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ABSTRACT 
 

A broad range of AI and multi-Agent problems fall in to the Distributed Constraint Satisfaction Problems 
category. Many of the problems in this domain are real-world problems. This fact makes DisCSPs an 
effective area of research. Considering all of the efforts that have recently been accomplished for solving 
these kinds of the problems, the most successful algorithm proposed is Asynchronous Partial Overlay 
(APO), which is a mediation-based algorithm. APO tries to solve the problem first by dividing the whole 
problem in to smaller portions and then solving these sub-problems by choosing some agents as mediators. 
This paper presents a new and effective strategy to select these mediators; moreover, it introduces two new 
expansion algorithms of APO that use this new strategy. These algorithms are called MaxCAPO and 
MaxCIAPO. The chief idea behind this strategy is that the number of mediators' conflicts (violated 
constraints) impacts directly on their performance. Experimental results show that choosing the agents 
which have the most number of conflicts as mediators not only leads to a considerable decrease in APO 
complexity, but also can decrease the complexity of the other extensions of the APO, such as IAPO 
algorithm. The results of using this conflict-based mediator selection strategy show a rapid and desirable 
improvement, in comparison with APO and IAPO, over various parameters such as the message and 
runtime complexities. 

Keywords: Distributed Constraint Satisfaction, APO, cooperative mediation, multi-agent, autonomous, 
Artificial Intelligence 

 
1. INTRODUCTION  
 

All the problems in which the goal is finding 
suitable values to assign to distributed variables can 
be included in Distributed Constraint Satisfaction 
Problems (DisCSPs). Each one of these distributed 
variables is assigned to an autonomous agent. Each 
autonomous agent tries to assign suitable values to 
its variables and also to other agents’ variables by 
exchanging some messages. A vast number of real-
world and multi-agent problems can be classified, 
Such as distributed meeting scheduling [14], 
distributed resource allocation problems [3] and 
multi-agent truth maintenance [7] under this model. 
Due to the variety of problems in this domain, 
several algorithms have been proposed since 1991. 
These kinds of algorithms can be divided into two 
categories. Some of them, such as Asynchronous 
Backtracking (ABT) [17] and Asynchronous Weak-
Commitment (AWC) [16] are completely 

distributed, while others use a hybrid of distributed 
and centralized methods. One of the best known 
algorithms of the second group is Asynchronous 
Partial Overlay (APO) [12] which is represented by 
Mailler and Lesser. On the first category algorithms 
agents cannot reveal information that breaks 
privacy; it means that the agents don’t have 
sufficient information about the global effects of 
their local decisions. Although the first category 
algorithms satisfy privacy completely, the second 
group of algorithms outperforms them by revealing 
necessary information. The second group of the 
algorithms and specially APO inherit the speed of 
centralization while using the advantages of 
parallelism too. This new methodology, which is 
called cooperative mediation, is a method 
somewhere between centralized and distributed 
problem solving methods.  

One of the most important parts of the APO 
algorithm is the coordinator selection part in which 
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the agents that detect some conflicts among 
themselves select the highest priority agent of the 
group as mediator. The mediator first tries to 
complete its information about the problem space 
by exchanging various messages with the other 
agents and then to solve the sub-problem by 
changing its local variables or starting a mediation 
session. After solving the sub-problem, the 
mediator recommends the new values to relevant 
agents. As they are autonomous, they can accept or 
refuse these values. After all the sub-problems are 
solved by mediators, the whole problem will be 
solved by juxtaposing these parts, just like putting 
the pieces of a puzzle next together. As it can be 
seen, the distributed problem is solved by solving 
various smaller sub-problems in a centralized 
manner. Although APO outperforms its previous 
algorithms, new research has been done recently 
that outperforms APO. Benish and Sadeh, who have 
done some studies in this domain, investigated 
different heuristics for mediator selection and found 
that by assigning higher priority to the agents with 
the smallest good-list, a substantial speedup from 
the solver will be seen. 

As it can be seen, one of the most important parts 
of the APO algorithm is the mediator selection part. 
So, it seems to be a key part of the algorithm and, it 
is very important how to choose the mediator to 
reach the best solution. Making a small change in 
mediator selection strategy can lead to a different 
solution. These all show the importance of choosing 
the best mediator selection strategy. 

This paper presents a new and effective conflict-
based strategy. In this strategy, more effective and 
powerful agents will be selected as mediators by 
developing a heuristic method based on the number 
of mediator’s conflicts. The main idea behind this 
method is that the agents that have the most 
complete information about the sub-problem 
conflicts can compute the best solutions. The use of 
the agents with the largest number of conflicts will 
increase the speed of the algorithm and decrease the 
number of messages exchanged. 

