
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

446

USING A CONFLICT-BASED METHOD TO SOLVE
DISTRIBUTED CONSTRAINT SATISFACTION PROBLEMS

1 SAMANEH HOSEINI SEMNANI, 2KAMRAN ZAMANIFAR

1Ph.D. Student, Dept. of Computer Engineering,, Faculty of Engineering, University of Isfahan, Isfahan

Iran
2Assoc. Prof., Dept. of Computer Engineering,, Faculty of Engineering, University of Isfahan, Isfahan

Iran

E-mail: s_hosseini@ eng.ui.ac.ir , zamanifar@eng.ui.ac.ir

ABSTRACT

A broad range of AI and multi-Agent problems fall in to the Distributed Constraint Satisfaction Problems
category. Many of the problems in this domain are real-world problems. This fact makes DisCSPs an
effective area of research. Considering all of the efforts that have recently been accomplished for solving
these kinds of the problems, the most successful algorithm proposed is Asynchronous Partial Overlay
(APO), which is a mediation-based algorithm. APO tries to solve the problem first by dividing the whole
problem in to smaller portions and then solving these sub-problems by choosing some agents as mediators.
This paper presents a new and effective strategy to select these mediators; moreover, it introduces two new
expansion algorithms of APO that use this new strategy. These algorithms are called MaxCAPO and
MaxCIAPO. The chief idea behind this strategy is that the number of mediators' conflicts (violated
constraints) impacts directly on their performance. Experimental results show that choosing the agents
which have the most number of conflicts as mediators not only leads to a considerable decrease in APO
complexity, but also can decrease the complexity of the other extensions of the APO, such as IAPO
algorithm. The results of using this conflict-based mediator selection strategy show a rapid and desirable
improvement, in comparison with APO and IAPO, over various parameters such as the message and
runtime complexities.

Keywords: Distributed Constraint Satisfaction, APO, cooperative mediation, multi-agent, autonomous,
Artificial Intelligence

1. INTRODUCTION

All the problems in which the goal is finding
suitable values to assign to distributed variables can
be included in Distributed Constraint Satisfaction
Problems (DisCSPs). Each one of these distributed
variables is assigned to an autonomous agent. Each
autonomous agent tries to assign suitable values to
its variables and also to other agents’ variables by
exchanging some messages. A vast number of real-
world and multi-agent problems can be classified,
Such as distributed meeting scheduling [14],
distributed resource allocation problems [3] and
multi-agent truth maintenance [7] under this model.
Due to the variety of problems in this domain,
several algorithms have been proposed since 1991.
These kinds of algorithms can be divided into two
categories. Some of them, such as Asynchronous
Backtracking (ABT) [17] and Asynchronous Weak-
Commitment (AWC) [16] are completely

distributed, while others use a hybrid of distributed
and centralized methods. One of the best known
algorithms of the second group is Asynchronous
Partial Overlay (APO) [12] which is represented by
Mailler and Lesser. On the first category algorithms
agents cannot reveal information that breaks
privacy; it means that the agents don’t have
sufficient information about the global effects of
their local decisions. Although the first category
algorithms satisfy privacy completely, the second
group of algorithms outperforms them by revealing
necessary information. The second group of the
algorithms and specially APO inherit the speed of
centralization while using the advantages of
parallelism too. This new methodology, which is
called cooperative mediation, is a method
somewhere between centralized and distributed
problem solving methods.

One of the most important parts of the APO
algorithm is the coordinator selection part in which

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

447

the agents that detect some conflicts among
themselves select the highest priority agent of the
group as mediator. The mediator first tries to
complete its information about the problem space
by exchanging various messages with the other
agents and then to solve the sub-problem by
changing its local variables or starting a mediation
session. After solving the sub-problem, the
mediator recommends the new values to relevant
agents. As they are autonomous, they can accept or
refuse these values. After all the sub-problems are
solved by mediators, the whole problem will be
solved by juxtaposing these parts, just like putting
the pieces of a puzzle next together. As it can be
seen, the distributed problem is solved by solving
various smaller sub-problems in a centralized
manner. Although APO outperforms its previous
algorithms, new research has been done recently
that outperforms APO. Benish and Sadeh, who have
done some studies in this domain, investigated
different heuristics for mediator selection and found
that by assigning higher priority to the agents with
the smallest good-list, a substantial speedup from
the solver will be seen.

As it can be seen, one of the most important parts
of the APO algorithm is the mediator selection part.
So, it seems to be a key part of the algorithm and, it
is very important how to choose the mediator to
reach the best solution. Making a small change in
mediator selection strategy can lead to a different
solution. These all show the importance of choosing
the best mediator selection strategy.

This paper presents a new and effective conflict-
based strategy. In this strategy, more effective and
powerful agents will be selected as mediators by
developing a heuristic method based on the number
of mediator’s conflicts. The main idea behind this
method is that the agents that have the most
complete information about the sub-problem
conflicts can compute the best solutions. The use of
the agents with the largest number of conflicts will
increase the speed of the algorithm and decrease the
number of messages exchanged.

