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ABSTRACT 
 

Congestion control is one of the fundamental issues in computer networks. In transport control protocol 
(TCP) the performance of protocol is being measured based on fairness and efficiency. The fairness on 
round trip time (RTT) can be measured using the algorithm based on two flows or more than that. 
Congestion control is an effort to adapt the performance of a network to changes in the traffic load without 
adversely affecting users perceived utilities. The traffic load in a network will effect the performance of a 
network and the fairness of algorithm. Congestion control is an introduced effect that adapts the 
performance. AIMD (Additive Increase Multiplicative Decrease) is an established algorithm in a set of 
liner algorithms that it reflects good efficiency as well as good fairness. In this paper we propose an 
evaluation method of fairness for New AIMD congestion control algorithm. The evaluation of fairness has 
been done by using multiple flows start at the same time and also by considering each flow start at a 
different time in other way.  
 
Keyword: TCP, AIMD, Congestion control, Fairness. 
 
1. INTRODUCTION 
 
The Transmission Control Protocol (TCP) has been 
the dominant reliable transport layer protocol ever 
since the appearance of its original version in 1981 
[1]. The motivation behind TCP was to add 
reliability on top of an inherently unreliable IP 
network. The original TCP incorporated a “sliding 
window” mechanism, which, in conjunction with 
packet acknowledgments and segment sequence 
numbers, guaranteed a reliable data transmission as 
well as flow control. 
 
2. RELATED WORK 
 
In the early 1980’s, network congestion did not 
constitute a focus of concern due to the limited 
number of interconnected hosts, and TCP’s original 
version was deemed adequate. As the number of 
hosts that joined the Internet increased, congestion 
problems, caused by lack of available bandwidth, 
became more and more evident. The deficiency of 
the original TCP was the absence of a mechanism 
that would adjust the sending rate responding to 

changes in the network load, namely congestion 
control. As a result, the network would flood and its 
overall performance would be severely degraded, 
leading to a series of ‘congestion collapses’ in the 
mid 1980’s [2]. 
 
2.1. Congestion control 
 
It was not until 1988 that a widely accepted 
congestion control algorithm was finally suggested 
[3]. This algorithm employed the Additive Increase 
Multiplicative Decrease (AIMD) principle. 
According to the AIMD, a protocol should increase 
its sending rate by a constant amount and decrease 
it by a fraction of its original value, each time an 
adjustment is necessary. This mechanism is the 
base of virtually all TCP implementations used in 
today’s Internet, since it is proven to converge to 
both a desirable level of efficiency as well as a 
desirable level of fairness among competing flows 
[4]. 
In the years that followed the establishment of 
AIMD as the standard algorithm to be used in TCP, 
Internet underwent numerous changes and rapidly 
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increasing popularity. With the availability of 
widespread services such as e-mail and the World 
Wide Web (WWW), the Internet became accessible 
to a broader range of people, including users 
lacking any particular familiarity with computers. 
Although new competing technologies emerged and 
the demands from a transport layer protocol were 
highly increased, TCP not only survived but also 
became an integral ingredient of the Internet, 
experiencing only minor modifications. These 
modifications reflect to the different in-use TCP 
versions (TCP-Tahoe, TCP-Reno, TCP-NewReno) 
[3, 5, 6], experimental TCP versions (TCP-SACK, 
TCP-Vegas) [7, 8], as well as special-purpose TCP 
versions (T/TCP) [9]. 
 
2.2. The AIMD principle 
 
As mentioned earlier, the basic concept of AIMD 
was proven to yield satisfactory results when the 
network infrastructure consisted of hard-wire 
connected components. One year after the 
appearance of AIMD in 1988, the authors in [11] 
provided a detailed analysis of different congestion 
control strategies, as well as what renders the 
existence of such a strategy in a transport protocol 
crucial. Below we give a few important points 
made in this work. 
The major issue of concern to a transport protocol 
is its efficiency. On a network link crossed by a 
number of different flows running the same 
protocol, the ideal situation is to utilize as much of 
the available bandwidth without introducing 
congestion (i.e. packets queuing up on the router). 
In Figure 1, we see the achieved throughput as a 
function of the network load. It becomes clear that 
we need to avoid overloading the link, since the 
achieved throughput will diminish. For a protocol 
to operate in the area between the points labeled as 
Knee and Cliff, a congestion control mechanism is 
necessary. In [11] efficiency is defined as the 
closeness of the total load to the Knee, which is a 
good starting point. 

Figure 1: Throughput as a function of load. 
 