In the rest of this article, after defining the 
DisCSP, a brief overview of the previous works 
preformed on DisCSP, specially the latest ones, is 
given; section 3, describes the new conflict-based 
mediator selection strategy clearly and also shows 
its usefulness by presenting MaxCAPO ( Max 
Conflict APO) algorithm which is an extension of 
APO and uses the conflict-based strategy. An 
overview of APO is also presented in this section. 
Next, section 4 presents an example of execution of 
APO and MaxCAPO to show the practical 

differences between them exactly. Section 5 first 
overviews IAPO algorithm, which is an extension 
of APO, briefly and then introduces the MaxCIAPO 
(Max Conflict Inverse APO) algorithm as an 
expansion of IAPO that uses the new mediator 
selection strategy. Section 6 presents the 
experimental setup and results of applying this 
mediator selection strategy to the APO and IAPO in 
addition to comparing APO and MaxCAPO results, 
IAPO and MaxCAPO results and finally APO, 
IAPO and MaxCIAPO results. At last, in section 6, 
the conclusion of this work is presented and some 
possible future tends in this area are introduced. 

2. BACKGROUND  

In this section, first DisCSP is introduced 
formally, and then the woks which have been 
performed to solve these problems, so far are 
presented briefly.  

2.1 Distributed Constraint Satisfaction 
Definition  

 A DisCSP is a distributed form of CSP. This 
distributed environment involves multiple 
autonomous agents each one holding one or more 
variables. It was first discussed by Sycaro et al. and 
Yokoo et al. [15, 17]. The CSP which is the basis of 
DisCSP is formally defined as follows:  

 
• A set of n variables:  V = {x1 , . . . , xn}  
 
• A set of finite, discrete domains for each 

variable:     D = {D1 , . . . , Dn} 
 
•  A set of constraint:  R = {R1, . . . , Rm} where 

each  Ri (di1 , . . . , dij) is a predicate that is 
defined on the Cartesian product Di1 × . . . × 
Dij. If the value assignment of these variables 
satisfies this constraint, the predicate returns 
true and otherwise false. 
 
 

The final goal of solving DisCSP is finding an 
assignment of values to all variables which satisfy 
all the constraints in R. Each agent tries to reach 
this goal not only by satisfying its local constraints 
but also by communicating with other agents to 
solve external conflicts. As can be seen, agents 
should have strong communication with each other 
because their goals are interrelated. For example, in 
order to solve its sub-problem, each agent may 
create new conflicts for other agents by changing its 
or other agents’ value. 
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In this paper, it is assumed that agents can 
communicate with each other by exchanging 
various messages and that the receiver agent 
receives messages exactly in the order they were 
sent, of course, after a finite delay. And it is also 
assumed that just one variable is under the control 
of each agent for simplicity. So, the name of the 
agent can be the same as the name of the variable 
that it holds and manages. Each agent has the 
complete information about the constraints on its 
variable. The next assumption is that the constraints 
are defined only between two variables which are 
called binary constraints. It is clear that these 
restrictions are easily removable. 

2.2  Related Work 

As CSP is the basis of the DisCSP, the proposed 
algorithms for solving CSP are the basis of the 
proposed algorithms for solving DisCSP. CSP’s 
algorithm can be divided in to two groups called 
search algorithms and consistency algorithms. Also, 
search algorithms can be divided in to two 
important categories called backtracking algorithms 
and iterative algorithms. 

Since the formulation of DisCSP, several 
algorithms with their advantages and disadvantages 
have been proposed. A number of them, such as 
Asynchronous Backtracking (ABT) [17] and 
Asynchronous Weak Commitment (AWC) [16], 
completely inherit their characteristics from 
centralized versions, but others, such as 
Asynchronous Partial Overlay (APO) [10], don’t 
have any previous version to solve CSPs. Table 1 
summarizes the most important proposed 
algorithms in DisCSP domains. Among these 
algorithms, APO is the latest and the most 
successful. Of course, after presenting APO, several 
extensions of it were also presented, such as IAPO 
that outperform it, but they cannot be considered as 
independent algorithms. ABT algorithm is the 
distributed form of the backtracking algorithm. As 
the backtracking algorithm tries to solve CSPs, the 
ABT tries to solve DisCSPs. In the ABT algorithm, 
each agent assigns a random value of its domain to 
its variable. The agents communicate with each 
other by sending “ok?” and “nogood” messages. By 
receiving a message, the receiver agent will save 
the message’s information on its agent-view which 
contains the state of the other agents from its 
viewpoint. In this algorithm, each agent has a 
priority number which is determined according to 
the alphabetical order of the agent’s variables. Since 
each agent has a priority number, if an agent’s 
current value is not consistent with the value of the 
higher priority agents, it will change its 

assignments. In other words, in such a condition, 
the agent revises its assigned values and if no 
consistent value remains, it will backtrack. In the 
latter condition, the agent generates a new nogood 
message and sends it to the higher priority agent. 
By receiving this message the higher priority agent, 
changes its value. In this algorithm, the nogood list 
is a subset of agent-view, which shows the list of 
the agents that cannot find any consistent value with 
the subset. 