In the rest of this article, after defining the
DisCSP, a brief overview of the previous works
preformed on DisCSP, specially the latest ones, is
given; section 3, describes the new conflict-based
mediator selection strategy clearly and also shows
its usefulness by presenting MaxCAPO (Max
Conflict APO) algorithm which is an extension of
APO and uses the conflict-based strategy. An
overview of APO is also presented in this section.
Next, section 4 presents an example of execution of
APO and MaxCAPO to show the practical

differences between them exactly. Section 5 first
overviews IAPO algorithm, which is an extension
of APO, briefly and then introduces the MaxCIAPO
(Max Conflict Inverse APO) algorithm as an
expansion of IAPO that uses the new mediator
selection strategy. Section 6 presents the
experimental setup and results of applying this
mediator selection strategy to the APO and IAPO in
addition to comparing APO and MaxCAPO results,
IAPO and MaxCAPO results and finally APO,
IAPO and MaxCIAPO results. At last, in section 6,
the conclusion of this work is presented and some
possible future tends in this area are introduced.

2. BACKGROUND

In this section, first DisCSP is introduced
formally, and then the woks which have been
performed to solve these problems, so far are
presented briefly.

2.1 Distributed Constraint Satisfaction
Definition

 A DisCSP is a distributed form of CSP. This
distributed environment involves multiple
autonomous agents each one holding one or more
variables. It was first discussed by Sycaro et al. and
Yokoo et al. [15, 17]. The CSP which is the basis of
DisCSP is formally defined as follows:

• A set of n variables: V = {x1 , . . . , xn}

• A set of finite, discrete domains for each

variable: D = {D1 , . . . , Dn}

• A set of constraint: R = {R1, . . . , Rm} where

each Ri (di1 , . . . , dij) is a predicate that is
defined on the Cartesian product Di1 × . . . ×
Dij. If the value assignment of these variables
satisfies this constraint, the predicate returns
true and otherwise false.

The final goal of solving DisCSP is finding an
assignment of values to all variables which satisfy
all the constraints in R. Each agent tries to reach
this goal not only by satisfying its local constraints
but also by communicating with other agents to
solve external conflicts. As can be seen, agents
should have strong communication with each other
because their goals are interrelated. For example, in
order to solve its sub-problem, each agent may
create new conflicts for other agents by changing its
or other agents’ value.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

448

In this paper, it is assumed that agents can
communicate with each other by exchanging
various messages and that the receiver agent
receives messages exactly in the order they were
sent, of course, after a finite delay. And it is also
assumed that just one variable is under the control
of each agent for simplicity. So, the name of the
agent can be the same as the name of the variable
that it holds and manages. Each agent has the
complete information about the constraints on its
variable. The next assumption is that the constraints
are defined only between two variables which are
called binary constraints. It is clear that these
restrictions are easily removable.

2.2 Related Work

As CSP is the basis of the DisCSP, the proposed
algorithms for solving CSP are the basis of the
proposed algorithms for solving DisCSP. CSP’s
algorithm can be divided in to two groups called
search algorithms and consistency algorithms. Also,
search algorithms can be divided in to two
important categories called backtracking algorithms
and iterative algorithms.

Since the formulation of DisCSP, several
algorithms with their advantages and disadvantages
have been proposed. A number of them, such as
Asynchronous Backtracking (ABT) [17] and
Asynchronous Weak Commitment (AWC) [16],
completely inherit their characteristics from
centralized versions, but others, such as
Asynchronous Partial Overlay (APO) [10], don’t
have any previous version to solve CSPs. Table 1
summarizes the most important proposed
algorithms in DisCSP domains. Among these
algorithms, APO is the latest and the most
successful. Of course, after presenting APO, several
extensions of it were also presented, such as IAPO
that outperform it, but they cannot be considered as
independent algorithms. ABT algorithm is the
distributed form of the backtracking algorithm. As
the backtracking algorithm tries to solve CSPs, the
ABT tries to solve DisCSPs. In the ABT algorithm,
each agent assigns a random value of its domain to
its variable. The agents communicate with each
other by sending “ok?” and “nogood” messages. By
receiving a message, the receiver agent will save
the message’s information on its agent-view which
contains the state of the other agents from its
viewpoint. In this algorithm, each agent has a
priority number which is determined according to
the alphabetical order of the agent’s variables. Since
each agent has a priority number, if an agent’s
current value is not consistent with the value of the
higher priority agents, it will change its

assignments. In other words, in such a condition,
the agent revises its assigned values and if no
consistent value remains, it will backtrack. In the
latter condition, the agent generates a new nogood
message and sends it to the higher priority agent.
By receiving this message the higher priority agent,
changes its value. In this algorithm, the nogood list
is a subset of agent-view, which shows the list of
the agents that cannot find any consistent value with
the subset.

Another successful algorithm is AWC which
extends ABT but presents a new min-conflict
heuristic. By using this heuristic, the risk of
choosing a bad solution is reduced. The
performance of these two algorithms is improved
rapidly by presenting several heuristics.

