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ABSTRACT 

 
Evolutionary algorithms are becoming increasingly valuable in solving large-scale, realistic engineering 
multiobjective optimization problems, which typically require consideration of conflicting and competing 
design issues. A criticism of Evolutionary Algorithms might be the lack of efficient and robust generic 
methods to handle constraints. The most widespread approach for constrained search problems is to use 
penalty methods, because of their simplicity and ease of implementation. Penalty function is generic and 
applicable to any type of constraint (linear or nonlinear). Nonetheless, the most difficult aspect of the 
penalty function approach is to find appropriate penalty parameters. In this paper, a method combining the 
new Non-dominated Ranked Genetic Algorithm (NRGA), with a parameterless penalty approach are 
exploited to devise the search to find Pareto optimal set of solutions, alleviate the above difficulties. The 
parameterless penalty approach that does not require any penalty parameter where penalty parameters 
assignment among feasible and infeasible solutions are made with a view to provide a search direction 
towards the feasible region. The new Parameterless Penalty and the Non-dominated Ranked Genetic 
Algorithm (PP-NRGA) continuously find better Pareto optimal set of solutions. This new algorithm have 
been evaluated by solving five test problems, reported in the multi-objective evolutionary algorithm 
(MOEA) literature. Performance comparisons based on quantitative metrics for accuracy, coverage, and 
spread are presented. 
 
Keywords: Multi-Objective Optimization, Pareto Optimal Solutions, Constrained Optimization, Penalty 

Functions, Ranking. 
 
1. INTRODUCTION  
 

Trade-off information in the form of a Pareto 
optimal set of solutions is important in considering 
competing design objectives when making 
decisions associated with most engineering 
problems. The Presence of multiple objectives in 
engineering problems, in principle, gives rise to a 
Pareto set of optimal solutions, instead of a single 
optimal solution. In the absence of any further 
information, one of these Pareto optimal solutions 
cannot be said to be better than the other. This 
demands a user to find as many Pareto optimal 
solutions as possible. 
Classical optimization methods (including the 
multi-criterion decision-making methods) suggest 
converting the multi-objective optimization 
problem to a single-objective optimization problem 

by emphasizing one particular Pareto optimal 
solution at a time. When such a method is to be 
used for finding multiple solutions, it has to be 
applied many times, hopefully finding a different 
solution at each simulation run. A number of multi-
objective evolutionary algorithms (MOEAs) have 
been suggested, mainly because of their ability to 
find multiple Pareto optimal solutions in one single 
simulation run. As evolutionary algorithms offer a 
relatively more flexible way to analyze and solve 
realistic engineering design problems, their use in 
multi-criterion decision making is becoming 
increasingly important. A number of multi-
objective evolutionary algorithms (MOEAs) have 
been reported since the early eighties. Detailed 
summaries of the state-of-the-art in MOEA were 
discussed [1][2]. 
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In the following, the general representation of a 
standard multi-objective problem and definitions of 
Pareto optimality are presented, followed by a brief 
overview of existing MOEAs. The details of the 
proposed parameterless penalty dominated ranking 
GA (PP-NRGA) approach PP-NRGA are then 
described, followed by its application to a five test 
problems. An extensive performance comparison of 
PP-NRGA and NSGA-II in solving the test 
problems is presented. Finally, concluding remarks 
are made with a brief discussion of PP-NRGA’s 
strengths and weaknesses. 
 
II. A STANDARD MULTI-OBJECTIVE 
OPTIMIZATION PROBLEM 
 

A general multi-objective optimization problem 
consisting of k competing objectives and m 
constraints defined as functions of decision variable 
set x can be represented as follows: 
  
Minimize  ( ) ( ) ( ) ( ){ }, ,...,1 2f x f x f x f xk=    (1) 
Subject to: 

( ) { }0, 1,2,...,g x mi i≤ ∀ =                                (2) 

x X∈                                                       (3) 

Where { }: 1, 2,...x x j nj= =  represents the 

decision vector, x j is the thj decision variable, X 

represent the decision space, ( ) { }, 1,...,g x i mi ∈  

are constraints, which include all equality 
constraints after transforming them to inequality 
constraints using (4) 
( ) 0h x ε− ≤                                     (4) 

Where ε is a small tolerance. Since the algorithm 
that will be discussed does not use gradient 
information, it does not mater if equality constraint 
(4) is non-differentiable. F(x) is the multi-objective 
vector, and ( )f xl is the thl objective function. 