Another successful algorithm is AWC which 
extends ABT but presents a new min-conflict 
heuristic. By using this heuristic, the risk of 
choosing a bad solution is reduced. The 
performance of these two algorithms is improved 
rapidly by presenting several heuristics.  

The next successful algorithm, APO, uses a 
hybrid of distributed and centralized methods. APO 
starts its work by sending the information of each 
agent to its neighbors and continues it by sending 
the highest priority agents as mediators to solve 
their local sub-problems in a centralized manner. 
One of the most important parts of the APO is the 
mediator selection part, in which all the agents that 
recognize the existence of one or more than one 
conflicts select the most suitable agent as mediator. 
The mediator is responsible to solve the sub-
problem by exchanging various messages. To do 
this, the mediator tries to gather necessary 
information from other agents by starting a 
mediation session. Although APO outperforms its 
previous works, several heuristics have been 
proposed recently which try to remove its 
weaknesses. For example, Roger Mailler had done 
some work on expanding APO to operate in 
dynamic environments [8], to solve optimization 
problems [11] and to provide privacy [9]. Also, 
Benish and Sadeh improved APO by changing the 
mediator selection strategy. They confirmed that 
choosing agents with the smallest good-list size can 
result in substantial speedup from the solver [1]. 
Benish and Sadeh also presented a different 
decentralized hybrid strategy which works based on 
ABT [2]. As can be seen, several researches have 
been done in this field, but none of them have 
considered the impact of the number of conflicts in 
mediator selection procedure.  

3. CONFLICT-BASED MEDIATION 
SELECTION STRATEGY  

In this section, in addition to introducing APO 
algorithm generally, the new conflict-based 
mediation selection strategy, which is the basis of 
the MaxCAPO is presented. This section continues 
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with proposing MaxCAPO, the new expansion of 
APO.  

 

Table 1 : Algorithms for solving DisCSP 
 

                            Single                    multiple                  partial          

Backtracking       Asynchronous BT           Secure DisCSP           Asynchronous IR 

Iterative             Distributed Breakout                                                1. Iterative DB 
Improvement                                                                                            2. APO   

Hybrid                 Asynchronous WC       1. variable ordering AWC   
                                      (AWC)                2. agent-ordering AWC                             

 

3.1  APO Overview  

Since APO is the basic form of MaxCAPO, it is 
presented it in a summarized form in Fig. 1. You 
can find the latest and the most accurate version of 
this algorithm in [10]. As can be seen in Fig. 1, 
APO starts by sending out an “Init!” message from 
each agent to its neighbors. This message contains 
the primary information about the sender, such as 
its name, priority, value, etc. While receiving an 
“Init!” message by each agent, it records the 
received information in its agent-view. Agent-view 
is a list that contains the primary information about 
linked agents. In fact, it is the agent’s view of the 
problem. Then each agent checks its agent-view to 
find any possible conflict with its neighbors. If one 
or more conflicts are found and no higher priority 
agent wants to mediate, the agent itself accepts the 
mediator role. 

The priority of the agents in APO is determined 
according to their number of neighbors, and, if two 
agents have the same size, it is determined 
according to the lexicographical ordering of their 
names. Of course, considering the priority for 
agents has several advantages. The most important 
one is that, it guarantees that the agent which has 
the most knowledge about the sub-problem (which 
is the agent that has the largest number of 
neighbors) assumes the role of the mediator and 
makes decisions. 

The mediator first tries to correct the conflict by 
changing its local variable. But, if it is impossible, 
the mediator will start a mediation session by 
sending out an “evaluate?” message to the agents in 
its good-list. Good-list is a list that contains the 
information of any agent that connects to the owner 
directly through a link or indirectly through several 
links. The agent-view and the good-list are two 
main data structures that each agent defines. The 
main difference between these two lists is that 

agent-view holds just the information of directly 
linked agents but good-list holds the information of 
any agent that is connected to the owner through a 
direct link or through a path in the graph.  

 The receiving agent will reply with a 
“Wait!” message if it is participating in another 
session or is expecting a request from a higher 
priority agent; otherwise, it replies with an 
“Evaluate!” message. While receiving all the 
appropriate response messages, the mediator starts a 
Branch and Bound search [5] among the agents 
which responded by “Evaluate!” message. If the 
mediator succeeds in finding the solution, it will 
inform other agents about their new values by 
sending “Accept!” messages. It also sends an “Ok!” 
message to the agents that were not participating on 
the session to update their agent-view.  

