These scenarios were evaluated in terms of how
fast they converged to the desirable efficiency and
fairness levels. The AIMD scheme was found to be
the one that better matched the required
characteristics. Recent studies [16, 17] provide a
more in-depth analysis, regarding the impact of the
AIMD parameters on the performance of TCP.

2.3. System model

Chiu and Jain [11] have formulated the congestion
avoidance problem as a resource management
problem and proposed a distributed congestion
avoidance mechanism named ‘additive
increase/multiplicative decrease’ (AIMD). In their
work, as a network model they use a “binary
feedback” scheme with one bottleneck router [12].
As shown in Figure 2. It consists of a set of m users
each of which send data in the network at a rate 2

iw . The data send by each user are aggregated in a
single bottleneck and the network checks whether
the total amount of data send by users exceeds
some network or bandwidth threshold goalX (we

can assume that goalX is a value between the knee
and the cliff and is a characteristic of the network).
The system sends a binary feedback to each user
telling whether the flows exceed the network

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

570

threshold. The system response is 1 when
bandwidth is available and 0 when bandwidth is
exhausted.

The feedback sent by the network arrives at the
same time to all users. The signal is the same to all
users and they take the same action when the signal
arrives. The next signal is not send until the users
have responded to the previous signal. Such a
system is called synchronous feedback system or
simply synchronous system. The time elapsed
between the arrival of two consecutive signals is
discrete and the same after every signal arrival.
This time is referred also as RTT.

The system behavior can be defined the following
time units:

A step (or round-trip time – RTT) is the time
elapsed between the arrival of two consecutive
signals.
A cycle or epoch is the time elapsed between two
consecutive congestion events (i.e., the time
immediately after a system response 0 and ending
at the next event of congestion when the system
response is again 0).

Figure 2: A control system model of m users sharing a
network [10].

This network model is quite simple and its
assumptions have been evaluated in the Internet for
several years. In practice the parameter goalX is
the network capacity (i.e. the number of packets
that the link and the routers’ buffer can hold – or in-
the-fly packets). When the aggregate flows’ rate
exceeds the network capacity the flows start to lose
packets. If the transport protocol provides reliability
mechanisms (e.g. as in TCP) it can detect the
packet loss or congestion event. Since the majority
of the applications use reliable transport protocols
(e.g. TCP), the binary feedback mechanism has an
implicit presence: a successful data transmission is

interpreted as available bandwidth, and a packet
loss is interpreted as congestion event [3].

Although the system had a strong impact on the
evaluation of congestion avoidance mechanisms
(e.g. AIMD), there are some limitations. First, the
system considers the responses to be synchronous,
which, in terms of real networks means that all
flows have the same RTT. This assumption is not
real. A second assumption and limitation is that the
network response arrives at the same time to all
users, even when they have the same RTT. This is
disputed in [13]. The above assumption is
supported by Jacobson experimentally in a low
bandwidth network with congestion avoidance
mechanisms (TCP-Tahoe) and where flows have
the same RTT [14, 15]. Whatever the argument,
this assumption is not true for a reason which is the
third limitation of the system. The system has only
one bottleneck. In reality a connection might go
through none, one, or more than one router or
bottlenecks. If a flow traverses more than one
bottleneck, then it is not guaranteed that at each
bottleneck congestion will happen at the same time.
Nevertheless, these limitations do not prevent the
mechanisms from controlling flows’ data rate and
avoid congestion which was the major concern in
the early stages of the Internet [10].

2.4. Additive Increase / Multiplicative Decrease

Control algorithm (AIMD)

The Additive Increase/Multiplicative Decrease
(AIMD) algorithms described in detail in [10] and
are referred as “dynamic window adjustment” in
[18]. The basic idea of the algorithms to reduce the
sending rate/window of the flows when the system
bandwidth is exhausted and to increase the sending
rates/windows when bandwidth is available. As
mentioned in the previous section, when bandwidth
is available (i.e. the aggregate rates of the flows do
not exceed the network threshold: Σ iw < goalX)
the system attaches the signal 1 to the
acknowledgment of each packet. In response, flows
increase by one (packet) their windows. A
continuous series of positive signals will cause a
linear increase in the flows’ rate. Obviously, the
increase is not unlimited because the bandwidth is
fixed. When flows’ rate exceed the bandwidth limit
(i.e. Σ iw ≥ goalX) the system attaches the 0
signal to the acknowledgment of each packet and
flows respond to congestion by a decrease in their
sending rates/windows.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

571

A. Lahanas and V. Tsaoussidis in [10] prove that a
linear increase/exponential decrease policy is a
condition for the increase/decrease algorithms to set
(or converge) quickly the system in a fair state
where the load oscillates around some equilibrium.
The equilibrium state determines also the fairness
and efficiency of the mechanism.
The convergence behavior of a two flow AIMD
system is depicted by vectors in a 2-dimensional
space oscillating around the efficiency line (or
equilibrium) in Figure 3. Upon each multiplicative
decrease, the two windows 1x and 2x move closer

to the fairness line (1x = 2x). More details on the
convergence of AIMD can be found in [10].