Besides utilizing a high portion of the available 
bandwidth, a transport protocol must also be fair to 
the rest of the flows traversing the same part of the 
network. An efficient transport protocol does not 
necessarily mean that it is also fair. A single flow 
might take up the largest portion of the available 
bandwidth while the rest remain idle. Obviously, 
this is an undesirable behavior and in certain cases, 
gaining higher fairness is worthwhile even at the 
cost of reduced efficiency. 
Intuitively, fairness is the closeness of the 
throughput achieved by each flow to its fair share. 
To measure fairness, the authors in [11] define a 

fairness index as:  
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Where, ix is the throughput of the thi flow and n is 
the total number of flows. The fairness index of a 
system ranges from 0 to 1, with 0 being totally 
unfair and 1 being totally fair.  
Along the lines of efficiency and fairness, as 
determined in [16], four different scenarios were 
tested: Additive Increase Additive Decrease, 
Additive Increase Multiplicative Decrease, 
Multiplicative Increase Additive Decrease, and 
Multiplicative Increase Multiplicative Decrease. 
These scenarios were evaluated in terms of how 
fast they converged to the desirable efficiency and 
fairness levels. The AIMD scheme was found to be 
the one that better matched the required 
characteristics. Recent studies [16, 17] provide a 
more in-depth analysis, regarding the impact of the 
AIMD parameters on the performance of TCP. 
 
2.3. System model 
 
Chiu and Jain [11] have formulated the congestion 
avoidance problem as a resource management 
problem and proposed a distributed congestion 
avoidance mechanism named ‘additive 
increase/multiplicative decrease’ (AIMD). In their 
work, as a network model they use a “binary 
feedback” scheme with one bottleneck router [12]. 
As shown in Figure 2. It consists of a set of m users 
each of which send data in the network at a rate 2  

iw . The data send by each user are aggregated in a 
single bottleneck and the network checks whether 
the total amount of data send by users exceeds 
some network or bandwidth threshold goalX  (we 

can assume that goalX  is a value between the knee 
and the cliff and is a characteristic of the network). 
The system sends a binary feedback to each user 
telling whether the flows exceed the network 
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threshold. The system response is 1 when 
bandwidth is available and 0 when bandwidth is 
exhausted. 

The feedback sent by the network arrives at the 
same time to all users. The signal is the same to all 
users and they take the same action when the signal 
arrives. The next signal is not send until the users 
have responded to the previous signal. Such a 
system is called synchronous feedback system or 
simply synchronous system. The time elapsed 
between the arrival of two consecutive signals is 
discrete and the same after every signal arrival. 
This time is referred also as RTT. 

The system behavior can be defined the following 
time units: 

A step (or round-trip time – RTT) is the time 
elapsed between the arrival of two consecutive 
signals. 
A cycle or epoch is the time elapsed between two 
consecutive congestion events (i.e., the time 
immediately after a system response 0 and ending 
at the next event of congestion when the system 
response is again 0). 

Figure 2: A control system model of m users sharing a 
network [10]. 

This network model is quite simple and its 
assumptions have been evaluated in the Internet for 
several years. In practice the parameter goalX  is 
the network capacity (i.e. the number of packets 
that the link and the routers’ buffer can hold – or in-
the-fly packets). When the aggregate flows’ rate 
exceeds the network capacity the flows start to lose 
packets. If the transport protocol provides reliability 
mechanisms (e.g. as in TCP) it can detect the 
packet loss or congestion event. Since the majority 
of the applications use reliable transport protocols 
(e.g. TCP), the binary feedback mechanism has an 
implicit presence: a successful data transmission is 

interpreted as available bandwidth, and a packet 
loss is interpreted as congestion event [3]. 

Although the system had a strong impact on the 
evaluation of congestion avoidance mechanisms 
(e.g. AIMD), there are some limitations. First, the 
system considers the responses to be synchronous, 
which, in terms of real networks means that all 
flows have the same RTT. This assumption is not 
real. A second assumption and limitation is that the 
network response arrives at the same time to all 
users, even when they have the same RTT. This is 
disputed in [13]. The above assumption is 
supported by Jacobson experimentally in a low 
bandwidth network with congestion avoidance 
mechanisms (TCP-Tahoe) and where flows have 
the same RTT [14, 15]. Whatever the argument, 
this assumption is not true for a reason which is the 
third limitation of the system. The system has only 
one bottleneck. In reality a connection might go 
through none, one, or more than one router or 
bottlenecks. If a flow traverses more than one 
bottleneck, then it is not guaranteed that at each 
bottleneck congestion will happen at the same time. 
Nevertheless, these limitations do not prevent the 
mechanisms from controlling flows’ data rate and 
avoid congestion which was the major concern in 
the early stages of the Internet [10]. 