Sometimes, the solution that is found by a 
mediator causes some violations for the agents 
outside the session. In such a condition, the 
mediator adds these agents to its good-list and links 
up with them. Therefore, the mediator supposes that 
it is somehow related to these agents. This work 
prevents the mediator from repeating this mistake in 
the future and in other sessions. This step of the 
algorithm is called the “linking” step. The number 
of generated links in the “linking” step is a 
parameter for measuring the advantages of the 
algorithm, and is used for this purpose in section 6. 

APO is a sound and complete algorithm. The 
soundness and completeness of this algorithm is 
shown by Mailler et al. [10]. 

3.2  MaxCAPO Algorithm  

The APO strategy for selecting mediators from 
among the agents that have various properties 
consisting in assigning a special number, called 
priority number, to each agent and then selecting 
the mediator according to the agent's priorities.  
These priority numbers are generated first, 
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according to the number of each agent’s neighbors 
and then by continuing the algorithm and creating 
the good-list according to each agent’s good-list 
size. The primary idea behind this mediator 
selection strategy is that the agents which have the 
highest amount of information about the problem 
can choose better solutions by making better 
decisions. Therefore, the priority ordering in APO 
is a key point and is very important because it 
guarantees that the decisions are made by the agents 
which have the highest knowledge about the sub-
problem. The second advantage of considering the 
priority ordering for agents is that it helps the 
effectiveness of the mediation process by choosing 
the higher priority agents as mediators and leaving 
free the lower priority agents to be available for 
future mediation requests. 

Although this strategy has several advantages, it 
has some weaknesses also. For example, by using 
this mediator selection strategy, it frequently occurs 
that several agents have the same good-list size. In 
such a condition, APO determines the priority 
according to lexicographical ordering of the agents' 
names. For example, the priority of ND5 is more 
than the priority of ND2 if they have the same 
good-list size. In fact, it is a random way for 
breaking the tie that had occurred.  

Obviously, it would be wonderful if we replaced 
this random way with a heuristic one. The heuristic 
method that is presented in this article, called the 
conflict-based method, pays more attention to the 
number of conflicts. We believe that if several 
agents have the same number of neighbors, the 
agent that has the most number of conflicts with its 
neighbors, can make better decisions with 
exchanging fewer messages than the others. This 
happens because this particular agent exists exactly 
in the middle of the problem and, of course, is the 
most related to the conflicts. On the other hand, it 
has the highest information about the sub-problem 
restrictions in comparison with other agents. Now, 
the reason of calling this method the "Conflict-
Based method" should be completely clear. 

MaxCAPO is an expansion of APO that inherits 
the whole structure of the APO, but uses the 
conflict-based mediator selection strategy. So, in 
MaxCAPO, the priority is determined, at first step, 
according to the agent’s good-list size, and 
secondly, according to the number of conflicts of 
each agent. Exactly the same reason that we 
mentioned before for the importance of considering 
the priority is correct now for the importance of 
using this heuristic method. In fact, by choosing the 
agent with the highest number of conflicts, 

MaxCAPO ensure that the agent with the highest 
knowledge acts as the mediator, and so makes the 
fundamental decisions. And, of course, it improves 
the effectiveness of the mediation process because 
it inherits APO. 

 The name of this algorithm, “MaxCAPO”, 
comes from “Maximum Conflicts APO”, which 
means that this algorithm is an expansion of APO 
that prefers to choose agents with the maximum 
number of conflicts instead of choosing them 
according to lexicographical order. It is obvious that 
the algorithm uses this rule just when the good-list 
sizes of two or more agents are the same. The other 
parts of the algorithm are similar to APO.  

4.  AN EXAMPLE OF EXECUTION OF APO 
AND MAXCAPO 

In this section, an example of a solvable 
Distributed 3-color Graph Coloring (D3GC) 
problem is presented to compare the performance of 
APO and MaxCAPO. In a general definition, 
distributed graph coloring consists of a set of n 
distributed variables V = { x1 , . . . . . . . , xn } in 
which each element is associated with a set of 
possible colors D = { D1 , . . . , Dn}. Respectively, 
the number of elements of all the domains is equal 
to k which is the number of possible colors, and, at 
last, a set of constraints R = { R1 , . . . , Rm} in 
which Ri ( di , dj ) is true if the value of xi is “not 
equals” to the value of xj. The goal is assigning 
special colors to the variables in which all 
constraints in R return true. If we set k to 3, the 
problem will be D3GC. Obviously D3GC is a kind 
of DisCSP. 

