
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

499

MEASURING THE EFFECTIVENESS OF OPEN COVERAGE
BASED TESTING TOOLS

MS. L.SHANMUGA PRIYA, MS.A.ASKARUNISA, DR. N.RAMARAJ
 Thiagarajar College of Engineering, Affiliated to Anna University, Chennai.

 E-Mail: nishanazer@yahoo.com

ABSTRACT

The levels of quality, maintainability, testability, and stability of software can be improved and measured
through the use of automated testing tools throughout the software development process. Automated testing
tools assist software engineers to gauge the quality of software by automating the mechanical aspects of the
software-testing task. Automated testing tools vary in their underlying approach, quality, and ease-of-use,
among other characteristics In Software testing; Software Metrics provide information to support a
quantitative managerial decision-making for the test managers. Among the various metrics, Code coverage
metric is considered as the most important metric often used in analysis of software projects in the
industries for testing, Code coverage analysis also helps in the testing process by finding the areas of a
program not exercised by a set of test cases, creating additional test cases to increase coverage, and
determine the quantitative measure of the code, which is an indirect measure of quality. The test manager
needs coverage metric in making decisions while selecting test cases for regression testing. In literature
there are a large number of automated tools to find the coverage of test cases in Java. Choosing an
appropriate tool for the application to be tested may be a complicated process for the test Manager. To ease
the job of the Test manager in selecting an appropriate tool, we propose a suite of objective metrics for
measuring tool characteristics as an aid in systematically evaluating and selecting automated testing tools.

Keywords
 Software testing, Software Metrics, Code Coverage, automated tools.

1. INTRODUCTION
” Software Testing is a process to detect the
defects and minimize the risk associated with the
residual defects of a software”.[3]. A test case
tests the response of a single method to a
particular set of inputs. Test case is a
combination of inputs, executing function and
expected output. A test suite is a collection of
test cases. Automated testing tools assist
software engineers to gauge the quality of
software by automating the mechanical aspects
of the software-testing task. Automated testing
tools vary in their underlying approach, quality,
and ease-of-use, among other characteristics. In
addition, the selection of testing tools needs to be
predicated on characteristics of the software
component to be tested. But how does a project
manager choose the best suite of testing tools for
testing a particular software component?

In this paper we propose a suite of
objective metrics for measuring tool
characteristics, as an aid for systematically
evaluating and selecting the automated testing

tools that would be most appropriate for testing
the system or component under test. Our suite of
metrics is also intended to be used to monitor
and gauge the effectiveness of specific
combinations of testing tools during software
development. In addition, the suite of test-tool
metrics is to be used in conjunction with existing
and future guidelines for conducting tool
evaluation and selection. In December 1991, a
working group of software developers and tool
users completed the Reference Model for
Computing System-Tool Interconnections
(MCSTI), known as IEEE Standard 1175[15]. As
an offshoot of their work, they also introduced a
tool-evaluation system. The system implements a
set of forms which systematically guide users in
gathering, organizing, and analyzing information
on testing and other types of tools for developing
and maintaining software. The user can view
tool-dependent factors such as performance, user
friendliness, and reliability, in addition to
environment-dependent factors such as the cost
of the tool, the tool’s effect on organizational
policy and procedures, and tool interaction with
existing hardware and software assets of an

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

500

organization. The data forms also facilitate the
preference weighting, rating, and summarizing
selection criteria. The process model underlying
the MCSTI consists of five steps: analyzing user
needs, establishing selection criteria, tool search,
tool selection, and reevaluation.

Software metrics are quantitative
standards of measurement for various aspects of
software projects. These Metrics help, track
aspects of an ongoing software project, such as
changing requirements, rates of finding and
fixing defects, and growth in size and complexity
of code. From the testing point of view, the
metrics typically focus on the quantity and
quality of any software
 In Section2 the importance of software
metrics and types of metrics are discussed
.Section3 describes the prior work on metrics.
Section4 includes the suite of metrics for testing
tools In section5 the importance of coverage
metrics is discussed. In section6 various types of
code coverage tools are discussed.Section7
provides the detailed description of the selected
code coverage tools for our analysis. Section8
provides the experimental details of
programs.Section9 provide the experimental
details of the selected tools. In section10 the
results are analyzed.

2. SOFTWARE METRICS

Software metrics is defined as the current
state of art in the measurement of software
products and process [9]. Measurement is the
process by which numbers or symbols are
assigned to attributes of entities in the real world
in such a way as to describe them according to
clearly defined unambiguous rules. Metrics
strongly support software project management
activities mainly test management. They relate to
the four functions of management as follows:

i. Planning - Metrics serve as a basis of
cost estimating, training planning, and
resource planning, scheduling, and
budgeting.

ii. Organizing - Size and schedule metrics
influence a project's organization.

iii. Controlling - Metrics are used to status
and track software development
activities for compliance to plans.

iv. Improving - Metrics are used as a tool
for process improvement and to identify
where improvement efforts should be
concentrated and measure the effects of
process improvement efforts.

2.1 Importance of Metrics
Deriving metrics in every phase of the

SDLC has a major importance through out the
life cycle of Software for management,
Managers, Developers and Customers[4].
2.1.1 Metrics in Project Management

1. Metrics make the project’s status
visible. Managers can measure progress
to discover if a project is on schedule or
not.

2. Metrics focus on activity. Workers
respond to objectives, and metrics
provide a direct objective for
improvement.

3. Metrics help to set realistic
expectations. By assisting in estimation
of the time and resources required for a
project, metrics help managers set
achievable targets.

4. Metrics lay the foundations for long-
term improvement. By keeping records
of what happens on various projects, the
beneficial activities can be identified
and encouraged, while the detrimental
ones are rejected.

5. Metrics also help the management in
reducing various resources namely
people, time and cost in every phase of
SDLC.

2.1.2 Metrics in Decision Making
Metrics will not drive a return on investment
unless managers use them for decision making.
Some decisions in which software metrics can
play a role include

Product readiness to ship/deploy,
Cost and schedule for a custom project,
How much contingency to include in cost

and schedule estimates?
Where to invest for the biggest payback in

process improvement, and
When to begin user training.