The next successful algorithm, APO, uses a
hybrid of distributed and centralized methods. APO
starts its work by sending the information of each
agent to its neighbors and continues it by sending
the highest priority agents as mediators to solve
their local sub-problems in a centralized manner.
One of the most important parts of the APO is the
mediator selection part, in which all the agents that
recognize the existence of one or more than one
conflicts select the most suitable agent as mediator.
The mediator is responsible to solve the sub-
problem by exchanging various messages. To do
this, the mediator tries to gather necessary
information from other agents by starting a
mediation session. Although APO outperforms its
previous works, several heuristics have been
proposed recently which try to remove its
weaknesses. For example, Roger Mailler had done
some work on expanding APO to operate in
dynamic environments [8], to solve optimization
problems [11] and to provide privacy [9]. Also,
Benish and Sadeh improved APO by changing the
mediator selection strategy. They confirmed that
choosing agents with the smallest good-list size can
result in substantial speedup from the solver [1].
Benish and Sadeh also presented a different
decentralized hybrid strategy which works based on
ABT [2]. As can be seen, several researches have
been done in this field, but none of them have
considered the impact of the number of conflicts in
mediator selection procedure.

3. CONFLICT-BASED MEDIATION
SELECTION STRATEGY

In this section, in addition to introducing APO
algorithm generally, the new conflict-based
mediation selection strategy, which is the basis of
the MaxCAPO is presented. This section continues

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

449

with proposing MaxCAPO, the new expansion of
APO.

Table 1 : Algorithms for solving DisCSP

 Single multiple partial

Backtracking Asynchronous BT Secure DisCSP Asynchronous IR

Iterative Distributed Breakout 1. Iterative DB
Improvement 2. APO

Hybrid Asynchronous WC 1. variable ordering AWC
 (AWC) 2. agent-ordering AWC

3.1 APO Overview

Since APO is the basic form of MaxCAPO, it is
presented it in a summarized form in Fig. 1. You
can find the latest and the most accurate version of
this algorithm in [10]. As can be seen in Fig. 1,
APO starts by sending out an “Init!” message from
each agent to its neighbors. This message contains
the primary information about the sender, such as
its name, priority, value, etc. While receiving an
“Init!” message by each agent, it records the
received information in its agent-view. Agent-view
is a list that contains the primary information about
linked agents. In fact, it is the agent’s view of the
problem. Then each agent checks its agent-view to
find any possible conflict with its neighbors. If one
or more conflicts are found and no higher priority
agent wants to mediate, the agent itself accepts the
mediator role.

The priority of the agents in APO is determined
according to their number of neighbors, and, if two
agents have the same size, it is determined
according to the lexicographical ordering of their
names. Of course, considering the priority for
agents has several advantages. The most important
one is that, it guarantees that the agent which has
the most knowledge about the sub-problem (which
is the agent that has the largest number of
neighbors) assumes the role of the mediator and
makes decisions.

The mediator first tries to correct the conflict by
changing its local variable. But, if it is impossible,
the mediator will start a mediation session by
sending out an “evaluate?” message to the agents in
its good-list. Good-list is a list that contains the
information of any agent that connects to the owner
directly through a link or indirectly through several
links. The agent-view and the good-list are two
main data structures that each agent defines. The
main difference between these two lists is that

agent-view holds just the information of directly
linked agents but good-list holds the information of
any agent that is connected to the owner through a
direct link or through a path in the graph.

 The receiving agent will reply with a
“Wait!” message if it is participating in another
session or is expecting a request from a higher
priority agent; otherwise, it replies with an
“Evaluate!” message. While receiving all the
appropriate response messages, the mediator starts a
Branch and Bound search [5] among the agents
which responded by “Evaluate!” message. If the
mediator succeeds in finding the solution, it will
inform other agents about their new values by
sending “Accept!” messages. It also sends an “Ok!”
message to the agents that were not participating on
the session to update their agent-view.

Sometimes, the solution that is found by a
mediator causes some violations for the agents
outside the session. In such a condition, the
mediator adds these agents to its good-list and links
up with them. Therefore, the mediator supposes that
it is somehow related to these agents. This work
prevents the mediator from repeating this mistake in
the future and in other sessions. This step of the
algorithm is called the “linking” step. The number
of generated links in the “linking” step is a
parameter for measuring the advantages of the
algorithm, and is used for this purpose in section 6.

APO is a sound and complete algorithm. The
soundness and completeness of this algorithm is
shown by Mailler et al. [10].

3.2 MaxCAPO Algorithm

The APO strategy for selecting mediators from
among the agents that have various properties
consisting in assigning a special number, called
priority number, to each agent and then selecting
the mediator according to the agent's priorities.
These priority numbers are generated first,

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

450

according to the number of each agent’s neighbors
and then by continuing the algorithm and creating
the good-list according to each agent’s good-list
size. The primary idea behind this mediator
selection strategy is that the agents which have the
highest amount of information about the problem
can choose better solutions by making better
decisions. Therefore, the priority ordering in APO
is a key point and is very important because it
guarantees that the decisions are made by the agents
which have the highest knowledge about the sub-
problem. The second advantage of considering the
priority ordering for agents is that it helps the
effectiveness of the mediation process by choosing
the higher priority agents as mediators and leaving
free the lower priority agents to be available for
future mediation requests.

Although this strategy has several advantages, it
has some weaknesses also. For example, by using
this mediator selection strategy, it frequently occurs
that several agents have the same good-list size. In
such a condition, APO determines the priority
according to lexicographical ordering of the agents'
names. For example, the priority of ND5 is more
than the priority of ND2 if they have the same
good-list size. In fact, it is a random way for
breaking the tie that had occurred.