Figure 3: Vectorial representation of two-flow

convergence to fairness. Figure is based on [10].

A point on the quadrant between axis represent the
sum of the windows. The vectors trace the sum of
the windows as they increase or decrease. ‘k’
denotes the length of the projection of the linear
increase vector on the x and y axis. W is the value
of goalX in terms of packets.

AIMD is also designed to be responsive to
fluctuations of bandwidth availability due to
varying contention; this is managed by a continuous
probing mechanism through additive increase of
resource consumption. Chiu and Jain [4] showed
that AIMD guarantees convergence to fairness: all
flows eventually converge to a fair-share, i.e., an
equal allocation of resources. Convergence to
fairness is faster when the multiplicative decrease is
larger, but then, bandwidth is further underutilized,
and applications experience severe transmission
gaps. Hence, although smoothness is desirable, it
works against fairness: the smoother the
adjustment, the longer convergence to fairness
takes [19].
And the mathematical formula for AIMD is:

w ← w - aw when loss is detected
w ← w + b/w when an ACK arrives

Efficiency: Controlling the rates of the flows in
order to avoid congestion might leave the network
resources (i.e., bandwidth) underutilized. So the
algorithm that controls the sending rate of the flows
should also utilize the resources to the maximum.
Fairness: Since the system is distributed in nature,
any attempt to control the sending rate might end
up in unfair resource allocation to the flows (e.g.,
some flows might use more bandwidth than other
flows). A mechanism that controls the sending
rate of a flow must use the same bandwidth as the
rest of the flows. Two generally used fairness
criteria are max-min fairness [20, 21] and
proportional fairness [22]. Max-min fairness
concept has emerged from ‘fair queuing’ models:
routers have a separate queue per flow and use the
round-robin model to serve the flows. With this
model flows that send few data receive higher
priority than flows that send bulk data. Proportional
fairness favors the flows that have more packets in
the routers rather than flows that have fewer
packets. This kind of fairness is useful for
designing pricing models for the Internet. In this
work the network is considered as a black box. The
end-to-end protocols do not have any knowledge of
the queuing model. However, they try to achieve
some kind of fairness. If a flow is a continuous
transmission of data between two hosts then a
desired property of the flows (or the network)
would be to have equal rates at a common
bottleneck/router. With the above assumption this
property matches with the max-min concept of
fairness. This fairness is captured by an index or
formula that compares the rates/throughputs of the
flows.
Distributedness: Congestion can be controlled at
the network layer (where it happens) or controlled
at the end-nodes. The first (or centralized approach)
would be optimal since the network knows better
its load at any time. However, this technique
requires processing power from the routers and
absolute knowledge of the number of flows and
their sending rate. This approach would cause also
some overhead since, in addition to data payload
flows have to convey also information needed from
the routers. Obviously this approach is not
consistent with the layered architecture of the
network because cooperation and transparency
between layers is required to apply these
techniques. The burden of control mechanism is
delegated on the routers, hence, the name
centralized or router-centric approach. The second
approach (referred also as distributed or end-to-end

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

572

approach [23]) attempts to solve the congestion
problem from the end-nodes. The routers are kept
busy with forwarding packets and need not have
extra information about the number of flows and
their sending rates. This approach causes less
overhead than the centralized approach and relies
on the end-nodes’ ability to grasp the load of the
network. The end-to-end mechanisms can easily be
applied to today’s packet networks (e.g. Internet),
without changing the functionality of any other
layer.
Convergence: A requirement for the control
mechanism is to maximize both efficiency and
fairness (i.e. to set the network in a state where
fairness and efficiency are optimal). Therefore, a
desired property of the control algorithm is to
converge fast to
this state. In a dynamic environment where flows
join or leave the system quite often, the sending
rate of each flow will oscillate (downwards) in
order to leave the bandwidth available for new
incoming flows or (upwards) to achieve the highest
goodput when bandwidth is available. Because of
these oscillations the system load might not be
constantly at the optimal load. Rather, the load
oscillates around some load or equilibrium point.
The time it takes the control algorithm to converge
the sending rates of the flows to an acceptable (or
optimal) fair state (e.g. the rates are approximately
equal) is called responsiveness. The oscillation size
of the network load around the equilibrium is
referred as smoothness [4] (see Figure 4).
Obviously, an algorithm that has faster convergence
time and smaller magnitude of oscillations is better
than some
other algorithm that oscillates around the same
equilibrium but its convergence time is longer, or
its oscillating magnitude is bigger.