 
2.4. Additive Increase / Multiplicative Decrease 

Control algorithm (AIMD) 
 
The Additive Increase/Multiplicative Decrease 
(AIMD) algorithms described in detail in [10] and 
are referred as “dynamic window adjustment” in 
[18]. The basic idea of the algorithms to reduce the 
sending rate/window of the flows when the system 
bandwidth is exhausted and to increase the sending 
rates/windows when bandwidth is available. As 
mentioned in the previous section, when bandwidth 
is available (i.e. the aggregate rates of the flows do 
not exceed the network threshold: Σ iw < goalX ) 
the system attaches the signal 1 to the 
acknowledgment of each packet. In response, flows 
increase by one (packet) their windows. A 
continuous series of positive signals will cause a 
linear increase in the flows’ rate. Obviously, the 
increase is not unlimited because the bandwidth is 
fixed. When flows’ rate exceed the bandwidth limit 
(i.e. Σ iw  ≥ goalX ) the system attaches the 0 
signal to the acknowledgment of each packet and 
flows respond to congestion by a decrease in their 
sending rates/windows. 
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A. Lahanas and V. Tsaoussidis in [10] prove that a 
linear increase/exponential decrease policy is a 
condition for the increase/decrease algorithms to set 
(or converge) quickly the system in a fair state 
where the load oscillates around some equilibrium. 
The equilibrium state determines also the fairness 
and efficiency of the mechanism. 
The convergence behavior of a two flow AIMD 
system is depicted by vectors in a 2-dimensional 
space oscillating around the efficiency line (or 
equilibrium) in Figure 3. Upon each multiplicative 
decrease, the two windows 1x and 2x move closer 

to the fairness line ( 1x = 2x ). More details on the 
convergence of AIMD can be found in [10]. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Vectorial representation of two-flow 

convergence to fairness. Figure is based on [10]. 

A point on the quadrant between axis represent the 
sum of the windows. The vectors trace the sum of 
the windows as they increase or decrease. ‘k’ 
denotes the length of the projection of the linear 
increase vector on the x and y axis. W is the value 
of goalX  in terms of packets. 

AIMD is also designed to be responsive to 
fluctuations of bandwidth availability due to 
varying contention; this is managed by a continuous 
probing mechanism through additive increase of 
resource consumption. Chiu and Jain [4] showed 
that AIMD guarantees convergence to fairness: all 
flows eventually converge to a fair-share, i.e., an 
equal allocation of resources. Convergence to 
fairness is faster when the multiplicative decrease is 
larger, but then, bandwidth is further underutilized, 
and applications experience severe transmission 
gaps. Hence, although smoothness is desirable, it 
works against fairness: the smoother the 
adjustment, the longer convergence to fairness 
takes [19]. 
And the mathematical formula for AIMD is: 
 