Obviously, it would be wonderful if we replaced
this random way with a heuristic one. The heuristic
method that is presented in this article, called the
conflict-based method, pays more attention to the
number of conflicts. We believe that if several
agents have the same number of neighbors, the
agent that has the most number of conflicts with its
neighbors, can make better decisions with
exchanging fewer messages than the others. This
happens because this particular agent exists exactly
in the middle of the problem and, of course, is the
most related to the conflicts. On the other hand, it
has the highest information about the sub-problem
restrictions in comparison with other agents. Now,
the reason of calling this method the "Conflict-
Based method" should be completely clear.

MaxCAPO is an expansion of APO that inherits
the whole structure of the APO, but uses the
conflict-based mediator selection strategy. So, in
MaxCAPO, the priority is determined, at first step,
according to the agent’s good-list size, and
secondly, according to the number of conflicts of
each agent. Exactly the same reason that we
mentioned before for the importance of considering
the priority is correct now for the importance of
using this heuristic method. In fact, by choosing the
agent with the highest number of conflicts,

MaxCAPO ensure that the agent with the highest
knowledge acts as the mediator, and so makes the
fundamental decisions. And, of course, it improves
the effectiveness of the mediation process because
it inherits APO.

 The name of this algorithm, “MaxCAPO”,
comes from “Maximum Conflicts APO”, which
means that this algorithm is an expansion of APO
that prefers to choose agents with the maximum
number of conflicts instead of choosing them
according to lexicographical order. It is obvious that
the algorithm uses this rule just when the good-list
sizes of two or more agents are the same. The other
parts of the algorithm are similar to APO.

4. AN EXAMPLE OF EXECUTION OF APO
AND MAXCAPO

In this section, an example of a solvable
Distributed 3-color Graph Coloring (D3GC)
problem is presented to compare the performance of
APO and MaxCAPO. In a general definition,
distributed graph coloring consists of a set of n
distributed variables V = { x1 , , xn } in
which each element is associated with a set of
possible colors D = { D1 , . . . , Dn}. Respectively,
the number of elements of all the domains is equal
to k which is the number of possible colors, and, at
last, a set of constraints R = { R1 , . . . , Rm} in
which Ri (di , dj) is true if the value of xi is “not
equals” to the value of xj. The goal is assigning
special colors to the variables in which all
constraints in R return true. If we set k to 3, the
problem will be D3GC. Obviously D3GC is a kind
of DisCSP.

Consider the problem in Fig. 2(a). There are 8
agents (nodes) in this problem, each one with
exactly one variable. And there are 12 edges
between them that show all satisfied and violated
constraints. The domain of each variable is {Red,
Blue, Black}, because it is a 3-coloring problem. As
can be seen, there are 5 violated constraints at the
beginning: (ND0, ND5), (ND2, ND3), (ND2, ND6),
(ND3, ND4) and (ND5, ND7). The purpose of APO
and MaxCAPO is to find a suitable assignment to
the variable in which none of the connected nodes
have the same color.

When starting in both of the algorithms, each
agent sends an “init!” message to its neighbors and
also adds itself to its good-list. By receiving an
“init!” message, receivers add the sender to their
good-list. The next step is checking the agent view
in which all the agents except ND1 find one or two
conflicts in their agent-views. In both of the
algorithms, ND0 (priority = 4), ND3 (priority = 4),

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

451

Fig 1: APO algorithm

ND6 (priority = 3), ND1 (priority = 3) and ND4
(priority = 4) wait for ND5 (priority = 7) to
mediate.

In APO, ND2 (priority = 4) and ND3 (priority =
4) have the same priority but, according to
lexicographical ordering, ND2 waits for ND3. Also
in MaxCAPO, as ND2 and ND3 have the same
priority and the same number of conflicts (number
of conflicts=2), according to lexicographical
ordering, ND2 waits for ND3. So, in both of the
algorithms, the first mediator is ND5. ND5 first
tries to remove the conflict by simply changing its
local variable. Fortunately, the sub-problem is
locally solvable, so ND5 changes its color to Red
and sends an “ok?” message to its neighbors. The
result graph is shown in Fig. 2(b).

From this point, APO and MaxCAPO choose
different ways. In APO, ND3 (priority = 4) waits
for ND4 (priority = 4) because of lexicographical
ordering. But in MaxCAPO, ND4 (priority = 4)
waits for ND3 (priority = 4), because ND4 has just
one conflict and ND3 has two conflicts. Again, in
both algorithms, ND6 (priority = 3) waits for ND2
(priority = 4). In APO, ND2 (priority = 4) waits for
ND3 (priority = 4) according to lexicographical
ordering and in MaxCAPO as they have the same
number of conflicts (2 conflicts) again, according to
lexicographical ordering, ND2 waits for ND3. As a

result, in APO, ND4 will be the mediator, but in
MaxCAPO, ND3 will be the mediator. In
MaxCAPO, ND3 finds that it can solve the sub-
problem by changing its local value to Blue.
Therefore, it changes its value and sends an “ok?”
message to its neighbors. On the other hand, in
APO, ND4 can not solve the problem by changing
its local variable, so it starts a mediation session by
sending an “evaluate?” message to each of its
neighbors. When each agent receives this message,
it evaluates its domain elements and sends an
“evaluate!” message to ND4 in response.