Fig.

4(a)Responsiveness.

Fig. 4(b) Smoothness.

Figure 4: Responsiveness and Smoothness, figure based
on [4].

3. FAIRNESS EVALUATION CRITERIA

In this paper we interest to analysis for the fairness
factor it is one of the factors of Congestion Control
and another factor such as efficiency was explained
and published in [24].

3.1. Fairness

One of the interesting properties of AIMD
algorithm that we introduce in the paper is ability of
a scheme to approach to fairness monotonically, i.e.
the fairness during interval 'i' is given

by 10,
2

1 ≤≤= i
i

i
i f

x
x

f (Eq. 1)

(Initially let flows f1 and f2 contain 1x and 2x
window respectively [24]), k means number Round
Trip Time (RTTs) and we assuming system
converges ‘fair’ in ‘m’ cycle (‘m’ means number of
cycles need for equilibrium state). Then the
following conditions should be satisfied.

ii ffi ≥+∀ 1: and 1lim =
∞→

i
i

f

Without loss of generality we are assuming
that nxx += 12 . At the end of 1st cycle, fairness
ratio is given by:

)(
)(

)(
)(

11

11

12

11

knx
kx

kx
kx

++
+

=
+
+

 =

)(
1

11 knx
n
++

− (Eq. 2)

Similarly at the end 2nd cycle, fairness ratio is given

by

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+++
−

)
22

(

1
2

1
21

1 kknx
n

. (Eq. 3)

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

573

Clearly term

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+++)
22

(

1
2

21
1 kknx

n

is smaller than
)(11 knx

n
++

. (Eq. 4)

Similarly we can find fairness ratio for remaining

cycle.

According to these result we can say that our

system converge to monotonic fairness. There is

one interested question here how much cycles are

required for fairness. We have following reasoning

for it. Since every time both 1x and 2x are divided

by 2 of its previous value and equal constant are

added in both flows. Thus system can never reach

equilibrium if we assume float arithmetic. In

Integer arithmetic we are assuming that system

reaches fairness in m cycle. It indicates that

1...
2

...
2 211

1
211

2 ≈++−++ −− mmmm kkkxkkkx (Eq. 5)

1
22 1

1
1

2 ≈+ −− mm

xx
 (Eq. 6)

1
222 1

1
11

1 ≈−+ −−− mmm

xnx
 (Eq. 7)

)log(1,2 1 nmn m +≈≈ − . (Eq. 8)

But in AIMD fairness is reflected as)log(1 2x+
[10].
Obviously convergence to fairness of New AIMD
is faster than that of AIMD.

3.2. Responsiveness

Numbers of RTTs required for equilibrium
(Responsiveness) is measured as:

)1)...(1()1(21 mkkk ++++ =

)...(21 mkkkm +++ =

⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ −

++ −11
1)

2
1(1

2
2(mkwkm . (Eq. 9)

In AIMD algorithm k is defined as

4
wki = for i >=2.

It means number of RTTs is fixed in each cycle.
But in our approach

2
1−= i

i
kk for i >= 3.

It means number of RTTs in each cycle are half of
its previous cycle for i >=3. Obviously we have less
number of RTTs.

4. PROPOSED TOPOLOGY SCHEME

To evaluate the fairness of New AIMD algorithm,
we conducted experiments based on NCTUns4.0
simulation. The NCTUns4.0 simulation help us to
evaluate the behavior of New AIMD under diverse
network condition.
Fig. 5 shows the network topology used in the
simulation. The topology is a simple dumbbell
topology network. The bottleneck link is set to
5Mbps. The links that connect the senders and the
receivers to the routers have bandwidth of 5Mbps.
The end-to-end RTT is set to 30ms. The router
queue size is 100 packets. The router queue’s
managed by DropTail.