 
III. PARETO OPTIMAL 
 
Pareto optimal, which is also referred as non-
dominance, of a set of solutions is formally defined 
as follows Cohon [3]:  
A feasible solution to a multi-objective problem is 
Pareto optimal if there exist no other feasible 
solution that will yield an improvement in one 
objective without causing degradation in at least 
one other objective. Van Veldhuizen and Lamont 
[1] and Zitzler [29] provide a more rigorous 
definitions of this and related multi-objective 

terminology. Based on the definitions by Van 
Veldhuizen and Lamont and notations used in 
Equations (1-3), the following are defined: 
Pareto Dominance: A multi-objective vector 

( ), ,...,1 2u u u uk= is said to dominate 

( ), ,...,1 2 kυ υ υ υ=  (denoted byu υf ) if and only 

if u is partially more thanυ , i.e. 
{ }1,2,..., ,k u ii i iυ∀ = ≤ ∧∃ = { }1,2,... ,k ui iυ<  

 
Pareto Optimality: A solution x X∈ is said to be 
Pareto optimal with respect to X if and only if there 
exists no x X∈ for which ( )F xυ =  dominates 

( )u F x= .  
 
Pareto Optimal Set: For a given multi-objective 
problem F(x), the Pareto optimal set P* is a set 
consisting of Pareto optimal solutions. P* is a subset 
of all the possible solutions in X. Mathematically, 
P* is defined as follows: 

( ) ( ){ }* | * : *p x X x X F x F x= ∈ ¬∃ ∈ f         (5) 
 
Pareto Front: The Pareto front, PF* is the set that 
contains the evaluated objective vectors of P*. 
Mathematically PF* is defined as: 

( ){ }* | *PF u F x x P= = ∈                       (6) 
 
IV. MULTI-OBJECTIVE EVOLUTIONARY 
ALGORITHMS (MOEAs) 
Over the past two decades, a number of different 
EAs were suggested to solve multi-objective 
optimization problems. Of them, VEGA [25] 
MOGA-III [14], SPEA2 [13], NSGA-II [18], 
Srinivas and Deb’s NSGA [27], and Horn NPGA 
[17], Fonseca and Fleming’s [15], for detailed 
information about other MOEA algorithms readers 
are encouraged to refer to [1],[17]. 
The [15],[27] and [17] algorithms demonstrated the 
necessary additional operators for converting a 
simple EA to a MOEA. Two common features on 
all three operators were the following: 

• Assigning fitness to population members 
based on non-dominated sorting. 

• Preserving diversity among solutions of 
the same non-dominated front. 

Although they have been shown to find multiple 
non-dominated solutions on many test problems, 
and a number of engineering design problems, 
researchers realized the need of introducing more 
useful operators (which have been found useful in 
single-objective EA’s) to solve multi-objective 
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optimization problems better. Particularly, the 
interest has been to introduce elitism to enhance the 
convergence properties of a MOEA. Reference [29] 
showed that elitism helps in achieving better 
convergence in MOEAs. Among the existing elitist 
MOEAs, Zitzler and Thiele’s SPEA [30], [31], 
Knowles and Corne’s PAES [5], MOMGAIII [6], 
PAES-II [4], NSGA-II [18] are well studied. 
Readers are encouraged to refer to the original 
studies. Since evolutionary algorithms (EAs) work 
with a population of solutions, a simple EA can be 
extended to maintain a diverse set of solutions. 
With an emphasis for moving toward the true 
Pareto optimal region, an EA can be used to find 
multiple Pareto optimal solutions in one single 
simulation run. 
 