Managers should demand supporting metrics
data before making decisions such as these. For
example, they can use fault-arrival-and-close-
rate data when deciding readiness to deploy.
Knowing the Overall project risk through metrics
can help managers decide how much
contingency to include in cost and schedule
estimates.
2.2 Procedural (Traditional) Software

Metrics
Support decision making by

management and enhance return on the IT

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

501

investment [5]. Once business goals have been
identified, the next step is to select metrics that
support them. Various types of Metrics [10]
found in literature are:
Lines of Code:

• Total Lines of Count (TLOC)
• Executable Lines of Count (ELOC)
• Comment Lines of Count (CLOC).

Hallstead’s Metrics:
• Program Length (N)
• Program Volume(V)
• Effort to Implement(E)
• Time to Implement (T)
• Number of Delivered Bugs (B).

Function point (FP) [16] is a metric that may be
applied independent of a specific programming
language, in fact, it can be determined in the
design stage prior to the commencement of
writing the program. To determine FP, an
Unadjusted Function Point Count (UFC) is
calculated. UFC is found by counting the
number of external inputs (user input), external
outputs (program output), external inquiries
(interactive inputs requiring a
response), external files (inter-system interface),
and internal files (system logical master files).
Each member of the above five groups is
analyzed as having either simple, average or
complex complexity, and a weight is associated
with that member based upon a table of FP
complexity weights. UFC is then calculated

UFC = ∑1->15 (number of items of variety i) x (weight of i)
(1)

Next, a Technical Complexity Factor (TCF) is
determined by analyzing fourteen contributing
factors. Each factor is assigned a score from zero
to five based on its criticality to the system being
built. The TCF is then found through the
equation:
TCF = 0.65 + 0.01∑1->14 Fi (2)

where FP is the product of UFC and TCF. FP
has been criticized due to its reliance upon
subjective ratings and its foundation on early
design characteristics that are likely to change as
the development process progresses.

2.3 Object Oriented Metrics:
 The most commonly cited software
metrics to be computed for software with an

object-oriented design are those proposed by
Chidamber and Kemerer [16],[17]. Their suite of
metrics consists of the following metrics:
weighted methods per class, depth of inheritance
tree, number of children, coupling between
object classes, response for a class, and lack of
cohesion in methods.

• Weighted Methods Per Class (WMC)
• Response For a class(RFC)
• Lack Of Cohesion Of Methods (LCOM)
• Coupling Between Object Methods

(CBO)
• Depth Of Inheritance Tree (DIT)
• Number Of Children (NOC)

McCabe’s Metrics:
• Cyclomatic Complexity
• Essential Complexity
• Actual Complexity.

Lorenz and Kidd [18] proposed another set of
object-oriented software quality metrics. Their
suite includes the following:

• Number of scenarios scripts (use cases)
(NSS)

• Number of key classes (NKC)
• Number of support classes
• Average number of support classes per

key class (ANSC)
• Number of subsystems (NSUB)
• Class size (CS)
• Total number of operations + number of

attributes
• Both include inherited features
• Number of operations overridden by

subclass (NOO)
• Number of operations added by a

subclass (NOA)
• Specialization index (SI)
• SI = [NOO x level] / [Total class

method]
• Average method size
• Average number of methods
• Average number of instance variables
• Class hierarchy nesting level

All the above metrics can be easily calculated
once the code is available. It just gives a measure
that is not completely used to find the
effectiveness of testing but can be useful in other
phases of the SDLC. The metrics that are mostly
helpful for the test managers or during testing are
Code Coverage Metric[16], Test Case Execution

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

502

Time metric, Test Case Fault detection
Capability metric etc.

2.4 Coverage Metrics:

To measure how well the program is
exercised by a test suite, coverage metrics are
used. [4, 5] There exists a number of coverage
metrics in literature. Following are descriptions
of some types of coverage metrics.
Statement Coverage

This metric is defined as"The
percentage of executable statements in a
component that have been exercised by a test
case suite."
Branch Coverage
This metric is defined as"The percentage of
branches in a component that have been
exercised by a test suite.”

Loop Coverage
This metric is defined as"The percentage of
loops in a component that have been exercised
by a test suite."

Decision Coverage
This metric is defined as"The percentage of
Boolean expressions in a component that have
been exercised by a test suite." [6]

Condition Coverage
This metric is defined as"The percentage of
decisions in a component that have been
exercised by a test suite." [7]

Function Coverage
This metric is defined as"The percentage of
functions in a component that have been
exercised by a test suite."

Path Coverage
This metric is defined as"The percentage of
paths in a component that have been exercised
by a test suite." [8]

Entry/Exit Coverage
This metric is defined as"The percentage of call
and return of the function in a component that
have been exercised by a test suite."

 Requirements Coverage
This metric is defined as "The percentage of
requirements in a component that have been
covered by a test case suite."

3. PRIOR WORK ON METRICS FOR
SOFTWARE-TESTING TOOLS

The Institute for Defense Analyses (IDA)
published two survey reports on tools for testing
software [19],[20]. Although the tool
descriptions contained in those reports are dated,
the analyses provide a historical frame of
reference for the recent advances in testing tools
and identify a large number of measurements
that may be used in assessing testing tools. For
each tool, the report details different types of
analysis conducted, the capabilities within those
analysis categories, operating environment
requirements, tool-interaction features, along
with generic tool information such as price,
graphical support, and the number of users.
The research conducted at IDA was intended to
provide
guidance to the U.S. Department of Defense on
how to evaluate and select software-testing tools.
The major conclusions of the study were that:

• Test management tools offer critical
support for planning tests and
monitoring test progress.

• Problem reporting tools offered support
for test management by providing
insight software products’ status and
development progress.

• Available static analysis tools of the
time were limited to facilitating
program understanding and assessing
characteristics of software quality.

• Static analysis tools provided only
minimal support for guiding dynamic
testing.

• Many needed dynamic analysis
capabilities were not commonly
available.

• Tools were available that offered
considerable support for dynamic
testing to increase confidence in correct
software operation.