Consider the problem in Fig. 2(a). There are 8 
agents (nodes) in this problem, each one with 
exactly one variable. And there are 12 edges 
between them that show all satisfied and violated 
constraints. The domain of each variable is {Red, 
Blue, Black}, because it is a 3-coloring problem. As 
can be seen, there are 5 violated constraints at the 
beginning: (ND0, ND5), (ND2, ND3), (ND2, ND6), 
(ND3, ND4) and (ND5, ND7). The purpose of APO 
and MaxCAPO is to find a suitable assignment to 
the variable in which none of the connected nodes 
have the same color.  

When starting in both of the algorithms, each 
agent sends an “init!” message to its neighbors and 
also adds itself to its good-list. By receiving an 
“init!” message, receivers add the sender to their 
good-list. The next step is checking the agent view 
in which all the agents except ND1 find one or two 
conflicts in their agent-views. In both of the 
algorithms, ND0 (priority = 4), ND3 (priority = 4),  
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Fig 1: APO algorithm 

ND6 (priority = 3), ND1 (priority = 3) and ND4 
(priority = 4) wait for ND5 (priority = 7) to 
mediate. 

In APO, ND2 (priority = 4) and ND3 (priority = 
4) have the same priority but, according to 
lexicographical ordering, ND2 waits for ND3. Also 
in MaxCAPO, as ND2 and ND3 have the same 
priority and the same number of conflicts (number 
of conflicts=2), according to lexicographical 
ordering, ND2 waits for ND3. So, in both of the 
algorithms, the first mediator is ND5. ND5 first 
tries to remove the conflict by simply changing its 
local variable. Fortunately, the sub-problem is 
locally solvable, so ND5 changes its color to Red 
and sends an “ok?” message to its neighbors. The 
result graph is shown in Fig. 2(b).  

From this point, APO and MaxCAPO choose 
different ways. In APO, ND3 (priority = 4) waits 
for ND4 (priority = 4) because of lexicographical 
ordering. But in MaxCAPO, ND4 (priority = 4) 
waits for ND3 (priority = 4), because ND4 has just 
one conflict and ND3 has two conflicts. Again, in 
both algorithms, ND6 (priority = 3) waits for ND2 
(priority = 4). In APO, ND2 (priority = 4) waits for 
ND3 (priority = 4) according to lexicographical 
ordering and in MaxCAPO as they have the same 
number of conflicts (2 conflicts) again, according to 
lexicographical ordering, ND2 waits for ND3. As a 

result, in APO, ND4 will be the mediator, but in 
MaxCAPO, ND3 will be the mediator. In 
MaxCAPO, ND3 finds that it can solve the sub-
problem by changing its local value to Blue. 
Therefore, it changes its value and sends an “ok?” 
message to its neighbors. On the other hand, in 
APO, ND4 can not solve the problem by changing 
its local variable, so it starts a mediation session by 
sending an “evaluate?” message to each of its 
neighbors. When each agent receives this message, 
it evaluates its domain elements and sends an 
“evaluate!” message to ND4 in response. 

 

• ND0 sends: Red conflicts with ND5; Black 
conflicts with ND4 and ND1; Blue makes no 
conflict. 

• ND3 sends: Black conflicts with ND4 and 
ND2; Red conflicts with ND5; Blue makes no 
conflict.  

• ND5 sends: Black conflicts with ND4, ND3, 
ND1 and ND6; Blue conflicts with ND0 and 
ND7; Red makes no conflict. 

 

While receiving all the “evaluate!” messages, 
ND4 chooses a solution that solves the sub-problem 
and also minimizes the number of outside conflicts,  
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Fig 2: Example of a 3-coloring Problem with 8 Nodes and 12 Edges. 
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with a Branch and Bound search. ND4 finds that 
the solution is to change ND0’s color to Blue, not to 
change ND5’s color, change ND3’s color to Blue 
and not to change its own color. ND4 informs its 
neighbors about their colors by sending an 
“accept!” message to them. By making these 
changes, the problem state will be what is shown if 
Fig. 2(c).  

Now, again, both APO and MaxCAPO 
algorithms are in the same step and follow solving 
the problem the same way. ND2 and ND6 find one 
conflict by checking their agent-views. ND6 
(priority = 3) waits for ND2 (priority = 4), so ND2 
takes the mediator role and solves the problem by 
changing its local value to Red, then it sends an 
“ok?” message to its neighbors. Now, all of the 
agents check their agent-view and find no conflict, 
so the problem is solved (Fig. 2(d)). 

Obviously, MaxCAPO has, reduced the Runtime 
and the number of messages exchanged by 
choosing the best agent as mediator in step 2. 