• ND0 sends: Red conflicts with ND5; Black
conflicts with ND4 and ND1; Blue makes no
conflict.

• ND3 sends: Black conflicts with ND4 and
ND2; Red conflicts with ND5; Blue makes no
conflict.

• ND5 sends: Black conflicts with ND4, ND3,
ND1 and ND6; Blue conflicts with ND0 and
ND7; Red makes no conflict.

While receiving all the “evaluate!” messages,
ND4 chooses a solution that solves the sub-problem
and also minimizes the number of outside conflicts,

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

452

Fig 2: Example of a 3-coloring Problem with 8 Nodes and 12 Edges.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

453

with a Branch and Bound search. ND4 finds that
the solution is to change ND0’s color to Blue, not to
change ND5’s color, change ND3’s color to Blue
and not to change its own color. ND4 informs its
neighbors about their colors by sending an
“accept!” message to them. By making these
changes, the problem state will be what is shown if
Fig. 2(c).

Now, again, both APO and MaxCAPO
algorithms are in the same step and follow solving
the problem the same way. ND2 and ND6 find one
conflict by checking their agent-views. ND6
(priority = 3) waits for ND2 (priority = 4), so ND2
takes the mediator role and solves the problem by
changing its local value to Red, then it sends an
“ok?” message to its neighbors. Now, all of the
agents check their agent-view and find no conflict,
so the problem is solved (Fig. 2(d)).

Obviously, MaxCAPO has, reduced the Runtime
and the number of messages exchanged by
choosing the best agent as mediator in step 2.

The results of executing this example in Farm
simulator [6] is presented in Fig. 3 and Fig. 4. Fig. 3
shows the results of the MaxCAPO execution and
Fig. 4 is related to APO algorithm. In this picture
the most important parameters including, “the
number of messages”, "the number of execution
cycles (runtime)” and “the number of generated
links” are shown.

This heuristic mediator selection leads to
reducing 15 messages and 3 cycles of time. This
improvement is the result of selecting agents with
the highest number of conflicts as mediators instead
of choosing them in a random way.

5. MAX CONFLICT INVERSE APO
(MAXCIAPO)

In this section, in addition to introducing IAPO
algorithm, MaxCIAPO, a new expansion of IAPO,
which uses a new strategy to select mediator agents,
is proposed.

 5.1 IAPO Overview

In APO, the mediator selection rule was biased
toward selecting larger mediation sessions instead
of smaller ones. But, according to the mathematical
analyses reported in [1], choosing smaller
mediation sessions can improve the performance
significantly. Michael Benish et al. believe that the
two most important sources of complexity that
impact directly on APO complexity are the
complexity of the mediation process and the that of
the overlay process.

Mediation complexity has to do with the
complexity of a Branch and Bound search which is
accomplished to solve the centralized version of the
sub-problems that involve all the participating
agents in the mediation session. And the overlay
complexity is that of putting the partial solutions
together and fitting them to each other.

By larger mediation sessions, the complexity of
the Branch and Bound search grows rapidly. So, by
selecting smaller mediation sessions the mediation
complexity will decrease. On the other hand, the
more the number of mediation sessions, the more
will increase the overlay complexity. In fact,
finding a tradeoff point between mediation and
overlay complexities is the most important point in
this domain. Benish et al. proved that according to
mediation and overlay complexities, selecting
smaller mediation sessions improves the
performance.

IAPO is an extension of APO that follows this
theory. Unlike the APO that assigns priorities
proportional to the agent’s number of constraints,
the IAPO assigns them inversely proportional to the
agent’s number of constraints. All the parts of the
IAPO algorithm except the mediator selection part
are the same as the APO algorithm.

 5.2 MaxCIAPO Algorithm

Both of the APO and IAPO algorithms assign
the agent’s priorities according to the number of
constraints, but none of them consider the impact of
number of conflicts in mediator selection strategy.
In the previous section, the MaxCAPO algorithm
proposed, this algorithm changed the mediator
selection method in conditions that agents had the
same number of neighbors. This section shows
another practical usage of the conflict-based
mediator selection strategy. As it can be seen,
conflict-based strategy is a general strategy that can
be employed in various algorithms in DisCSP
domain. Of course, it can be more or less effective
in different domains and also in different
algorithms proposed in the domain of DisCSPs. For
example, by choosing this method on the
expansions of APO that outperform it, it would be
possible to outperform APO and other expansions
more powerfully.