V. PARAMETERLESS PENALTY- NON-DOMINATED 
RANKING GENETIC ALGORITHM (PP-NRGA) 
 
Over the years, the main criticisms of the multi-
objective evolutionary algorithms (EAs) might be 
the lack of efficient and robust generic methods to 
handle constraints. The most widespread approach 
for constrained search problems is to use penalty 
methods, because of their simplicity and ease of 
implementation. The penalty function approach is 
generic and applicable to any type of constraint 
(linear or nonlinear). Nonetheless, the most difficult 
aspect of the penalty function approach is to find an 
appropriate penalty parameters needed to guide the 
search towards the constrained optimum. 
In this paper, a multi-objective GA approach (Non-
dominated Ranking Genetic Algorithm NRGA) and 
an adaptive penalty function using ranks as penalty 
parameters are exploited to devise the new 
approach to find feasible Pareto front solutions. The 
new approach is called Parameterless Penalty Non-
dominated Ranking Genetic Algorithm PPNRGA. 
The adaptive penalty parameters assignments 
among feasible and infeasible solutions are made 
with a view to provide a search direction towards 
the feasible region. Two tires Rank-based Roulette 
Wheel selection operator (RRWS) is used along 
with the new adaptive penalty allow NRGA to 
continuously find better feasible Pareto optimal 
solutions, gradually leading the search near the true 
Pareto optimum solutions. NRGA with this 
constraint handling approach have been tested on 
five benchmarks problems commonly used in the 
literature. In all cases, the proposed approach has 
been able to repeatedly find feasible Pareto optimal 
solutions closer to the true Pareto optimal solutions 
than NSGA-II other MOEA. 
 
 

VI. PROPOSED CONSTRAINT HANDLING METHOD 
A. Penalty Method 

The introduction of the penalty term enables us to 
transform constrained optimization problem 
equations (1-3) into an unconstrained one, such as 
the one given by (7): 
Minimize ( ) ( ) ( ) ( ){ }, ,...,1 2y y y ykυ υ υΨ = / / /    (7) 

Where ( ) ( )( )f x r g xgi i jυ φ= +/ , 

1,..., ; 1,....,j m i k= = and 0φ ≥ is a real-valued 
function which imposes a penalty controlled by a 
sequence of penalty coefficients. 
This transformation (i.e. (7)) has been used widely 
in evolutionary constrained optimization [19], [26]. 
The penalty function method may work quite well 
for some problems; however, deciding an optimal 
(or near optimal) value for rg turns out to be a 

difficult optimization problem itself! If rg is too 

small, an infeasible solution may not be penalized 
enough. Hence, an infeasible solution may be 
evolved by an evolutionary algorithm. If rg is too 

large, a feasible solution is very likely to be found, 
but could be of very poor quality. A large rg  

discourages the exploration of infeasible regions, 
even in the early stages of evolution. This is 
particularly inefficient for problems where feasible 
regions in the whole search space are disjointed. In 
this case, it may be difficult for an evolutionary 
algorithm to move from one feasible region to 
another unless they are very close to each other. 
Reasonable exploration of infeasible regions may 
act as bridges connecting two or more different 
feasible regions. The critical issue here is how 
much exploration of infeasible regions (i.e., how 
large rg is) should be considered as reasonable. 

The answer to this question is problem dependent. 
Even for the same problem, different stages of 
evolutionary search may require different 
rg values. 

According to (7), different rg values define 

different fitness functions. A fit individual under 
one fitness function may not be fit under a different 
fitness function. Finding a near 
optimal rg adaptively is equivalent to ranking 

individuals adaptively in a population. Hence, the 
issue becomes how to rank individuals according to 
their objective and penalty values. A novel method 
for ranking individuals without specifying a 
rg value is proposed. Experimental studies test the 
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effectiveness and efficiency of this method which 
can be regarded as an adaptive penalty approach. 
It has been widely recognized that neither under-
penalization nor over-penalization is a good 
constraint handling technique, and there should be a 
balance between preserving feasible individuals and 
rejecting infeasible ones [16]. In other words, 
ranking should be dominated by a combination of 
objective and penalty functions, and so the penalty 
coefficient rg should be within the 

bounds l ur r rg g g< < . It is worth noting that the 

two bounds are not fixed. They are problem 
dependent, and may change from generation to 
generation as they are also determined by the 
current population. 
 
VII. IMPLEMENTATION OF THE EVOLUTIONARY 
ALGORITHM FOR CONSTRAINED OPTIMIZATION 
 
This section focuses on the detailed implementation 
of the evolutionary algorithm PP-NRGA for 
constrained optimization; also, the outcomes of 
testing the new approach on five benchmark 
problems are highlighted. The results are also 
compared with NSGA-II other evolutionary 
algorithm. 
 