The results of executing this example in Farm 
simulator [6] is presented in Fig. 3 and Fig. 4. Fig. 3 
shows the results of the MaxCAPO execution and 
Fig. 4 is related to APO algorithm. In this picture 
the most important parameters including, “the 
number of messages”, "the number of execution 
cycles (runtime)” and “the number of generated 
links” are shown. 

This heuristic mediator selection leads to 
reducing 15 messages and 3 cycles of time. This 
improvement is the result of selecting agents with 
the highest number of conflicts as mediators instead 
of choosing them in a random way. 

5. MAX CONFLICT INVERSE APO 
(MAXCIAPO) 

In this section, in addition to introducing IAPO 
algorithm, MaxCIAPO, a new expansion of IAPO, 
which uses a new strategy to select mediator agents, 
is proposed. 

 5.1  IAPO Overview  

In APO, the mediator selection rule was biased 
toward selecting larger mediation sessions instead 
of smaller ones. But, according to the mathematical 
analyses reported in [1], choosing smaller 
mediation sessions can improve the performance 
significantly. Michael Benish et al. believe that the 
two most important sources of complexity that 
impact directly on APO complexity are the 
complexity of the mediation process and the that of 
the overlay process.  

Mediation complexity has to do with the 
complexity of a Branch and Bound search which is 
accomplished to solve the centralized version of the 
sub-problems that involve all the participating 
agents in the mediation session. And the overlay 
complexity is that of putting the partial solutions 
together and fitting them to each other. 

By larger mediation sessions, the complexity of 
the Branch and Bound search grows rapidly. So, by 
selecting smaller mediation sessions the mediation 
complexity will decrease. On the other hand, the 
more the number of mediation sessions, the more 
will increase the overlay complexity. In fact, 
finding a tradeoff point between mediation and 
overlay complexities is the most important point in 
this domain. Benish et al. proved that according to 
mediation and overlay complexities, selecting 
smaller mediation sessions improves the 
performance.  

IAPO is an extension of APO that follows this 
theory. Unlike the APO that assigns priorities 
proportional to the agent’s number of constraints, 
the IAPO assigns them inversely proportional to the 
agent’s number of constraints. All the parts of the 
IAPO algorithm except the mediator selection part 
are the same as the APO algorithm.  

 5.2  MaxCIAPO Algorithm  

Both of the APO and IAPO algorithms assign 
the agent’s priorities according to the number of 
constraints, but none of them consider the impact of 
number of conflicts in mediator selection strategy. 
In the previous section, the MaxCAPO algorithm 
proposed, this algorithm changed the mediator 
selection method in conditions that agents had the 
same number of neighbors. This section shows 
another practical usage of the conflict-based 
mediator selection strategy. As it can be seen, 
conflict-based strategy is a general strategy that can 
be employed in various algorithms in DisCSP 
domain. Of course, it can be more or less effective 
in different domains and also in different 
algorithms proposed in the domain of DisCSPs. For 
example, by choosing this method on the 
expansions of APO that outperform it, it would be 
possible to outperform APO and other expansions 
more powerfully.  

As mentioned in previous section, IAPO is one 
of the best expansions of APO and, as a result, it is 
an appropriate choice for using the conflict-based 
strategy. Therefore, in this section the same strategy 
that was used over APO and converted it to 
MaxCAPO is used for improving the performance 
of IAPO. Although IAPO replaced the mediator 
selection strategy with a new one, in this new 
strategy, it frequently occurs that several agents 
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Fig 3. The display of the execution of the example in Farm simulator for the MaxCAPO algorithm 
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Fig. 4.  The display of the execution of the example in Farm simulator for the APO algorithm
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have the same priority, because it frequently occurs 
that several agents have the same number of 
neighbors and the agent’s priority is in inverse 
proportion to the number of its neighbors. Like  
APO, in such a condition, IAPO assigns priorities 
according to the lexicographical ordering of the 
agents’ names. In fact, this is just a random 
strategy. MaxCIAPO replaces this random strategy 
with a heuristic one. Just like the method which was 
used in MaxCAPO, in MaxCIAPO, in the 
conditions that agents have the same number of 
neighbors and, of course, the same priority 
numbers, the agent that have the highest number of 
conflicts with its neighbors will be selected. 
Accordingly, in MaxCIAPO, the priority is 
determined, at first step, inversely proportional to 
the agent’s number of constraints and, at the second 
step, proportional to the agent’s number of 
conflicts. By using this method, if several agents 
have the same number of constraints, the agent that 
has the most conflicts and, as a result, the highest 
information of the sub-problem is selected as the 
mediator and as the main decision maker. 

The same reason that we mentioned in previous 
section about the advantages of MaxCAPO is also 
true about MaxCIAPO in addition that MaxCIAPO 
inherits the advantages of IAPO as well. So, 
MaxCIAPO outperforms all the previously 
mentioned algorithms containing APO, MaxCAPO 
and IAPO. 