• Most importantly, they determined that
the range of capabilities of the tools and
the tools’ immaturity required careful
analysis prior to selection and adoption
of a specific tool.

The Software Technology Support Center
(STSC) at Hill AFB works with Air Force
software organizations to identify, evaluate and
adopt technologies to improve product quality,
increase production efficiency and schedule
prediction ability [21]. Section four of their

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

503

report discusses several issues that should be
addressed when evaluating testing tools and
provides a sample tool-scoring matrix. Current
product critiques and tool-evaluation metrics and
other information can be obtained by contacting
them through their website at
http://www.stsc.hill.af.mil/SWTesting/.

4. PROPOSED SUITE OF METRICS FOR

EVALUATING AND SELECTING
SOFTWARE-TESTING TOOLS

Weyuker identified nine properties that
complexity measures should possess [13].
Several of these properties can be applied to
other metrics too; these characteristics were
considered in our formulation of metrics for
evaluating and selecting software testing tools.
Our suite of metrics for evaluating and selecting
software testing tools has the following
properties: the metrics exhibit non-coarseness in
that they provide different values when applied
to different testing tools; the metrics are finite in
that there are a finite number of tools for which
the metrics’ results in an equal value, yet they
are non-unique in that a metric may provide the
same value when applied to different tools; and
the metrics are designed to have an objective
means of assessment rather than being based on
subjective opinions of the evaluator.

4.1. Metrics for Tools that Support Testing of
Procedural Software

These metrics are applied to the testing tool in its
entirety via a specific function performed by the
tool.

4.1.1. Human Interface Design (HID). All
automated testing tools require the tester to set
configurations prior to the commencement of
testing. Tools with well-designed human
interfaces enable easy, efficient, and accurate
setting of tool configuration.
Factors that lead to difficult, inefficient, and
inaccurate
human input include multiple switching between
keyboard and mouse input, requiring large
amount of keyboard input overall, and individual
input fields that require long strings of input.
HID also accounts for easy recognition of the
functionality of provided shortcut buttons.

HID = KMS + IFPF + ALIF + (100 – BR)
(3)

where KMS is the average number of keyboard
to mouse switches per function, IFPF is the
average number of input fields per function,
ALIF is the average string length of input fields,
BR is the percentage of buttons whose functions
were identified via inspection. A large HID
indicates the level of difficulty to learn the tool’s
procedures on purchase and the likelihood of
errors in using the tool over a long period of
time. HID can be reduced by designing input
functions to take advantage of current
configurations as well as using input to recent
fields as default in applicable follow on input
fields. For example, if a tool requires several
directories to be identified, subsequent directory
path input fields could be automatically
completed with previously used paths. This
would require the tester to only modify the final
subfolder as required than reentering lengthy
directory paths multiple times.

4.1.2. Maturity & Customer Base (MCB).
There are several providers of automated testing
tools for the business of software testers. These
providers have a wide range of experience in
developing software-testing tools. Tools that
have achieved considerable maturity typically do
so as a result of customer satisfaction in the
tool’s ability to adequately test their software.
This satisfaction leads to referrals to other users
of testing tools and an increase in the tool’s
customer base.

 MCB = M + CB + P (4)

where M (maturity) is the number of years tool
(and its previous versions) have been applied in
real world applications, CB (customer base) is
the number of customers who have more than
one year of experience applying the tool, and P
(projects) is the number of previous projects of
similar size that used the tool Care must be taken
in evaluating maturity to ensure the tool’s current
version does not depart too far from the vendor’s
previous successful path. Customer base and
projects are difficult to evaluate without relying
upon information from a vendor who has a
vested interest in the outcome of the
measurement.

4.1.3. Tool Management (TM). As software
projects become larger and more complex, large
teams are used to design, encode, and test the
software. Automated testing tools should provide
for several users to access the information while
ensuring proper management of the information.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

504

Possible methods may include automated
generation of reports to inform other testers on
outcome of current tests, and different levels of
access (e.g., read results, add test cases, and
modify/remove test cases).

TM = AL + ICM (5)

where AL (access levels) is the number of
different access levels to tool information, and
ICM (information control methods) is the sum of
the different methods of controlling tool and test
information.
4.1.4. Ease of Use (EU). A testing tool must be
easy to use to ensure timely, adequate, and
continual integration into the software
development process. Ease of use accounts for
the following: learning time of first-time users,
retainability of procedural knowledge for
frequent and casual users, and operational time
of frequent and casual users.

EU = LTFU + RFU + RCU + OTFU + OFCU
(6)

where LTFU is the learning time for first users,
RFU is the retainability of procedure knowledge
for frequent users, RCU is the retainability of
procedure knowledge for casual users, OTFU is
the average operational time for frequent users,
and OTCU is the average operational time for
casual users.

4.1.5. User Control (UC). Automated testing
tools that provide users expansive control over
tool operations enable testers to effectively and
efficiently test those portions of the program that
are considered to have a higher level of
criticality, have insufficient coverage, or meet
other criteria determined by the tester. UC is
defined as the summation of the different
portions and combinations of portions that can
be tested. A tool that tests only an entire
executable program would receive a low UC
value. Tools that permit the tester to identify
which portions of the executable will be
evaluated by tester-specified test scenarios would
earn a higher UC value. Tools that will be
implemented by testing teams conducting a
significant amount of regression testing should
have a high UC value to avoid retesting of
unchanged portions of code.

4.1.6 Test Case Generation (TCG). The ability
to automatically generate and readily modify test
cases is desirable. Testing tools which can
automatically generate test cases based on

parsing the software under test are much more
desirable that tools that require testers to
generate their own test cases or provide
significant input for tool generation of test cases.
Availability of functions to create new test cases
based on modification to automatically generated
test cases greatly increases the tester’s ability to
observe program behavior under different
operating conditions.