Fig. 5: Multiple flows experimental set-up for New AIMD

evaluation.

To measure the fairness, we consider multiple
TCP flows and propose the following tests:
(i) Fairness vs multiple flows starting at the same

time: Measure the average fair throughput of
each flow when each flow operates the same
protocol, has the same propagation delay and
has a shared bottleneck link and determine the
optimal throughput for all flows.

(ii) Fairness vs multiple flows starting at different
times: Fairness is calculated here in each
interval where the number of flows is constant.
In different periods optimal throughput

is

different as the number of flows is different.

4.1. National Chiao Tung University Simulator
(NCTUns):

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

574

30000
31000
32000
33000
34000
35000
36000
37000
38000
39000
40000

1 2 3 4 5

No. of flows

Th
ro

ug
hp

ut
 K

B

0
50

100
150
200
250
300
350

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289

time

K
B

/s

TCP flow 1

0

50

100

150

200

250

300

350

400

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295

time

K
B

/s

TCP 1
TCP 2
TCP 3
TCP 4
TCP 5

0

100

200

300

400

500

600

700

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286

time

K
B

/s

TCP 1
TCP 2
TCP 3
TCP 4
TCP 5

The NCTU network simulator is a high-fidelity and
extensible network simulator and emulator capable
of simulating various protocols used in both wired
and wireless IP networks. The NCTUns can be used
as an emulator, it directly uses the Linux TCP/IP
protocol stack to generate high-fidelity simulation
results, and it has many other interesting qualities.
It can simulate various networking devices. For
example, Ethernet hubs, switches, routers, hosts,
IEEE 802.11 wireless stations and access points,
WAN (for purposely delaying/dropping/reordering
packets), optical circuit switch, optical burst switch,
QoS DiffServ interior and boundary routers. It can
simulate various protocols for example, IEEE 802.3
CSMA/CD MAC, IEEE 802.11 (b) CSMA/CA
MAC, learning bridge protocol, spanning tree
protocol, IP, mobile IP, Diffserv (QoS), RIP, OSPF,
UDP, TCP, RTP/RTCP/SDP, HTTP, FTP and
telnet. [25]

4.2. Results

In this section, we present results based on two
different kind of measurements that are conducted
using all flows have same start time (SST), and
different flows have different start time (DST). All
simulations are performed under NCTUns. We
provide both measurements over total run time
(TRT) and over only the second half time (SHT).

4.2.1 Same Start Time (SST)

We will run several simulations using 1, 2, 3, 4,
and 5 flows as sources and destinations with the
same features. The flow capacity is 5Mbps and the
delay is 30ms. Fig. 6, 7, 8 present the fairness for
measured over all simulation period (300s) (SST).

Fig. 6: Throughput fairness for first flow from 5 TCP
flows with New AIMD.

Fig. 7: Throughput fairness for 5 TCP flows with New
AIMD.

Fig. 8: Throughput vs No. of flows (SST).

4.2.2 Different Start Time (DST)

We run the same simulation were each flow
starts at different time. The first flow starts at 0.1s
and after each 10s a new flow from the remaining
ones starts. Efficiency has to be considered during
all the simulation time and we can measure the
fairness after 50s from the simulator start time. Fig.
9, 10, 11 present the throughput fairness for 5 flows
(DST).

Fig. 9: Throughput fairness for the first flow from 5 TCP
flows with New AIMD.

Fig. 10: Throughput fairness for 5 TCP flows with New
AIMD.

0
100
200
300
400
500
600
700

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289

time

K
B

/s

TCP flow 1

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

575

20000

22000

24000

26000

28000

30000

32000

34000

1 2 3 4 5

No. of flows

Th
ro

ug
hp

ut
 K

B

Fig. 11: Throughput vs No. of flows (DST).

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

No. of flows

Fa
irn

es
s

in
de

x

Fig. 12: fairness index

5. CONCLUSION AND FUTUER WORK

In this paper we have focused on the presentation
and evaluation of fairness in the new model of
AIMD that presented in the previous paper of New
AIMD [24], and we make experimental on the new
model in the network simulator NCTUns, and we
determined that fairness resulting from this model
through the equation ()log(1 n+) is the best of
fairness resulting from the AIMD model in [10], as
well as we find the best result of the convergence to
fairness through less RTT required for
responsiveness to equilibrium for fairness in the
new model. And we read the result after make the
experimental in two set of flows (SST) and (DST).
In future work can implement this work with more
than 5 flows of the TCP and comparing the new
results with the results in this paper.