The name of this algorithm, “MaxCIAPO”, 
comes from “Maximum Conflicts Inverse APO 
(IAPO)”, which means that this algorithm is an 
extension of IAPO (which itself is an extension of 
APO) that prefers to choose agents with the 
maximum number of conflicts instead of choosing 
them according to lexicographical order. It is 
obvious that the algorithm uses this rule just when 
the good-list sizes of two or more agents are the 
same. The other parts of the algorithm are similar to 
IAPO. 

Fig. 5 summarizes four different mediator 
selection strategies, which involve APO and IAPO 
strategies in addition to the two new strategies 
which were introduced in this paper. 
 

6.  EXPERIMENTAL EVALUATION 

6.1  APO and MaxCAPO 

6.1.1  Experimental Environment and Setup 

The distributed 3-color graph coloring (D3GC) 
problem is selected as the test case of our 
experiments. The purpose of doing these 
experiments is comparing MaxCAPO and APO 

algorithms under different parameters, such as the 
number of “cycles”, the number of “messages” and 
the number of “links”. The last parameter shows the 
number of links that are generated in the “linking” 
step of the algorithm. Of course, the least number 
of generated links is preferred. These parameters 
are selected because they can clearly present 
computational and communicational complexities. 

For this purpose, 600 random graphs were 
generated. These graphs were created in various 
sizes: n = 15, 30, 45, 60, 75 and 90. All of these 
graphs are produced with medium density (m = 
2.3), which means that the average number of 
constraints per variable is 2.3. Then, 10 different 
graphs with 10 different initial variable assignments 
were created for each size. These graphs were 
generated by random seeds which were saved in 
special files and used for both MaxCAPO and APO 
algorithms. As a result, all the conditions of running 
these two algorithms were generated the same way. 

Farm simulator [6], which is a Java simulator, 
was used for running the algorithms to keep all 
conditions similar to the previous work conditions 
for fairness. 

6.1.2  Experimental Results  

Since exactly the same implementation 
environment and the same simulator are used, the 
results that are achieved from APO are almost the 
same as those reported in [10] by Mailler. This 
confirms that the improvement in MaxCAPO is 
only caused by entering the number of conflicts in 
mediator selection strategy. As it can be seen in 
Fig. 6, MaxCAPO shows considerable 
improvement in comparison with APO algorithm, 
and this improvement covers all numbers of 
“cycles”, “messages” and “links” parameters. As 
another important point, the results show that by 
increasing the size of the problem, the difference 
between APO and MaxCAPO is increased. In other 
words, as the problem becomes larger and harder, 
the effect of conflicts becomes more important. 

Fig. 7 and Table 2 show the percentage of 
improvement of MaxCAPO in comparison with 
APO in various problem sizes. As it can be seen in 
Fig. 7(a), MaxCAPO has an improvement of 5.7% 
to 47% in decreasing the number of massages sent. 
The percentage of Runtime improvement is shown 
in Fig. 7(b), which is an improvement from 4.2% to 
34% in decreasing the number of cycles needed to 
solve the problem. And, finally, improvement in 
decreasing the number of generated links is 
presented in Fig. 7(c), which is from 1% to 11%. 
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Fig. 5.  Summery of four different mediator selection strategies  
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Fig. 6.  Messages, Cylices, Links needed to solve random solvable D3GC instances in APO and MaxCAPO 

6.2 IAPO and MaxCIAPO  

6.2.1  Experimental Environment and Setup 

Again the distributed 3-color graph coloring 
(D3GC) problem is selected as the test case of our 
experiments. The purpose of doing these 

experiments is comparing MaxCIAPO and IAPO 
algorithms under different parameters, such as the 
number of “cycles”, the number of “messages” and 
the number of “links”. For this purpose, 400 
random graphs were generated.  

These graphs were created in various sizes: n = 
15, 30, 45 and 60. All of these graphs are produced 
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with medium density (m = 2.7), which means that 
the average number of constraints per variable is 

2.7. A density of 2.7 is selected to adapt to the 
reported results about IAPO in previous articles. 

 

 

 

Fig. 7. Mean Percentage of Improvement of MaxCAPO in Comparison With APO in solvable random Instances 

 
 
 

Table II: the percentage of improvement of MaxCAPO over APO in the number of messages, cycles and links 
needed to solve satisfiable 3-coloring problems of various sizes. 
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Problem 
density Problem size Number of messages Number of cycles Number of links 

M=2.3 

15 5.705435 4.18679 0.84583 
30 20.2579 19.86022 3.179994 
45 47.01683 24.58352 5.213825 
60 27.50309 29.83555 4.584084 
75 29.70646 28.23123 4.143269 
90 42.09607 33.80529 10.81579 