 TCG = ATG + TRF (7)

where ATG is the level of automated test case
generation as defined by:

10: fully automated generation of test cases
8: tester provides tool with parameter names &
types via user-friendly methods (i.e., pull down
menus)
6: tester provides tool with parameter names &
types
4: tester must provide tool with parameter
names, types and range of values via user-
friendly methods
2: tester must provide tool with parameter
names, types and range of values
0: tester must generate test cases by hand

and TRF is the level of test case reuse
functionality:

10: test cases may be modified by user friendly
methods (i.e. pull down menus on each test case
parameter) and saved as a new test case
8: test cases may be modified and saved as a new
test case
6: test cases may be modified by user friendly
methods but cannot be saved as new test cases
4: test cases may be modified but cannot be
saved as new test cases
0: test cases cannot be modified

4.1.7. Tool Support (TS). The level of tool
support is important to ensure efficient
implementation of the testing tool, but it is
difficult to objectively measure. Technical
support should be available to testers at all times
testing is being conducted, including outside
traditional weekday working hours. This is
especially important for the extensive amount of
testing frequently
conducted just prior to product release. Technical
support includes help desks available
telephonically or via email, and on-line users’
groups monitored by vendor technical support
staff. Additionally, the availability of tool

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

505

documentation that is well organized, indexed,
and searchable is of great benefit to users.

 TS = ART + ARTAH + ATSD – DI (8)

where ART is the average response time during
scheduled testing schedule, ARTAH is the
average response time outside scheduled testing
schedule, ATSD is the average time to search
documentation for desired information, and DI is
the documentation inadequacy measured as the
number of unsuccessful searches of
documentation.

4.1.8. Estimated Return on Investment
(EROI). A study conducted by the Quality
Assurance Institute involving 1,750 test cases
and 700 errors has shown that automated testing
can reduce time requirements for nearly every
testing stage and reduces overall testing time by
approximately 75% [14]. Vendors may also be
able to provide similar statistics for their
customers
currently using their tools.
 EROI = (EPG x ETT x ACTH) + EII –
ETIC +
 (EQC x EHCS x ACCS) (9)
where EPG is the Estimated Productivity Gain,
ETT is the Estimated Testing Time without tool,
ACTH is the Average Cost of One Testing Hour,
EII is the Estimated Income Increase, ETIC is the
Estimated Tool Implementation Cost, EQC is the
Estimated Quality Gain, EHCS is the Estimated
Hours of Customer Support per Project, and
ACCS is the Average Cost of One Hour of
Customer Support.

4.1.9. Reliability (Rel). Tool reliability is
defined as the average mean time between
failures.
4.1.10. Maximum Number of Classes (MNC).
Maximum number of classes that may be
included in a tool’s testing project.

4.1.11. Maximum Number of Parameters
(MNP).
Maximum number of parameters that may be
included in a tool’s testing project.

4.1.12. Response Time (RT). Amount of time
used to apply test case on specified size of
software. RT is difficult to measure due to the
varying complexity of different programs of the
same size.

4.1.13. Features Support (FS). Count of the
following features:

• Extendable: tester can write functions
that expand provided functions

• Database available: open database for
use by testers

• Integrates with software development
tools

• Provides summary reports of findings.

5. IMPORTANCE OF COVERAGE

METRICS FOR TESTING

There are a large number of metrics for
software applications with respect to testing viz.
quality metrics, reliability metrics etc.. Among
all the metric’s, coverage metric plays a vital role
in selecting best test cases that reduces most of
the resources required for software regression
testing. Coverage metric describes a fraction of
lines of code “covered” by a test case. Testing
with measurement and tracking of test coverage
can motivate development of additional test
cases that will typically drive test coverage to
90% or more of the code. As a result, more of the
faults in the code will be discovered by testers
rather than by users. Fixing these faults prior to
deployment can dramatically improve the quality
of installed software and reduce software support
costs.

5.1 Code Coverage Analysis
Code coverage metrics are amongst the first
techniques invented for systematic software
testing. Code coverage analysis is the process of

1. Finding areas of a program not
exercised by a set of test cases,
2. Creating additional test cases to
increase coverage, and
3. Determining a quantitative measure of
code coverage, an indirect measure of
quality.
4. Identifying redundant test cases that do
not increase coverage.
Coverage analysis is used to assure quality

to a set of tests, not the quality of the actual
product. Coverage analysis requires access to test
program source code and often requires
recompiling it with a special command [1][2].
Establish a minimum percentage of coverage, to
determine when to stop analyzing coverage.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

506

6. SURVEY OF VARIOUS COVERAGE
TOOLS

 In literature, variety of tools are
available to perform code coverage analysis.
Following are a description of some Java-based
coverage testing tools.
JCover
 JCover [11] is a free code-coverage
tool. For Java programmers that allow to
measure the effectiveness of their Java tests and
how much of a software program's code has been
tested.
Code Cover

Code Cover [16] is a free code-
coverage tool for Java programmers that provide
several ways to increase test quality. It shows the
quality of our test suite and helps to develop new
test cases and rearrange test cases to save some
of them.
Cobertura
Cobertura [11] is a free Java tool that calculates
the percentage of code accessed by tests. It can
be used to identify which parts of our Java
program are lacking test coverage.
JBlanket
JBlanket [11] is a method coverage tool for
stand-alone and client-server Java programs.
Quilt

Quilt [11] is a Java software
development tool that measures coverage, the
extent to which unit testing exercises the
software under test.
Emma

Emma [14] is an open-source toolkit for
measuring and reporting Java code coverage.
Emma is so lightweight; developers can use it
during the process of writing tests instead of
waiting for a "test build".
NoUnit

NoUnit [11] allows us to see how good
our JUnit tests are.
InsECT

InsECT [11] which stands for
Instrumentation Execution Coverage Tool, is a
system developed in Java to obtain coverage
information for Java programs.
Hansel

Hansel [11] decorates a JUnit Test class
and instruments one or more classes under test to
verify 100% branch coverage of the tested
classes by the Test class.

GroboCodeCoverage
GroboCodeCoverage [11] is a 100%

Pure Java implementation of a Code Coverage
tool. It uses Jakarta's BCEL platform to post-
compile class files to add logging statements for
tracking coverage.
Jester

Jester [11] finds code that is not covered
by tests. Jester makes some change to the code,
runs tests, and if the tests pass Jester displays a
message saying what it changed.
DJUnit

DJUnit [11] is a JUnit test runner,
which generates coverage report and allows
virtual mock objects. It integrates with Eclipse
and Ant.
Gretel

Gretel [13] is a test coverage
monitoring tool for Java programs. The current
version provides statement coverage monitoring.
Clover
Clover [11] is a low cost code coverage tool for
Java. It is tightly integrated with the popular Ant
build tool.