REFERENCES:

[1] J. Postel, “Transmission Control Protocol,” RFC

793, September 1981.
[2] Nader F. Mir, computer and communication

networks, Prentice Hall, 2007.
[3] V. Jacobson, “Congestion avoidance and

control” in Proc. Of ACM SIGCOMM ’88,
August 1988.

[4] D. Chiu and R. Jain. Analysis of the
Increase/Decrease Algorithms for Congestion
Avoidance in Computer Networks. Journal of
Computer Networks and ISDN, 17(1), June
1989.

[5] M. Allman, V. Paxson, W. Stevens, “TCP
Congestion Control”, RFC 2581, April 1999.

[6] S. Floyd, T. Henderson, “The New Reno
Modification to TCP’s Fast Recovery
Algorithm”, RFC 2582, April 1999.

[7] M. Mathis, J. Mahdavi, S. Floyd, and A.
Romanow, “TCP Selective Acknowledgement
Options,” RFC 2018, April 1996.

[8] L. Brakmo and L. Peterson, “Tcp Vegas: End
to End Congestion Avoidance on a Global
Internet,” IEEE Journal on Selected Areas of
Communications, October 1995.

[9] R. T. Braden, “T/TCP-TCP Extensions for
Transactions, Functional Specification,” RFC
1644, July 1994.

[10]A. Lahanas and V. Tsaoussidis. Exploiting the
Efficiency and Fairness Potential of AIMD-
based Congestion Avoidance and Control.
Journal of Computer Networks, 2003.

[11]D. Chiu and R. Jain. Analysis of the
Increase/Decrease Algorithms for Congestion
Avoidance in Computer Networks. Journal of
Computer Networks and ISDN, 17(1), June
1989.

[12]K. Ramakrishnan and R. Jain. A Binary
Feedback Scheme for Congestion Avoidance
in Computer Networks with a Connectionless
Network Layer. ACM Transactions on
Computer Systems, 8(2):158–181,May 1990.

[13]S. Shenker. A Theoretical Analysis of
Feedback Flow Control. In ACM SIGCOM
Symposium, September 1990.

[14] A. Tang, J. Wang, S. Hedge and S. H. Low.
Equilibrium and fairness of networks shared by
TCP Reno and Vegas/FAST.
Telecommunication Systems, 30(4):417-439,
December 2005.

[15] L. Wang, L. Cai, X. Liu and X. Shen. AIMD
Congestion Control: Stability, TCP-
friendliness, Delay Performance, Tech. Rep.,
Mar. 2006.

[16] Sachin Kumar, M. K. Gupta, V. S. P.
Srivastav, Kadambri Agarwal. “On the
Efficiency and Fairness of Congestion Control
Algorithms”, Innovative Algorithms and
Techniques in Automation, Industrial
Electronics and Telecommunications, 405-407,
Springer 2007.

[17] Y. Yang and S. Lam, “General AIMD
Congestion Control,” in Proceedings of the
IEEE International Conference on Network
Protocols, November 2000.

[18] A. Lahanas and V. Tsaoussidis. Additive
Increase Multiplicative Decrease - Fast
Convergence (AIMD-FC). In Proc. Networks
2002, Atlanta, Georgia.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

576

[19] Comer, Douglas E. Internetworking with
TCP/IP, 5E, Prentice Hall: Upper Saddle
River, NJ. (2006).

[20] D. Bertsekas and R. Gallager. Data Networks,
chapter 6, pages 493–530. Prentice Hall, 1987.

[21] J. M. Jaffe. Bottleneck Flow Control. IEEE
Transactions on Communications, 29:954–962,
1981.

[22] F. Kelly. Charging and Rate Control for
Elastic Traffic. European Transactions on
Telecommunications, 8:33–37, 1997.

[23] J. H. Saltzer, D Reed, and D. Clark. End-To-
End Arguments in System Design. ACM
Transactions on Computer Systems, 2(4):277–
288, November 1984.

[24] Hayder Natiq, Zuriati Ahmed, Mohamed
Othman, Shamala Subramaniam. “The TCP-
Based New AIMD Congestion Control
Algorithm”, International Journal of Computer
Science and Network Security, VOL.8 No.10,
2008, 331-338.

[25] S. Y. Wang, C. L. Chou, C. C. Lin. The design
and implementation of the NCTUns network
simulation engine. Science Direct, Simulation
Modeling Practice and Theory, 2007, 57-81.