A. Ranking 
To overcome the difficulty of determining the 
optimal rg a different approach is suggested in this 

section to balance between the objective and 
penalty functions. The following fitness function is 
introduced: 

( ) ( ) ( )*
1

m
x f x rank rank xgi i f ji

υ φ= + + ∑/
=

    (8) 

Where 1,2,..., ,i k rank f i
= is the rank of the 

objective function values, which takes values in the 
range of [1 − population size]. rank g  Is the rank 

of the sum of the constraints violation for each 
solution, which takes values from [(population 
size+1)−(2 * population size)]. What (8) above 
mounts to is that minimum fitness value and less 
constraints violation inevitably leads to best fitness 
value. By using rank-based roulette wheel selection 
[21], [24], self-adapting is achieved without any 
extra computational cost. More importantly, the 
motivation of ranking comes from the need for 
balancing objective and penalty functions directly 
and implicitly in optimization. Equation (8) 
provides a convenient way of balancing in a ranked 
set. 
 

B. Sorting Algorithm 
In this study the fast non-dominated sorting 
approach from [18] is used because of the 
comparison with NSGA-II, and because it requires 

only ( )2O MN computations. Whereas  any fast 

sorting algorithm can be used.  
 

C. Diversity Mechanism 
Along with convergence to the Pareto optimal set, it 
is desired that an EA maintains a good spread of 
solutions in the obtained set of solutions. In the 
proposed PP-NRGA, crowding distance is used, 
which does not require any user defined parameter 
for maintaining diversity among population 
members. Readers are encouraged to refer to [18] 
for more information about the crowding distance. 
 

D. Ranked Based Roulette Wheel Selection 
The authors of [22], and [23] use modified roulette 
wheel selection algorithm where each individual is 
assigned a fitness value equal to its rank in the 
population; the highest rank has the highest 
probability to be selected (in case of maximization). 
The probability is calculated as illustrated in the 
following equation: 

( )
2*

* 1
RankPi N N

=
+

                        (9) 

Where N is the number of individuals in the front 
when dealing with individuals, and number of 
fronts when dealing with fronts. In this study the 
individuals in a front are ranked based on their 
crowding distance, and the fronts ranked based on 
the non-dominance rank. 
 

E. Main Loop 
Initially, a random parent population P is created, 
objectives and constraints values are evaluated, 
ranks of each objective are calculated, and the ranks 
of the sum of the constraints violation are 
computed. The constrained problem is converted to 
unconstrained one using the equation (8) for each 
objective function, then the population is sorted 
based on the non-domination. Each solution is 
assigned a fitness (or rank) equal to its non-
domination level (1 is the best level, 2 is the next-
best level, and so on). Thus, minimization of fitness 
is assumed. The crowding distance is computed for 
each solution in each front. At first, the usual 
Ranked based Roulette Wheel Selection (RRWS), 
recombination, and mutation operators are used to 
create offspring population Q of size N. Since 
elitism is introduced by comparing current 
population with previously found best non-
dominated solutions, the procedure is different after 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
644 

 

the initial generation. We first describe the 
thl generation of the proposed algorithm as shown 

in algorithm 1. 
The step-by-step procedure shows that PP-NRGA 
algorithm is simple and straight forward. First, a 
combined population P Q∪ is formed of size 2N. 
Then, objectives and constraints values are 
evaluated, ranks of each objective are calculated, 
and the ranks of the sum of the constraints violation 
are computed. After that the constrained problem is 
converted to unconstrained one using the equation 
(8) for each objective function, the combined 
population is sorted according to non-domination, 
and the crowding distance is computed. Since all 
previous and current population members are 
included in the combined population elitism is 
ensured. Now, reduction (elitism) procedure will 
select N solutions out of 2N, it will select the 
solutions with minimum non-domination rank first, 
the remaining solutions which belongs to same non-
domination rank will be selected based on the 
crowding distance values. The new population of 
size N is now used for selection (RRWS), 
crossover, and mutation to create a new population 
Q of size N. 
The two tiers ranked based roulette wheel selection 
[22], and [23] is used, The first tier will select the 
front based on the non-domination rank, here the 
solutions belonging to the best non-dominated set 
F1 (best front) have the largest chance to be selected 
in the combined population. Thus, solutions from 
the set F2 are chosen with less chance than solutions 
from the set F1 and so on. Then second tier will 
select a solution inside the front based on the 
crowding distance value, the solution with larger 
crowding distance value will have larger chance to 
be selected. 
The overall complexity of the algorithm is 