Koalog Code Coverage

Koalog Code Coverage [11] is a code
coverage computation application written in the
Java programming language.

7. FOUR TOOLS SELECTED FOR USE IN
VALIDATING THE PROPOSED SUITE
OF METRICS

 To validate our proposed suite of
metrics for evaluating and selecting software
testing tools, we have selected four software
Code Coverage tools against which to apply the
proposed metrics. We describe and discuss the
setup of each tool for validation purposes and
discuss problems encountered in exercising the
tools. We have considered four different java
based code coverage tools viz. JCover, Emma,
Gretel and Code Cover.

7.1 Why JCover, Emma, Gretel and Code
Cover?

These tools have been chosen as a code
coverage tool of choice because:

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

507

 1.These tools are 100% open-source Java
tools.
 2.These tools have a large market share
compared with the other open source coverage
tools.
 3.These tools are user friendly.

4.These have multiple report type formats.
5.These tools are for both open-source and
commercial development projects.

7.2 JCOVER Tool

JCOVER [11] identifies how many
times each line of code in the application has
been executed and can see which parts of the
software remain untested. After instrumenting
the code and running the tests, a report is
generated allowing to view information coverage
figures from a project level right down to the
individual line of code. JCover works by
modifying Java classes at the byte code level.
When the modified classes are executed, during
a test-run for instance, data is collected that
identifies how many times each line of code has
been executed.

Features

• Measures the coverage percentage of
code that has been tested.

• Run the tests; create reports get all
information about problems in the
system.

• Set-up test in isolation using mock-
object technologies to reduce reliance
on extensive end-to-end per system
tests.

• A commercial JCover plug-in is
available for Eclipse 3.[15]

7.3 EMMA Tool

EMMA [14] is an open-source toolkit
for measuring and reporting Java code coverage.
Emma distinguishes itself from other tools by
going after a unique feature combination:
support for large-scale enterprise software
development while keeping individual
developer's work fast and iterative. Emma is a
tool for measuring coverage of Java software.
Such a tool is essential for detecting dead code
and verifying which parts of an application are
actually exercised by the test suite and
interactive use. .Emma differs from other
coverage tools in its extreme orientation towards
fast iterative develop-test style of writing
software. Following are the steps involved in
starting the Emma Tool

• Adding Emma command line tools in
the class path.

• Instrumenting the java classes
• Execution of java classes

Features

• Emma can instrument classes for
coverage either offline (before they are loaded)
or on the fly (using an instrumenting application
class loader).

• Supported coverage types: class,
method, line, basic block. EMMA can detect
when a single source code line is covered only
partially.

• Output report types: plain text, HTML,
XML.
7.4 GRETEL Tool

GRETEL [13] is an Open-Source
Residual Test Coverage Tool. Gretel is a test
coverage monitoring tool for Java programs. The
current version provides statement coverage
monitoring (identifying which lines of Java have
been executed, and which have not been touched
by testing). The primary difference between
Gretel and other coverage monitoring tools is
that Gretel implements residual test coverage
monitoring. After one run a program that has
been instrumented with Gretel, Gretel can re-
instrument the program and remove
instrumentation for those parts that have already
been executed [13].
The main steps in using GRETEL are:

1. Initial instrumentation - Prepares a
program to record which parts have
been executed.

2. Runs an application - Instrumented
application stores some information at
the conclusion of each run.

3. Interpreting results - Gretel provides
visualization of source code, indicating
which parts have been executed.

4. Reinstrumentation - This step is
optional, but it is the main way that
Gretel differs from other test
instrumentation packages.

5. Remove all instrumentation - This
step is also optional.

7.5 CODECOVER Tool

Codec Cover [12] is an extensible open source
code coverage tool. Code cover provides several
ways to increase test quality. It shows the quality
of test suite and helps to develop new test cases

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

508

and rearrange test cases to save some of them. So
we get a higher quality and a better test
productivity.

Features
• Supports statement coverage, branch

coverage, loop coverage and strict
condition coverage

• Performs source instrumentation for the
most accurate coverage measurement.

• CLI interface, for easy use from the
command line.

• Ant interface, for easy integration into
an existing build process.

• Correlation Matrix to find redundant
test cases and optimize your test suite.

• The source code is highlighted
according to the measured data.

Steps for execution of CODE COVER
To generate the coverage report using Code
cover tool the following three steps can be
followed.
1. Selecting the files to instrument
2. Enabling Code Cover for a Java project
3. Running a Java project with Code
Cover

Coverage can be viewed in the
following ways using code cover

Test Sessions View
This view displays the test sessions and test
cases in a test session container.

Coverage View

In this view we can see the coverage of
individual parts of the SUT. Every metric has its
own column.
Correlation View
This view is used to compare test cases with each
other.

8. EXPERIMENTAL PROGRAMS USED

FOR VALIDATION PROCESS
 The validation experiments

conducted were performed on java programs
which computes various types of sorting
algorithms like Bubble Sort, Quick Sort,
insertion Sort, Heap Sort, Merge sort Selection
Sort, Payroll calculation, Calculator application
and Code of Java compiler(only arrays were
considered). The details of the above programs
are shown in table 1 as follows.

programs LOC NOC NOM CC No. of
Test
cases

Bubble 51 1 3 4 7
Selection 52 1 3 4 7
Insertion 54 1 3 4 8
Heap 75 1 8 12 16
Merge 68 1 5 11 14
Quick 70 1 5 11 15
payroll 320 2 10 27 29
calculator 536 1 15 55 58
Arrays of
Javac 1360 1 79 250 255

Table 1Experimental program details
LOC- Lines of code, NOM-No. of Methods
 NOC-No.of classes, CC-Cyclomatic
complexity

We have developed 67 test cases and added 10
more test cases to test all the sorting programs,
29 test cases
for payroll program, 58 test cases for calculator
program and 255 test cases for Arrays program.