w ← w - aw when loss is detected 
w ← w + b/w when an ACK arrives 
 
Efficiency: Controlling the rates of the flows in 
order to avoid congestion might leave the network 
resources (i.e., bandwidth) underutilized. So the 
algorithm that controls the sending rate of the flows 
should also utilize the resources to the maximum. 
Fairness: Since the system is distributed in nature, 
any attempt to control the sending rate might end 
up in unfair resource allocation to the flows (e.g., 
some flows might use more bandwidth than other 
flows). A mechanism that controls the sending 
rate of a flow must use the same bandwidth as the 
rest of the flows. Two generally used fairness 
criteria are max-min fairness [20, 21] and 
proportional fairness [22]. Max-min fairness 
concept has emerged from ‘fair queuing’ models: 
routers have a separate queue per flow and use the 
round-robin model to serve the flows. With this 
model flows that send few data receive higher 
priority than flows that send bulk data. Proportional 
fairness favors the flows that have more packets in 
the routers rather than flows that have fewer 
packets. This kind of fairness is useful for 
designing pricing models for the Internet. In this 
work the network is considered as a black box. The 
end-to-end protocols do not have any knowledge of 
the queuing model. However, they try to achieve 
some kind of fairness. If a flow is a continuous 
transmission of data between two hosts then a 
desired property of the flows (or the network) 
would be to have equal rates at a common 
bottleneck/router. With the above assumption this 
property matches with the max-min concept of 
fairness. This fairness is captured by an index or 
formula that compares the rates/throughputs of the 
flows. 
Distributedness: Congestion can be controlled at 
the network layer (where it happens) or controlled 
at the end-nodes. The first (or centralized approach) 
would be optimal since the network knows better 
its load at any time. However, this technique 
requires processing power from the routers and 
absolute knowledge of the number of flows and 
their sending rate. This approach would cause also 
some overhead since, in addition to data payload 
flows have to convey also information needed from 
the routers. Obviously this approach is not 
consistent with the layered architecture of the 
network because cooperation and transparency 
between layers is required to apply these 
techniques. The burden of control mechanism is 
delegated on the routers, hence, the name 
centralized or router-centric approach. The second 
approach (referred also as distributed or end-to-end 
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approach [23]) attempts to solve the congestion 
problem from the end-nodes. The routers are kept 
busy with forwarding packets and need not have 
extra information about the number of flows and 
their sending rates. This approach causes less 
overhead than the centralized approach and relies 
on the end-nodes’ ability to grasp the load of the 
network. The end-to-end mechanisms can easily be 
applied to today’s packet networks (e.g. Internet), 
without changing the functionality of any other 
layer. 
Convergence: A requirement for the control 
mechanism is to maximize both efficiency and 
fairness (i.e. to set the network in a state where 
fairness and efficiency are optimal). Therefore, a 
desired property of the control algorithm is to 
converge fast to 
this state. In a dynamic environment where flows 
join or leave the system quite often, the sending 
rate of each flow will oscillate (downwards) in 
order to leave the bandwidth available for new 
incoming flows or (upwards) to achieve the highest 
goodput when bandwidth is available. Because of 
these oscillations the system load might not be 
constantly at the optimal load. Rather, the load 
oscillates around some load or equilibrium point. 
The time it takes the control algorithm to converge 
the sending rates of the flows to an acceptable (or 
optimal) fair state (e.g. the rates are approximately 
equal) is called responsiveness. The oscillation size 
of the network load around the equilibrium is 
referred as smoothness [4] (see Figure 4). 
Obviously, an algorithm that has faster convergence 
time and smaller magnitude of oscillations is better 
than some 
other algorithm that oscillates around the same 
equilibrium but its convergence time is longer, or 
its oscillating magnitude is bigger. 
 

 
 
 
 
 
 
 
 
 
Fig. 

4(a)Responsiveness. 
 
 

 
Fig. 4(b) Smoothness. 

Figure 4: Responsiveness and Smoothness, figure based 
on [4]. 

 
3. FAIRNESS EVALUATION CRITERIA 
 
In this paper we interest to analysis for the fairness 
factor it is one of the factors of Congestion Control 
and another factor such as efficiency was explained 
and published in [24].  
 
3.1. Fairness  
 
One of the interesting properties of AIMD 
algorithm that we introduce in the paper is ability of 
a scheme to approach to fairness monotonically, i.e. 
the fairness during interval 'i' is given 

by 10,
2

1 ≤≤= i
i

i
i f

x
x

f    (Eq. 1)  

(Initially let flows f1 and f2 contain 1x  and 2x  
window respectively [24]), k means number Round 
Trip Time (RTTs) and we assuming system 
converges ‘fair’ in ‘m’ cycle (‘m’ means number of 
cycles need for equilibrium state). Then the 
following conditions should be satisfied. 
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Without loss of generality we are assuming 
that nxx += 12 . At the end of 1st cycle, fairness 
ratio is given by:  
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Similarly at the end 2nd cycle, fairness ratio is given 

by
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Clearly term 
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Similarly we can find fairness ratio for remaining 

cycle.  

According to these result we can say that our 

system converge to monotonic fairness. There is 

one interested question here how much cycles are 

required for fairness. We have following reasoning 

for it. Since every time both 1x and 2x are divided 

by 2 of its previous value and equal constant are 

added in both flows. Thus system can never reach 

equilibrium if we assume float arithmetic. In 

Integer arithmetic we are assuming that system 

reaches fairness in m cycle. It indicates that 
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)log(1,2 1 nmn m +≈≈ − .   (Eq. 8) 

But in AIMD fairness is reflected as )log(1 2x+  
[10]. 
Obviously convergence to fairness of New AIMD 
is faster than that of AIMD. 
 
3.2. Responsiveness  
 
Numbers of RTTs required for equilibrium 
(Responsiveness) is measured as: 

)1)...(1()1( 21 mkkk ++++ = 

)...( 21 mkkkm +++ = 
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In AIMD algorithm k is defined as  

4
wki = for i >=2. 

It means number of RTTs is fixed in each cycle. 
But in our approach  

2
1−= i

i
kk  for i >= 3.  

It means number of RTTs in each cycle are half of 
its previous cycle for i >=3. Obviously we have less 
number of RTTs. 
 