( )2O MN , which is governed by the non-

dominated sorting part of the algorithm. If 
performed carefully, the complete population of 
size 2N need not be sorted according to non-
domination. As soon as the sorting procedure has 
found enough number   of fronts to have members 
in Pt+1, there is no reason to continue with the 

sorting procedure. 

 
The diversity among non-dominated solutions is 
introduced by using the crowding distance 
procedure, which is used by the ranked based 
roulette wheel selection during the population 
selection phase. Since solutions compete with their 
crowding-distance (a measure of density of 
solutions in the neighborhood), no extra niching 
parameter (such as shareσ needed in the NSGA 
[27]) is required. Although the crowding distance is 
calculated in the objective function space, it can 
also be implemented in the parameter space, if so 
desired [9]. However, in all simulations performed 
in this study, the objective function space niching is 
used. 
 

F. Survival Selection (elitism): 
After evaluating the offspring’s fitness (non-
dominated rank, crowding distance), parents and 
offspring fight for survival as Pareto dominance is 
applied to the combined population of parents and 
offspring. Then the least dominated N solution 
vectors survive to make the population of the next 
generation. 
 
VIII. TESTING AND EVALUATION OF PP-NRGA 
 
In this section, first the test problems used to 
compare the performance of PP-NRGA with 
NSGA-II are described. For both NRGA and 
NSGA-II, the same parameter values have been 
chosen and have not made any effort in finding the 
best parameter setting. We leave this task for a 
future study. 
 

A. Test Problems 
Test problems are chosen from the literature. In 
2001, Deb and his students [12] have developed test 
problems for constrained multi-objective 
optimization and suggested eight test problems. 
Five of those eight problems are chosen here and 
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call them CTP1, CTP2, CTP3, CTP4, and CTP5. 
All problems have two objective functions and 
constraints. These test problems are described in 
the appendix. The simulated binary crossover 
(SBX) operator and polynomial mutation [10] are 
used. The crossover probability of 0.9Pc = and a 
mutation probability of 0.1Pm = are used. 
Distribution indexes [10] for crossover and 
mutation operators as 15cη = and 20mη = , 
respectively are specified. The table I shows the 
remaining parameters values used in this study. 
 

B. Performance Measures 
Unlike in single-objective optimization, there are 
two goals in a multi-objective optimization:  
1) Convergence to the Pareto optimal set and  
2) Maintenance of diversity in solutions of the 
Pareto optimal set.  
 
These two tasks cannot be measured adequately 
with one performance metric. Many performance 
metrics have been suggested [1], [7], [31], [28]. 
Here, two running performance metrics to 
understand the behavior of the algorithm from [11] 
are used in evaluating each of the above two goals 
in a solution set obtained by a multi-objective 
optimization algorithm. The first metric measures 
the extent of convergence to a known set of Pareto 
optimal solutions. Since multi-objective algorithms 
would be tested on problems having a known set of 
Pareto optimal solutions, the calculation of this 
metric is possible. First, we find a set of H = 600 
uniformly spaced solutions from the true Pareto 
optimal front in the objective space. For each 
solution obtained with an algorithm, the minimum 
normalized Euclidean distance of it from H chosen 
solutions on the Pareto optimal front is computed. 
The average of these distances is used as the first 
metric tCP (the convergence metric). In order to 
keep the convergence metric within [0, 1] once the 
metric values are calculated for all generations, 
normalize ( )tC P by it maximum value 
(usually 0( )C P ). When all obtained solutions lie 
exactly on chosen solutions, this metric takes a 
value of zero. Even when all solutions converge to 
the Pareto optimal front, the above convergence 
metric does not have a value of zero. The metric 
will yield zero only when each obtained solution 
lies exactly on each of the chosen solutions. 
Although this metric alone can provide some 
information about the spread in obtained solutions, 
different metric to measure the spread in solutions 
obtained by an algorithm is defined (diversity 
metric). The second metric measures the extent of 