9. EXERCISING THE SOFTWARE
TESTING TOOLS:

The selected tools are analyzed as
shown in Table 2 , based on Coverage measures
that the tool supports like, Memory space,
Graphical Representation, User Interface,
Residual coverage Monitoring and reports in
HTML format. While considering Coverage
measures supported feature, Statement coverage
is obtained by all the four tools.
 Among the four tools, the File Coverage
(FC) can be computed only by the JCover tool,
the Block Coverage (BLC) could be found only
by Emma Tool and the Condition Coverage (CC)
and Loop Coverage (LC) found only by the Code
Cover tool.
 The Branch Coverage (BC), the
Method Coverage (MC) and the Class Coverage
(CLC) are found by JCover- Code Cover,
JCover-Emma and JCover-Emma respectively. It
is only the Statement Coverage (SC) that is
found by all the selected tools.

9.1 Computation of Metrics

During the application of the four testing-tool
suites on the various software programs,
measurements were taken to calculate the
testing-tool metrics
9.1.1 Human-Interface Design. To calculate the
human-interface design (HID) metric,
measurements were taken during three

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

509

operations: establishing test project, conducting
test project, and viewing testing results. While
conducting the operations with the JCover tool,
there were six occasions that required the user to
transfer from the keyboard to the mouse or vice
versa. Dividing this number by the number of
operations (three) results in an average of two
keyboard-to-mouse switches (KMS). There were
five input fields resulting in five average input
fields per functions (IFPF).
Three of the input fields required only mouse
clicks and one required entry of strings totaling
twenty two characters. The average length of
input fields (ALIF) was calculated by dividing
the sum of these inputs by the number of input
fields resulting in an ALIF of six. In attempting
to identify the functions of sixteen buttons,
eleven were identified correctly. The percentage
of 68.75 was subtracted from 100, divided by

ten, and rounded to the nearest integer to arrive
at a button recognition factor (BR) of three. The
sum of KMS, IFPF, ALIF, and BR earns LDRA
a HID score of sixteen as shown in table 3
The same operations were performed with the
Emma, Gretel and Code cover and the following
results were obtained.

 JCover Emma Gretel Code
Cover

KMS 2 3 5 4
IFPF 5 4 4 3
ALIF 6 5 4 4
BR 3 2 2 2
HID 16 14 15 13

Table 3 : Calculation of HID

 Table2: Comparison of the various features of coverage tools

9.1.2. Maturity and Customer Base (MCB)

 All the tools we have identified are open
source tools. These tools may have achieved
considerable maturity as a result of customer
satisfaction. As per literature these tools are
widely used by most of the academic institutions
that come under Anna University for their
students lab sessions in software testing. Though
the maturity cannot be calculated correctly all the
tools may have more or less the same customer
base (CB) and projects (P) done. This may be
approximately 50%.

9.1.3 Tool Management: None of the four
testing tool suites provide different access levels
or other information control methods. Tool
management must be controlled via computer
policies implemented in the operating system

and other applications outside of the suite of
testing tools.

9.1.4 Ease of Use (EU):

All the four tools are easy to use and ensure
timely, adequate and continual integration into
the software development process. For all the
tools , learning time of
 first time users , retainability of procedural
knowledge and operational time for frequent and
casual use not very high which concludes that
these tools are Easy to use .

9.1.5. Reporting Features. The Reporting
Features (RF) metric is determined by one point
for automatically generating summary reports
and one point for producing reports in a format
(e.g., HTML or ASCII text documents) that are
viewable outside the application. Code Cover

Features JCover Emma Gretel Code cover
Coverage measures
supported

Statement, Branch,
Method, File and
Class Coverage

Statement, Block Method
and Class Coverage

Statement coverage Statement, Branch, loop and
condition Coverage

Memory space 8 MB 460 KB 501 KB 3.63MB
Graphical
Representation X X

User Interface X
Residual coverage
Monitoring X X X

HTML format X
Reports Text file, HTML

format, Graph
Text file, HTML format Line table, Hit table Coverage, correlation ,Boolean

analyzer views & HTML format
Integrated with JUnit X

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

510

has various ways of reporting the results
automatically and generates summary reports
formatted in HTML earning a RF measure of
two for each vendor. JCover and Gretel also
automatically produce summary reports, but they
must be viewed within the testing application.
Therefore, these tools RF measures are one.
Emma tool has only plain text, HTML, XML
report formats and has a RF measure of 0.5.

9.1.6. Maximum Number of Classes. No tool
reported a limit on the number of classes it
could support when testing object-oriented
programs. Even so, this metric should remain
within the testing tool metric. It could be
detrimental to a software development project’s
success if a tool were selected and implemented
only to discover it could not support the number
of classes contained in the project.

9.1.7. Response Time. Each tool performed well
with regards to response time. JCover averaged
twenty-Nine minutes in performing its coverage.
Emma averaged approximately twenty
minutes.Emma averaged to twenty two minutes
and Code Cover averaged to forty-two minutes.

9.1.8. User Control. All tools offered extensive
user control of which portions of the code would
be tested by a specified test case. Each allowed
the user to specify a function, class, or project, or
any combination of the three, to be tested.

9.1.9. Other Testing Tool Metrics. The
remaining testing tool metrics require execution
of extensive experiments or input from tool
vendors. The scope of our research prevents
conducting detailed experiments. Along with
insufficient input from the vendors, this prevents
analysis of the remaining metrics.