4. PROPOSED TOPOLOGY SCHEME  
 
To evaluate the fairness of New AIMD algorithm, 
we conducted experiments based on NCTUns4.0 
simulation. The NCTUns4.0 simulation help us to 
evaluate the behavior of New AIMD under diverse 
network condition.  
Fig. 5 shows the network topology used in the 
simulation. The topology is a simple dumbbell 
topology network. The bottleneck link is set to 
5Mbps. The links that connect the senders and the 
receivers to the routers have bandwidth of 5Mbps. 
The end-to-end RTT is set to 30ms. The router 
queue size is 100 packets. The router queue’s 
managed by DropTail. 
 

 
Fig. 5: Multiple flows experimental set-up for New AIMD 

evaluation. 
 

To measure the fairness, we consider multiple 
TCP flows and propose the following tests:  
(i) Fairness vs multiple flows starting at the same 

time: Measure the average fair throughput of 
each flow when each flow operates the same 
protocol, has the same propagation delay and 
has a shared bottleneck link and determine the 
optimal throughput for all flows.  

(ii) Fairness vs multiple flows starting at different 
times: Fairness is calculated here in each 
interval where the number of flows is constant. 
In different periods optimal throughput

 
is 

different as the number of flows is different.  
 
4.1. National Chiao Tung University Simulator 
(NCTUns): 
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The NCTU network simulator is a high-fidelity and 
extensible network simulator and emulator capable 
of simulating various protocols used in both wired 
and wireless IP networks. The NCTUns can be used 
as an emulator, it directly uses the Linux TCP/IP 
protocol stack to generate high-fidelity simulation 
results, and it has many other interesting qualities. 
It can simulate various networking devices. For 
example, Ethernet hubs, switches, routers, hosts, 
IEEE 802.11 wireless stations and access points, 
WAN (for purposely delaying/dropping/reordering 
packets), optical circuit switch, optical burst switch, 
QoS DiffServ interior and boundary routers. It can 
simulate various protocols for example, IEEE 802.3 
CSMA/CD MAC, IEEE 802.11 (b) CSMA/CA 
MAC, learning bridge protocol, spanning tree 
protocol, IP, mobile IP, Diffserv (QoS), RIP, OSPF, 
UDP, TCP, RTP/RTCP/SDP, HTTP, FTP and 
telnet. [25] 
 

4.2. Results  
 
In this section, we present results based on two  
different kind of measurements that are conducted 
using all flows have same start time (SST), and 
different flows have different start time (DST). All 
simulations are performed under NCTUns. We 
provide both measurements over total run time 
(TRT) and over only the second half time (SHT).  
 
4.2.1 Same Start Time (SST) 
 

We will run several simulations using 1, 2, 3, 4, 
and 5 flows as sources and destinations with the 
same features. The flow capacity is 5Mbps and the 
delay is 30ms. Fig. 6, 7, 8 present the fairness for 
measured over all simulation period (300s) (SST). 

 

Fig. 6: Throughput fairness for first flow from 5 TCP 
flows with New AIMD. 

 
 
 
 
 
 

Fig. 7: Throughput fairness for 5 TCP flows with New 
AIMD. 

Fig. 8: Throughput vs No. of flows (SST). 

 
4.2.2 Different Start Time (DST) 
 

We run the same simulation were each flow 
starts at different time. The first flow starts at 0.1s 
and after each 10s a new flow from the remaining 
ones starts. Efficiency has to be considered during 
all the simulation time and we can measure the 
fairness after 50s from the simulator start time. Fig. 
9, 10, 11 present the throughput fairness for 5 flows 
(DST).  

 

Fig. 9: Throughput fairness for the first flow from 5 TCP 
flows with New AIMD.  

Fig. 10: Throughput fairness for 5 TCP flows with New 
AIMD. 
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Fig. 12: fairness index 

 
5. CONCLUSION AND FUTUER WORK 
 
In this paper we have focused on the presentation 
and evaluation of fairness in the new model of 
AIMD that presented in the previous paper of New 
AIMD [24], and we make  experimental on the new 
model in the network simulator NCTUns, and we 
determined that fairness resulting from this model 
through the equation ( )log(1 n+ ) is the best of 
fairness resulting from the AIMD model in [10], as 
well as we find the best result of the convergence to 
fairness through less RTT required for 
responsiveness to equilibrium for fairness in the 
new model. And we read the result after make the 
experimental in two set of flows (SST) and (DST). 
In future work can implement this work with more 
than 5 flows of the TCP and comparing the new 
results with the results in this paper. 
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