spread achieved among the obtained solutions. 
Here, we are interested in getting a set of solutions 
that spans the entire Pareto optimal region. For each 
objective, we calculate a diversity value as follows: 
the obtained non-dominated points at each 
generation are projected on suitable hyper-plane. 
The plane is divided into a number of small grids 
(or M−1 dimensional boxes). Depending on 
whether each grid contains an obtained non-
dominated point or not, a diversity metric is 
defined. If all grids are represented with at least one 
point, the best possible (with respect to the chosen 
number of grids) diversity measure is achieved. If 
some grids are not represented by a non-dominated 
point, the diversity is poor. The parameters required 
from the user are the direction cosine of the 
reference plane, the number of grids ( )iG in each 
(M−1) dimension, and the target (or reference) set 
of points. Because of lake of space reader 
recommended to refer to the original study [11] For 
more details about the running metrics used. In the 
experiments the number of grids is equal to the 
population size and 2 0f = plane to project the 
points. 
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Algorithm 1 PP-NRGA 
1: Initialize Population P 
2: Generate random population − size N 
3: Evaluate objectives values and constraints 
4: Calculate the rank of objectives values, 

( ), 1, 2, ...,R i kf i
= for each solution, [ ]1R Nf i

∈ −  

5: Calculate the rank of the sum of the constraints 
violation R g for each solution 

( ) ( )1 2R N Ng ∈ + −⎡ ⎤⎣ ⎦  

6: Convert the constrained problem to unconstrained one 
using the equation (8) for each objective function, for 
each solution in P 

7: Assign Rank (level) Based on Pareto dominance – sort  
8: Calculate the crowding distance between members on 

each front 
9: Generate offspring Population Q from P 
10: {Ranked based Roulette Wheel Selection 
11: Recombination and Mutation 
12: Evaluate objectives values and constraints} 
13: for g = 1 to G do 
14:    for each member of the combined population 

( P Q∪ ) 
15: Calculate the rank of objectives values, 

( ), 1, 2, ...,R i kf i
= for each solution in the combined 

population [ ], 1 2P Q R Nf i
∪ ∈ −  

16: Calculate the rank of the sum of the constraints 
violation gR for each solution in the combined 

population ( ) ( ), 2 1 4P Q R N Ng∪ ∈ + −⎡ ⎤⎣ ⎦  

17: Convert the constrained problem to unconstrained one 
using the equation (8) for each objective function, for 
each solution in P  

18: Assign Rank (level) based on Pareto – sort  
19: Calculate the crowding distance between members on 

each front 
20:    end for 
21: (elitist) Select the members of the combined 

population based on least dominated N solution to 
make the population P of the next generation. Ties are 
resolved by taking the less crowding distance. 

22: Calculate the rank of objectives values, 
, ( 1, 2, ..., )R i kf i

= for each solution, [ ]1R Nf i
∈ − . 

23: Calculate the rank of the sum of the constraints 
violation R g for each solution [ ]( 1) (2 )R N Ng ∈ + − . 

24: Convert the constrained problem to unconstrained one 
using the equation (8) for each objective function, for 
each solution in P. 

25: Assign Rank (level) Based on Pareto dominance sort. 
26: Calculate the crowding distance between members on 

each front. 
27: Q = Create next generation from {P . 

28: {| Ranked based Roulette Wheel Selection. 

29: Recombination and Mutation. 
30: Evaluate objective values and constraints } | . 