10. ANALYSIS OF RESULTS
 The tools were analyzed both for
Coverage metrics and Tool metrics.

10.1 Coverage Metrics analysis

 The four suites of testing tools provided
interesting results on the relative quality of the
software under test. The results of the selected
tools were analyzed as shown in Table 2 , based
on Coverage measures that the

Table4 Analysis & Implementation of JCover, Emma, Gretel and Code Cover Using Various Sort Programs

SC-Statement Coverage, BLC-Block Coverage,BC- Branch Coverage , LC-Loop Coverage,MC-Method Coverage, CC-
Condition Coverage,FC-File Coverage,CLC-Class Coverage

Sorting
programs

JCoverage Emma Gretel Code cover
SC

BC M
C

FC CL
C

SC BL
C

MC CLC SC SC BC LC CC

Bubble 89 76 95 89 100 86 86 95 100 83 92 89 78 86

Selection 88 76 96 86 100 85 85 94 100 82 93 87 79 87

Insertion 88 77 94 85 100 86 86 95 100 81 92 87 77 86

Heap
89 78 95 87 100 87 87 95 100 80 93 88 80 88

Merge
88 78 95 86 100 85 85 95 100 82 92 87 80 86

Quick
89 77 94 85 100 87 87 94 100 83 93 89 81 87

Payroll
86 75 95 85 100 87 85 93 100 83 96 100 100 86

Calculator
88 76 94 86 100 85 86 95 100 80 90 99 I00 91

Arrays of
javac 87 75 94 85 100 85 87 94 100 81 95 88 77 86

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

511

tool supports like, Memory space, Graphical
User Interface, Residual coverage Monitoring
and reports in HTML format. While considering
Coverage measures supported feature, Statement
coverage is obtained by all the four tools.

 Branch coverage is obtained by
JCover and Code cover tools. Method and class
coverage are obtained by JCover and Emma
tools. File coverage is obtained by JCover. Block
coverage is obtained by Emma. Loop and
Condition coverage are obtained by Code Cover
tool. Coverage measure provided by JCover and
Code Cover tools can be viewed as graphical
representation. Except Emma other three tools
are good in user interface. While considering
Residual coverage Monitoring, Gretel tool
provides Residual coverage. While considering
report generation JCover generates report in the
form of Text file, HTML format and Graph.
Emma generates report in the form of Text file
and HTML format. Gretel generates report in the
form of Line table and Hit table. Gretel generates
report in the form of Coverage view, correlation
view, Boolean analyzer view and HTML format.
While considering JUnit integration, except
Gretel other three tools are integrated with JUnit.

 This paper, analyses of various
coverage tools
 namely, JCover, Emma, Gretel and Code
Cover tools are performed. We have considered
the sorting programs like Bubble Sort, Quick
Sort, Insertion Sort, Heap Sort, Merge sort,
Selection Sort, Payroll calculation, Calculator
application and Code of Java compiler(only
arrays were considered). The details of the
programs are given in Table 1. In the table,
Cyclomatic complexity which provides an upper
bound for the number of test cases that are to be
written for complete testing of the application is
calculated. In total 67 test cases for Sorting
programs ,29 test cases for payroll program,58
test cases for calculator program and 255 test
cases for Code of Java compiler(only arrays
were considered), were written and executed
using JUnit framework.[17]

 JUnit [17] is a framework for executing unit
test cases that contain java classes with one or
more test methods Coverage percentage using
the various tools were measured for the sorting
programs and the results presented in Table.4.
While considering Statement Coverage for
Bubble sort JCover tool provides 89%, Emma
tool provides 86%, Gretel tool provides 83% and

Code cover tool provides 92%. While
considering Statement Coverage for Calculator
application JCover tool provides 88%, Emma
tool provides 85%, Gretel tool provides 80% and
Code cover tool provides 90%.From Table4 it is
clear that Code Cover tool provides more
coverage than the other three tools.

Coverage view of Code cover tool for
Calculator program is shown in Figure 1.

Figure1 Coverage view of Code Cover tool for Calculator
program

For Heap sort Code Cover tool provides
93% statement coverage, 88%Branch coverage,
80%Loop Coverage and 86%Condition
Coverage. Correlation view of Code Cover tool
for Heap sort program is shown in Figure2

Figure2 Correlation view of Code Cover tool for Heap
sort program

Graphical representation of Total
coverage provided by JCover, Emma, Gretel and
Code Cover tools for Java sorting programs is
shown in Figure3.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

512

0
10
20

30
40
50
60
70

80
90

100

Jcover Emma Gretel Code Cover

Coverage Tools

C
ov

er
ag

e
Pe

rc
en

ta
ge

Bubble

selection

Insertion

Heap

Merge

Quick

Payroll

calculator

Arrays

Figure 3.Graphical Representation of Total Coverage

From Figure 3., it is shown that Code
cover tool provides more coverage percentage
than JCover, Emma and Gretel. As a total, Code
Cover tool provides 94% for Bubble sort, 89%
for Selection sort, 92% for Insertion sort,92% for
Heap sort ,88%for Merge sort 90% for Quick
sort,91% for Payroll calculation,92% for
calculator application and 95% for Arrays class
of java compiler. According to our analysis, the
Test Manager can select Code Cover tool to
calculate the coverage metrics and to select the
best test cases for regression testing for all kind
of Java programs. Graphical representation of
Statement Coverage, Branch Coverage, Loop
Coverage and Condition Coverage provided by
Code Cover tool is shown in Figure 4.

0

20

40

60

80

100

120

Bu
bb

le

Se
lec

tio
n

In
se

rtio
n

He
ap

M
er
ge

Qu
ick

Pa
yr
oll

Ca
lcu

lat
or

Ar
ra
ys

Programs

Co
ve

ra
ge

 P
er

ce
nt

ag
e

Statement
Branch
Loop
Condition

Fig4.Graphical Representation of Coverage provided by

Code Cover tool.

10.2 Tool Metrics analysis
 Success was also achieved in

applying several of the metrics including HID,
TCG, TM,EU,EC,TS and RF. HID
measurements were calculated for each testing
tool based on the sub-metrics of average KMS,
IFPF, ALIF, and BR when applicable. The sub-
metrics demonstrated non-coarseness (different
values were measured), finiteness (no metric was
the same for all tools), and non-uniqueness
(some equal values were obtained). The HID
measurements were all unique, indicating that
the measurement could be useful in comparing
tools during the evaluation and selection process.