As mentioned in previous section, IAPO is one
of the best expansions of APO and, as a result, it is
an appropriate choice for using the conflict-based
strategy. Therefore, in this section the same strategy
that was used over APO and converted it to
MaxCAPO is used for improving the performance
of IAPO. Although IAPO replaced the mediator
selection strategy with a new one, in this new
strategy, it frequently occurs that several agents

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

454

Fig 3. The display of the execution of the example in Farm simulator for the MaxCAPO algorithm

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

455

Fig. 4. The display of the execution of the example in Farm simulator for the APO algorithm

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

456

have the same priority, because it frequently occurs
that several agents have the same number of
neighbors and the agent’s priority is in inverse
proportion to the number of its neighbors. Like
APO, in such a condition, IAPO assigns priorities
according to the lexicographical ordering of the
agents’ names. In fact, this is just a random
strategy. MaxCIAPO replaces this random strategy
with a heuristic one. Just like the method which was
used in MaxCAPO, in MaxCIAPO, in the
conditions that agents have the same number of
neighbors and, of course, the same priority
numbers, the agent that have the highest number of
conflicts with its neighbors will be selected.
Accordingly, in MaxCIAPO, the priority is
determined, at first step, inversely proportional to
the agent’s number of constraints and, at the second
step, proportional to the agent’s number of
conflicts. By using this method, if several agents
have the same number of constraints, the agent that
has the most conflicts and, as a result, the highest
information of the sub-problem is selected as the
mediator and as the main decision maker.

The same reason that we mentioned in previous
section about the advantages of MaxCAPO is also
true about MaxCIAPO in addition that MaxCIAPO
inherits the advantages of IAPO as well. So,
MaxCIAPO outperforms all the previously
mentioned algorithms containing APO, MaxCAPO
and IAPO.

The name of this algorithm, “MaxCIAPO”,
comes from “Maximum Conflicts Inverse APO
(IAPO)”, which means that this algorithm is an
extension of IAPO (which itself is an extension of
APO) that prefers to choose agents with the
maximum number of conflicts instead of choosing
them according to lexicographical order. It is
obvious that the algorithm uses this rule just when
the good-list sizes of two or more agents are the
same. The other parts of the algorithm are similar to
IAPO.

Fig. 5 summarizes four different mediator
selection strategies, which involve APO and IAPO
strategies in addition to the two new strategies
which were introduced in this paper.

6. EXPERIMENTAL EVALUATION

6.1 APO and MaxCAPO

6.1.1 Experimental Environment and Setup

The distributed 3-color graph coloring (D3GC)
problem is selected as the test case of our
experiments. The purpose of doing these
experiments is comparing MaxCAPO and APO

algorithms under different parameters, such as the
number of “cycles”, the number of “messages” and
the number of “links”. The last parameter shows the
number of links that are generated in the “linking”
step of the algorithm. Of course, the least number
of generated links is preferred. These parameters
are selected because they can clearly present
computational and communicational complexities.

For this purpose, 600 random graphs were
generated. These graphs were created in various
sizes: n = 15, 30, 45, 60, 75 and 90. All of these
graphs are produced with medium density (m =
2.3), which means that the average number of
constraints per variable is 2.3. Then, 10 different
graphs with 10 different initial variable assignments
were created for each size. These graphs were
generated by random seeds which were saved in
special files and used for both MaxCAPO and APO
algorithms. As a result, all the conditions of running
these two algorithms were generated the same way.

Farm simulator [6], which is a Java simulator,
was used for running the algorithms to keep all
conditions similar to the previous work conditions
for fairness.

6.1.2 Experimental Results

Since exactly the same implementation
environment and the same simulator are used, the
results that are achieved from APO are almost the
same as those reported in [10] by Mailler. This
confirms that the improvement in MaxCAPO is
only caused by entering the number of conflicts in
mediator selection strategy. As it can be seen in
Fig. 6, MaxCAPO shows considerable
improvement in comparison with APO algorithm,
and this improvement covers all numbers of
“cycles”, “messages” and “links” parameters. As
another important point, the results show that by
increasing the size of the problem, the difference
between APO and MaxCAPO is increased. In other
words, as the problem becomes larger and harder,
the effect of conflicts becomes more important.

Fig. 7 and Table 2 show the percentage of
improvement of MaxCAPO in comparison with
APO in various problem sizes. As it can be seen in
Fig. 7(a), MaxCAPO has an improvement of 5.7%
to 47% in decreasing the number of massages sent.
The percentage of Runtime improvement is shown
in Fig. 7(b), which is an improvement from 4.2% to
34% in decreasing the number of cycles needed to
solve the problem. And, finally, improvement in
decreasing the number of generated links is
presented in Fig. 7(c), which is from 1% to 11%.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

457

Fig. 5. Summery of four different mediator selection strategies

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

458

Fig. 6. Messages, Cylices, Links needed to solve random solvable D3GC instances in APO and MaxCAPO

6.2 IAPO and MaxCIAPO

6.2.1 Experimental Environment and Setup

Again the distributed 3-color graph coloring
(D3GC) problem is selected as the test case of our
experiments. The purpose of doing these

experiments is comparing MaxCIAPO and IAPO
algorithms under different parameters, such as the
number of “cycles”, the number of “messages” and
the number of “links”. For this purpose, 400
random graphs were generated.