31: end for 
 

 
                 Fig. 1. CTP1 Final Generation 
 

 
                   Fig. 2. CTP2 Final Generation 
 

 
                   Fig. 3. CTP3 Final Generation 
 

 
                 Fig. 4. CTP4 Final Generation 
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                      Fig. 5. CTP5 Final Generation 
 

 
                             Fig. 6. CTP1 Convergence 
 

 
                       Fig. 7. CTP2 Convergence 
 

 
                          Fig. 8. CTP3 Convergence 

 
                          Fig. 9. CTP4 Convergence 

 
                          Fig. 10. CTP5 Convergence 

 
                          Fig. 11. CTP1 Convergence 

 
Fig. 12. CTP2 Convergence 
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Fig. 13. CTP3 Convergence 

 
Fig. 14. CTP4 Convergence 

 
Fig. 15. CTP5 Convergence 

 
 
C. Discussion of the Results 

Figures 1-5 show the final generation but these will 
not give a clear picture about the behavior of the 
algorithms, for that the figures 6-10 illustrate the 
convergence behavior of PP-NRGA and NSGA-II 
algorithms. Figure 6 shows that the convergence 
metric of PP-NRGA on problem CTP1, quickly 
moves to zero faster than NSGA-II, thereby 
implying that starting from a random set of 
solutions PP-NRGA quickly approach the feasible 
Pareto optimal front faster than NSGA-II. A value 
of zero the convergence metric implies that all non-
dominated solutions match the chosen Pareto 
optimal solutions. After about 20 generations, the 

PP-NRGA population comes very close to the 
Pareto optimal front, whereas NSGA-II took too 
much to get closer to the Pareto optimal front. The 
same is happened in the figures 7, and 9, where in 
CTP3 and CTP5 NSGA-II was ahead. Figures 
11-15 show the diversity metric graphs obtained 
using the two algorithms. Figure 11 explains that 
the diversity metric increases exponentially till 50 
generations in PP-NRGA and till 60 in NSGA-II 
after that the diversity remain more or less the 
same. Although the obtained solutions are very 
close to the chosen Pareto optimal front, the 
diversity metric oscillates near a stable value. The 
same behavior of the diversity metric in the 
remaining figures, except in figure 14 and figure 15 
where PP-NRGA performs better than NSGA-II. 
From above PP-NRGA out perform NSGA-II in 
most of the test problems. On most of the problems, 
PP-NRGA is able to find a better spread and faster 
convergence of solutions than NSGA-II algorithm. 
Fig. 1 shows all non-dominated solutions obtained 
after 200 generations with PP-NRGA and NSGA-II 
on CTP1 problem. The feasible Pareto optimal 
region is also shown in the figure. This figure 
demonstrates the abilities of PP-NRGA in 
converging to the feasible true front and in finding 
diverse solutions in the front. In the convergence 
aspect PP-NRGA performed better than NSGAII in 
this problem. But NSGA-II is shows better spread 
over the feasible Pareto front in the final GA 
population. Next, the non-dominated solutions on 
the problem CTP2 is shown in Fig. 2. This problem 
has a discontinued piece wise Pareto optimal front. 
the performance of PP-NRGA is better than NSGA-
II. Although PP-NRGA get closer to the true front 
than NSGA-II, also PP-NRGA have found a better 
spread and more solutions in the entire Pareto 
optimal region than PP-NRGA. The problem CTP3 
has vertexes Pareto optimal front. Figure 3 shows 
that the overall performance of PPNRGA is same 
NSGA-II, but the convergence and ability to find a 
diverse set of solutions are definitely better with 
PPNRGA. Finally, in figure 5 and figure 4 show 
that PP-NRGA finds a better converged set of non-
dominated solutions in CTP4, CTP5 compared to 
NSGA-II algorithm. 
 
IX. CONCLUSIONS AND FUTURE WORK 
 
This paper has proposed a new constraint multi-
objective evolutionary algorithm called 
Parameterless Penalty Non-dominated Ranking 
Genetic Algorithm (PP-NRGA). The new elitist 
MOEA (PP-NRGA) have been tested on five 
different difficult test problems borrowed from the 
literature. The balance between the objective and 
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penalty function is achieved through rank used in 
fitness function (8). The introduction of rank and 
using that rank in the fitness function enables the 
algorithm to bias toward the global Pareto front. 
The proposed method could get solutions closer to 
the global Pareto front on the five test problems. 
The PP-NRGA does not introduce any specialized 
variation operators, and does not require a priori 
knowledge about a problem since it uses 
parameterless penalty coefficient gr  in a penalty 
function. The procedure presented in this paper for 
handling constraints can be integrated to any 
evolutionary algorithm framework. The proposed 
PP-NRGA was able to maintain a better spread of 
solutions and converge better in the obtained 
feasible non-dominated front compared to NSGA-
II. However, in all problems, PP-NRGA was able to 
converge closer to the true Pareto optimal front. PP-
NRGA maintains diversity among solutions by 
controlling dynamic and parameterless crowding 
approach. However, the diversity preserving 
mechanism used in NSGA-II (which used in 
PPNRGA) is found to be the best with PP-NRGA. 
With the properties of parameterless penalty 
function, two tiers ranked based roulette wheel 
selection procedure, a fast non-dominated sorting 
procedure, and an elitist strategy, PP-NRGA can be 
used for solving constraint real world problems, 
and should find increasing attention and 
applications in the near future. 
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APPENDIX 
All benchmark functions are described in [8]. 
X. CTP1 
Min ( )1 1f x x=  