Tools HID MCB EU RF RT
JCover 16 50% 83% 84 22min
Emma 14 50% 82% 78 23min
Gretel 15 50% 81% 81 24min
Code
Cover

13 50% 86% 90 20min

Table5.Analysis of Tool Metrics

RF measurements were also successful. It is
simple to determine whether a tool automatically
generates summary reports (SR) that are
viewable without the tool application running
(e.g., HTML document) (ER). The RF metric is
non coarse, finite, and non-unique. However,
because each tool earned a SR score of one,
additional testing should be conducted to
determine SR’s level of non-uniqueness.

Tools Coverage Metrics(%) Tool Metrics

B
ub

bl
e

Se
le

ct
io

n

In
se

rt
io

n

H
ea

p

M
er

ge

Q
ui

ck

Pa
yr

ol
l

C
al

cu
la

t
or

H
ID

M
C

B
(%

)

E
U

R
F

R
T

(s
ec

s)

JCover 82 80 78 83 80 82 84 85 16 50 83 84 22

Emma 81 78 80 82 78 80 77 79 14 50 82 78 23

Gretel 83 82 81 80 82 83 80 83 15 50 81 81 24

Code Cover 94 89 92 88 90 91 92 95 13 50 86 90 20

Table 6 Complete Analysis

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

513

The Maturity & Customer Base, Tool Support,
Estimated Return on Investment, Reliability, and
Maximum Number of Parameters metrics were
not completed. In order to do so would involve
conducting more experiments or obtaining tool-
vendor input, the latter of which is not readily
available.The details of the other metrics for the
four tools are as shown in table 5.
 From table 5 we infer that the Code Cover
Tool is easy to use, has a very good response
time for every command given, has very good
reporting features as mentioned in section 7.5
and Table 2.

10.3 Combined Analysis

 The combined analysis of Coverage and
Tool metrics for the four tools we have selected
namely JCover, Emma, Gretel and Code Cover
is detailed in Table 6. From our analysis and
from the table 6 it is clear that the Code Cover
tool satisfies most of the features we have
considered for the coverage tool evaluation

11. CONCLUSION AND FUTURE

ENHANCEMENT

Well-designed metrics with documented
objectives can help an organization obtain the
information it needs to continue to improve its
softwareproducts, processes, and services while
maintaining a focus on what is important.

 Our metrics captured differences in the
various suites of software-testing tools, relative
to the software system under test; the software-
testing tools vary in their underlying approach,
quality, and ease-of-use, among other
characteristics. However, confirming evidence is
needed to support our theories about the
effectiveness of the tool metrics for improving
the evaluation and selection of software-testing
tools

 Most test coverage analyzers help in
evaluating the effectiveness of testing by
providing data on various coverage metrics
achieved during testing. If made available, the
coverage information can be very useful for
many other related activities, like, regression
testing, test case prioritization, test-suite
augmentation, test-suite minimization, etc. In
this paper, an analysis of the various Java Code
Coverage tools were presented and from the
study we have suggested that Code Cover tool is
comparatively better in calculating the coverage
metrics and helps in the selection of best test

cases based on coverage for regression testing of
Java programs.
As a future enhancement, future research is to
conduct more intensive testing with the
candidate tools by creating additional test cases
and modifying default test settings to improve
test coverage and conducting regression testing.
One could also compare the testing tools under
various operating system configurations and tool
settings, or measure a tool’s capability and
efficiency in both measuring and improving
testing.

REFERENCES

[1] Boris Beizer: “Software Testing
Techniques”, Second Edition, International
Thomson Computer Press, 1990, ISBN 1-
85032-880-3.

[2] Glenford J.Myers, “The Art of Software
Testing”, John Wiley, 1979

[3] Prasad K.V.K.K ”Software testing tools “,
2006 edition

[4] Qaiser Durrani, " Role of Software Metrics in
Software Engineering and Requirements
Analysis ", 2005 IEEE.

[5] Grady, R.B, Practical Software Metrics for
ProjectManagement and Process
Improvement, Prentice-Hall, 1992.

[6] John Joseph Chilenski and Steven P. Miller,
"Applicability of Modified
Condition/Decision Coverage to Software
Testing", Software Engineering Journal,
September 1994, Vol. 9, No. 5, pp.193-
2000.

 [7] Howden, "Weak Mutation Testing and
Completeness of Test Sets", IEEE Trans.
Software Eng., Vol.SE-8, No.4, July 1982,
pp.371-379.

[8] Woodward, M.R., Hedley, D. and Hennell,
M.A., "Experience with Path Analysis and
Testing of Programs", IEEE Transactions on
Software Engineering, Vol. SE-6, No. 3, pp.
278-286, May 1980.

[9] Norman E Fenton, Martin Neil, “Software
Metrics: Roadmap”.

[10] Roger S. Pressman, Software Engineering:
A Practitioner's Approach

[11] http://www.codecoverage.com
[12]http://www.codecoveragetools.com/code_co

verage_java.html
[13]http://www.cs.uoregon.edu/research/perpetu

al/dasada/Software/Gretel
[14] http://Emma.sourceforge.net

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

514

[15] Poston, R. M. and Sexton, M. P. Evaluating
and selecting testing tools. IEEE Software 9,
3 (May 1992), 33-42.

[16] Dekkers, C. Demystifying function points:
Let's understand some terminology. IT
Metrics Strategies, Oct. 1998.

[17] Chidamber, S. R. and Kemerer, R. F. A
metrics suite for object-oriented design.
IEEE Trans. Software Eng. 20, 6 (June
1994), 476-493.

[18] Lorenz, M. and Kidd, J. Object-Oriented
Software Metrics. Englewood Cliffs, N.J.:
Prentice Hall, 1994.

[19] Youngblut, C. and Brykczynski B. An
examination of selected software testing
tools: 1992. IDA Paper P-2769,Inst. for
Defense Analyses, Alexandria, Va., Dec.
1992.

[20] Youngblut, C. and Brykczynski, B. An
examination of selected software testing
tools: 1993 Supp. IDA Paper P- 2925, Inst.
for Defense Analyses, Alexandria, Va., Oct.
1993.

[21] Daich, G. T., Price, G., Ragland, B., and
Dawood, M. Software test technologies
report. Software Technology Support
Center, Hill AFB, Utah, Aug. 1994.