 

 
Fig. 8. Running time needed to solve D3GC instances as mean percentage improvement over APO 

 

6.2.2  Experimental Results  

To show the improvement of MaxCIAPO over the 
APO, first, it is necessary to know the improvement 
of IAPO over the APO and, next, the improvement 
of MaxCIAPO over the IAPO. In fact we should 
portion the problem into two separate parts. For the 
fist step, the results which were reported by Benisch 
and Sadeh [1] are used. This is shown in Fig. 8 [1]. 
In this research, they generated 10 solvable D3GC 
problems for each pair of n and m, n = 15, 30, 36, 
45, 51, 60 and m = 2.0 (low density) and m = 2.7 

(high density) then for each of these problems they 
generated 10 different random strategy assignments. 

For the second step, which is the comparison of 
IAPO and MaxCIAPO, 400 random graphs were 
generated with m =17 and n = 15, 30, 45, 60. By 
choosing these values for m and n, the results 
would be comparable with the previous reported 
IAPO results. 

The results show that IAPO outperforms APO 
over runtime parameter and also over the number of 
messages parameter. It shows that favoring smaller 
mediation sessions instead of large ones, as IAPO 
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does, helps mediators decrease the Branch and 
Bound search complexity by avoiding solving 
unnecessarily large problems. 

Now is the time to show the improvement of 
MaxCIAPO over IAPO. Fig. 9 and Table. 3 show 
this reasonable improvement. This improvement 
covers all numbers of “Cycles”, “Messages” and 
“Links” parameters. As this Figure shows the 
percentage of improvement of MaxCIAPO over 
IAPO in decreasing the number of messages is from 
5.5% to 18.4%. The percentage of Runtime 
improvement is shown in Fig. 9(b), which is an 
improvement from 7.1% to 13.9% in decreasing the 
number of cycles needed to solve the problem. And, 
finally, improvement in decreasing the number of 
generated links is presented in Fig. 9(c), which is 
from 1% to 4.6%. 

Putting the results of these two parts which 
were shown in Fig. 8 and Fig. 9 next to each other 
reveals the great improvement of MaxCIAPO over 
APO. According to the results that were extracted 
from [1] and also the experimental results that are 
proposed in this research, Fig.10 can be generated. 
This figure shows a great decrease in the number of 
messages and the runtime of the MaxCIAPO. This 
shows that, by selecting mediators from among the 
agents that have the least number of constraints and 
the most number of conflicts, the APO performance 
improves reasonably. 

7.  CONCLUSIONS AND FUTURE WORK  

In this paper, two new extension algorithms of 
APO called MaxCAPO and MaxCIAPO have been 
proposed. The role of conflicts in solving DisCSPs 
is shown by presenting these algorithms. The 
experimental results confirm that the mediators 
having the highest number of conflicts can solve the 
problem faster and using a smaller number of 
messages and links. To show the completeness of 
this idea, hundreds of graphs were generated in a 
D3GC problem in various problem sizes. The 
averages of the results derived from various 
problem sizes were computed. These results 
showed that in all terms MaxCAPO and 
MaxCIAPO outperform APO, the previously most 
successful algorithm in DisCSPs.  

Since DisCSP covers a vast domain of 
problems and also APO has so far been the best 
known algorithm in this domain, MaxCAPO and 
MaxCIAPO can help solve many problems in the 
large domain of mediated cooperative problems by 
making considerable improvement in APO. 

 
Fig. 9. Mean Percentage of Improvement of 

MaxCIAPO in Comparison With IAPO in solvable 
random Instances 

Employing other measurement units for measuring 
the computational complexity of MaxCAPO, such 
as non-concurrent consistent checks, which has 
recently been proposed by Meisels et al. [13], may 
be recommended for future works. 

Using the strategy of choosing mediators with 
the highest number of conflicts in other examples, 
such as random binary DisCSPs and other domains, 
such as SensorDCSP [4] would expand the domain 
of the strategy proposed.  
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Table III: the percentage of improvement of MaxCIAPO over IAPO in the number of messages, cycles and links 
needed to solve satisfiable 3-coloring problems of various sizes. 

 

Problem 
density Problem size Number of messages Number of cycles Number of links 

M=2.3 

15 5.509183 9.66662 1.025635 
30 14.30943 13.95454 4.400992 
45 18.47375 12.24738 4.656425 
60 14.44901 7.12881 1.811559 
75 5.509183 9.66662 1.025635 
90 14.30943 13.95454 4.400992 

 
 
 
 
 

 
Fig. 10. Running time needed to solve D3GC instances as mean percentage improvement over APO 

and IAPO
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