Min 

( )1
( )( ) ( )2

f x
g xf x g x e

−

=  

Where 
( ) 1.0 2g x x= +  

Subject to : 
( )1 1( ) ( ) 01 2 1

b f x
g x f x a e

−
= − ≥  

( )2 1( ) ( ) 02 2 2
b f x

g x f x a e
−

= − ≥  

Where 1a = 0.858, 1b = 0.541, 2a = 0.728, 

2b = 0.295. 
 
XI. CTP2 
Min ( )1 1f x x=  

Min 
( )1( ) ( ) 12 ( )

f x
f x g x

g x

−⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

Where 
( ) 1.0 2g x x= +  

Subject to: 
( ) cos( ) ( ) sin( ) ( )2 1g x f x e f xθ θ⎡ ⎤= − − ≥⎣ ⎦  

{ }| sin sin( )( ( ) ) cos( ) ( ) |2 1
c da b f x e f xπ θ θ⎡ ⎤− +⎣ ⎦  

Where [ ]0,1 ,1x = and 0.2 ,θ π= −  0.2,a = 10,b =  

1,c = 6d = , 1.e =  
 
XII. CTP3 
Min ( ) 1f x xi =  

Min ( ) ( )
( )
( )
11

f x
f x g xi g x

−⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

Where 
( ) 1.0 2g x x= +  

Subject to: 
( ) ( ) ( ) ( ) ( )cos sin2 1g x f x e f xi θ θ⎡ ⎤= − −⎣ ⎦

( ) ( )( ) ( ) ( )sin sin cos2 1

dc
a b f x e f xπ θ θ⎧ ⎫⎡ ⎤≥ − +⎨ ⎬⎣ ⎦⎩ ⎭

 
Where [ ]1 0,1 ,x = 0.2 , 0.1aθ π= − = , 

10, 1, 0.5, 1b c d e= = = = . 
 

 
XIII. CTP4 
Min ( ) 1f x xi =  

Min ( ) ( )
( )
( )
11

f x
f x g xi g x

−⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

Where 
( ) 1.0 2g x x= +  

Subject to: 
( ) ( ) ( ) ( ) ( )cos sin2 1g x f x e f xi θ θ⎡ ⎤= − −⎣ ⎦

( ) ( )( ) ( ) ( )sin sin cos2 1

dc
a b f x e f xπ θ θ⎧ ⎫⎡ ⎤≥ − +⎨ ⎬⎣ ⎦⎩ ⎭

 
Where [ ]1 0,1 ,x = 0.2 , 0.75aθ π= − = , 

10, 1, 0.5, 1b c d e= = = =  
 
XIV. CTP5 
Min ( ) 1f x xi =  

Min ( ) ( )
( )
( )
11

f x
f x g xi g x

−⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

Where 
( ) 1.0 2g x x= +  

Subject to: 
( ) ( ) ( ) ( ) ( )cos sin2 1g x f x e f xi θ θ⎡ ⎤= − −⎣ ⎦

( ) ( )( ) ( ) ( )sin sin cos2 1

dc
a b f x e f xπ θ θ⎧ ⎫⎡ ⎤≥ − +⎨ ⎬⎣ ⎦⎩ ⎭

 
Where [ ]1 0,1 ,x =  0.1 , 40aθ π= − = , 

0.5, 1, 2, 2b c d e s= = = = − . 
 
 