These graphs were created in various sizes: n =
15, 30, 45 and 60. All of these graphs are produced

(a) Number of Message Exchanged

0

5000

10000

15000

20000
25000

15 30 45 60 75 90
Problem Size

N
um

be
r

of
 M

es
sa

ge
s

APO
MaxCAPO

(c) Number of Links

0
100
200
300
400
500
600

15 30 45 60 75 90
Problem Size

N
um

be
r

of
 L

in
ks

APO
MaxCAPO

(a) Number of Message Exchanged

0

5000

10000

15000

20000

25000

15 30 45 60 75 90

Problem Size

N
um

be
r

of
 M

es
sa

ge
s

APO
MaxCAPO

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

459

with medium density (m = 2.7), which means that
the average number of constraints per variable is

2.7. A density of 2.7 is selected to adapt to the
reported results about IAPO in previous articles.

Fig. 7. Mean Percentage of Improvement of MaxCAPO in Comparison With APO in solvable random Instances

Table II: the percentage of improvement of MaxCAPO over APO in the number of messages, cycles and links
needed to solve satisfiable 3-coloring problems of various sizes.

(a) Number of Message Decreased, in percent

0
5

10
15
20
25
30
35
40
45
50

15 30 45 60 75 90
Problem Size

M
es

sa
ge

 D
ec

re
as

ed
 (%

)

MaxCAPO

(b) RunTime Iprovment, in percent

0
5

10
15
20
25
30
35
40

15 30 45 60 75 90
Problem Size

R
un

tim
e

Im
pr

ov
m

en
t (

%
)

MaxCAPO

(c) Number of Links Decreased, in percent

0

2

4

6

8

10

12

15 30 45 60 75 90
Problem Size

Li
nk

 D
ec

re
as

ed
 (%

)

MaxCAPO

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

460

Problem
density Problem size Number of messages Number of cycles Number of links

M=2.3

15 5.705435 4.18679 0.84583
30 20.2579 19.86022 3.179994
45 47.01683 24.58352 5.213825
60 27.50309 29.83555 4.584084
75 29.70646 28.23123 4.143269
90 42.09607 33.80529 10.81579

Fig. 8. Running time needed to solve D3GC instances as mean percentage improvement over APO

6.2.2 Experimental Results

To show the improvement of MaxCIAPO over the
APO, first, it is necessary to know the improvement
of IAPO over the APO and, next, the improvement
of MaxCIAPO over the IAPO. In fact we should
portion the problem into two separate parts. For the
fist step, the results which were reported by Benisch
and Sadeh [1] are used. This is shown in Fig. 8 [1].
In this research, they generated 10 solvable D3GC
problems for each pair of n and m, n = 15, 30, 36,
45, 51, 60 and m = 2.0 (low density) and m = 2.7

(high density) then for each of these problems they
generated 10 different random strategy assignments.

For the second step, which is the comparison of
IAPO and MaxCIAPO, 400 random graphs were
generated with m =17 and n = 15, 30, 45, 60. By
choosing these values for m and n, the results
would be comparable with the previous reported
IAPO results.

The results show that IAPO outperforms APO
over runtime parameter and also over the number of
messages parameter. It shows that favoring smaller
mediation sessions instead of large ones, as IAPO

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

461

does, helps mediators decrease the Branch and
Bound search complexity by avoiding solving
unnecessarily large problems.

Now is the time to show the improvement of
MaxCIAPO over IAPO. Fig. 9 and Table. 3 show
this reasonable improvement. This improvement
covers all numbers of “Cycles”, “Messages” and
“Links” parameters. As this Figure shows the
percentage of improvement of MaxCIAPO over
IAPO in decreasing the number of messages is from
5.5% to 18.4%. The percentage of Runtime
improvement is shown in Fig. 9(b), which is an
improvement from 7.1% to 13.9% in decreasing the
number of cycles needed to solve the problem. And,
finally, improvement in decreasing the number of
generated links is presented in Fig. 9(c), which is
from 1% to 4.6%.

Putting the results of these two parts which
were shown in Fig. 8 and Fig. 9 next to each other
reveals the great improvement of MaxCIAPO over
APO. According to the results that were extracted
from [1] and also the experimental results that are
proposed in this research, Fig.10 can be generated.
This figure shows a great decrease in the number of
messages and the runtime of the MaxCIAPO. This
shows that, by selecting mediators from among the
agents that have the least number of constraints and
the most number of conflicts, the APO performance
improves reasonably.

7. CONCLUSIONS AND FUTURE WORK

In this paper, two new extension algorithms of
APO called MaxCAPO and MaxCIAPO have been
proposed. The role of conflicts in solving DisCSPs
is shown by presenting these algorithms. The
experimental results confirm that the mediators
having the highest number of conflicts can solve the
problem faster and using a smaller number of
messages and links. To show the completeness of
this idea, hundreds of graphs were generated in a
D3GC problem in various problem sizes. The
averages of the results derived from various
problem sizes were computed. These results
showed that in all terms MaxCAPO and
MaxCIAPO outperform APO, the previously most
successful algorithm in DisCSPs.

Since DisCSP covers a vast domain of
problems and also APO has so far been the best
known algorithm in this domain, MaxCAPO and
MaxCIAPO can help solve many problems in the
large domain of mediated cooperative problems by
making considerable improvement in APO.

Fig. 9. Mean Percentage of Improvement of

MaxCIAPO in Comparison With IAPO in solvable
random Instances

Employing other measurement units for measuring
the computational complexity of MaxCAPO, such
as non-concurrent consistent checks, which has
recently been proposed by Meisels et al. [13], may
be recommended for future works.

Using the strategy of choosing mediators with
the highest number of conflicts in other examples,
such as random binary DisCSPs and other domains,
such as SensorDCSP [4] would expand the domain
of the strategy proposed.

(a) Number of Message Decreased, in percent

0

5

10

15

20

15 30 45 60
Problem Size

M
es

sa
ge

 D
ec

re
as

ed
 (%

)

MaxCIAPO

(b) RunTime Iprovment, in percent

0
2
4
6
8

10
12
14
16

15 30 45 60
Problem Size

R
un

tim
e

Im
pr

ov
m

en
t (

%
)

MaxCIAPO

(c) Number of Links Decreased, in percent

0

1

2

3

4

5

15 30 45 60
Problem Size

Li
nk

 D
ec

re
as

ed
 (%

)

MaxCIAPO

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

462

Table III: the percentage of improvement of MaxCIAPO over IAPO in the number of messages, cycles and links
needed to solve satisfiable 3-coloring problems of various sizes.

Problem
density Problem size Number of messages Number of cycles Number of links

M=2.3

15 5.509183 9.66662 1.025635
30 14.30943 13.95454 4.400992
45 18.47375 12.24738 4.656425
60 14.44901 7.12881 1.811559
75 5.509183 9.66662 1.025635
90 14.30943 13.95454 4.400992

Fig. 10. Running time needed to solve D3GC instances as mean percentage improvement over APO

and IAPO

REFRENCES:

[1] M. Benish & N. Sadeh (2005). Effect of

mediator selection strategy for distributed
constraint satisfaction. In Workshop on
Distributed Constraint Reasoning (DCR).

[2] M. Benish & N. Sadeh. (2006). Examining
distributed constraint satisfaction problem
(DCSP) coordination tradeoffs. In Proceedings
of International Conference on Automated
Agents and Multi-Agent Systems (AAMAS).

[3] S. E. Conry, K. Kuwabara, V. R. Lesser & R. A.
Meyer (1991). Multistage negotiation for
distributed constraint satisfaction. International
Journal of IEEE Transactions on Systems, Man
and Cybernetics 21(6),1462–1477.

[4] C. Fernandez, R. Bejar, B. Krishnamachari, C.
Gomes, & B. Selman, (2003). Distributed
Sensor Networks: A Multiagent Perspective,
chap. Communication and Computation in
Distributed CSP Algorithms, pp. 299–317.
Kluwer Academic Publishers.

[5] E. C. Freuder & R. J. Wallace, (1992). Partial
constraint satisfaction. Artificial Intelligence,58
(1–3), 21–70.

[6] B. Horling, R. Mailler & V. Lesser (2003).
Farm: a scalable environment for multi-agent
development and evaluation. In Second
International Workshop on Software
Engineering for Large-Scale Multi-Agent
Systems (SELMAS 2003).

[7] M. N. Huhns & D. M. Bridgeland (1991). Multi-
agent truth maintenance. In Proceedings of

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

463

International Journal of IEEE Transactions on
Systems, Man and Cybernetics 21(6),1437–
1445.

[8] R. Mailler, (2005). Comparing two approaches
to dynamic, distributed constraint satisfaction.
In Proceedings of Fourth International Joint
Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS 2005), 1049–1056.

[9] R. Mailler, (2005). Solving distributed CSPs
using dynamic partial centralization without
explicit constraint passing. In Second Workshop
on the Challenges in the Coordination of Large
Scale Multi-Agent Systems (LSMAS 2005).

[10] R. Mailler & V. Lesser, (2006). Asynchronous
partial overlay: a new algorithm for solving
distributed constraint satisfaction problems.
Journal of Artificial Intelligence Research
(JAIR) 25, 529–576.

[11] R. Mailler & V. Lesser, (2004). Solving
distributed constraint optimization problems
using cooperative mediation. In Proceedings of
Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS 2004), 438–445.

[12] R. Mailler & V. Lesser (2004). Using
cooperative mediation to solve distributed
constraint satisfaction problems. In Proceedings
of Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS 2004), New York, 446–453.

[13] A. Meisels, E. Kaplansky, I.. Razgon, & R.
Zivan, (2002). Comparing performance of
distributed constraints processing algorithms. In
DCR Workshop at AAMAS’02.

[14] A P. J. Modi, M. Veloso, S. Smith, & J. Oh.
Cmradar, (2004). A personal assistant agent for
calendar management. Agent Oriented
Information Systems (AOIS).

[15] K. Sycara, S. F. Roth, N. Sadeh & Fox, M. S.
(1991). Distributed constrained heuristic search.
International Journal of IEEE Transactions on
Systems, Man and Cybernetics, 21(6), 1446–
1461.

[16] M. Yokoo, (1995). Asynchronous weak-
commitment search for solving distributed
constraint satisfaction problems. In Proceedings
of The First International Conference on
Principles and Practice of Constraint
Programming, 88–102.

[17] M. Yokoo & E. H. Durfee, (1992). Distributed
constraint Satisfaction for formalizing
distributed problem solving. In Proceedings of
12th IEEE International Conference on
Distributed Computing Systems, 1, 614–621.

