
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

277

DISTRIBUTED GROUPS MUTUAL EXCLUSION BASED ON
DYNAMICAL DATA STRUCTURES

1OUSMANE THIARE, 2MOHAMED NAIMI, 3MOURAD GUEROUI

 1Asstt Prof., Department of Computer Science, UGB-UFR SAT, Saint-Louis, Senegal
2Prof., Department of Computer Science, University of Cergy-Pontoise, France

3Prof., PRiSM Lab, University of Versailles Saint-Quentin, France

E-mail: othiare@dept-info.u-cergy.fr, naimi@dept-info.u-cergy.fr, mogue@prism.uvsq.fr

ABSTRACT

The group mutual exclusion (GME) problem is an interesting generalization of the mutual exclusion
problem. Several solutions of the GME problem have been proposed for message passing distributed
systems. In this paper we present a new Distributed Group Mutual Exclusion (DGME) based on
Clients/Servers model, and uses a dynamic data structure. Several processes (Clients) can access
simultaneously to a same opened session (Server). The algorithm ensures that, at any time, at most one
session is opened, and any requested session will be opened in a finite time. The number of messages is
between 0 and m, where m is the number of session in the network. In the average case, O(Log(m))
messages are necessary to open a session. The maximum concurrency is n, where n is the number of
processes in the network.

Keywords: Group Mutual Exclusion (GME), Client/Server

1. INTRODUCTION

The mutual exclusion problem states that only a
single process can be allowed to access in its
critical section (CS). Hence, the mutual exclusion
problems plays an important role in the design of
computer systems. Several distributed systems are
based on asynchronous messages passing, and
without global clock.

In the first class Permission-Based Algorithm
(PBA) [3][7][10], where all involved processes vote
to select one which receives the permission to
access the CS. Lamport [9] was the first to design a
fully distributed permission-based mutual exclusion
algorithm using logical timestamps. In his
algorithm each request set is the entire distributed
system. Then, if n is the number of processes in the
distributed system, the algorithm requires (n-1)
request, (n-1) reply, and (n-1) releases. The
algorithm requires 3(n-1) messages per critical
section execution. Ricart and Agrawala [12] have
reduced the number of messages in Lamport’s
algorithm to 2(n-1). Carvalho and Roucairol’s
algorithm [5] has further improved the number of
messages in Ricart and Agrawala’s algorithm by
avoiding some unnecessary request and reply

messages. They have shown that the number of
messages exchanged in their algorithm is between 0
and 2(n-1). Maekawa uses the number of message
from O(n) to √n.

In the second class, Token-Based Algorithms
(TBA) [8][12], in which only one process, holding a
special message called the token, may enter the
critical section. The dynamical spanning tree is used
in [13] to ensure the mutual exclusion. The reversal
path permits to reduce the number of messages to
Log(n) where n is the number of processes in the
network. The performance metrics of the mutual
exclusion algorithms are: the average number of
messages necessary per critical section invocation,
the response time, the fault tolerance. The mutual
exclusion algorithm should be starvation-free, and
fairness. The reversal path principle is used in [13]
to solve the mutual exclusion problem in distributed
system without logical time. The average number of
messages needed per request is O(Log(n)), where n
is the number of processes in networks.

The rest of this paper is organized as follow: the
principle of DGME is presented in the section 2.
Section 3 describes the computational model
assumed and we then present the algorithm. In
section 4, we present an example. The section 5

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

278

gives a proof of liveness and fairness properties.
The performance and message complexity are
discussed in the section 6. The last section
concludes this work.

2. RELATED WORK

The design issues for mutual exclusion between
groups of processes have recently been modeled by
Joung [11] as the Congenial Talking Philosophers
(CTP). In [11], another type of mutual exclusion
called Group Mutual Exclusion (GME for short) is
presented. In the GME problem, every critical
section to the same group can be executed
simultaneously. However CS belonging to different
groups must executed in a sequential mode with
mutual exclusion principle.

An example of GME, described by Joung in [8],
is a CD juke box shared by several processes. Any
number of processes can simultaneously access the
currently loaded CD, but processes wishing to
access different CD other than the currently loaded
one must wait. In this case, the sessions are the CDs
in juke box. Joung introduced the concept of m-
group quorum system. Several solutions for GME
problem are proposed without shared memory and
global clock, where the processes communicate by
exchanging message. J. Beauquier and al. [4]
presented three new distributed solutions for GME:
two solutions based on static spanning tree, and the
third solution uses a dynamical spanning tree. In
[1], the notion of surrogate-quorum is used to solve
the GME, and requires a low message complexity,
low minimum synchronization delays is two
message hops. The maximum concurrency is n,
which implies that it is possible for all processes to
the same group. In this paper, we propose a new
distributed solution for GME problem based on
reversal path. The problem is to design a solution
for DGME satisfying the following requirements:

• Mutual exclusion: if some process
participates an opened session, then no
other process participates to a different
session simultaneously.

• Concurrent access: if some processes
are interested to participate to a session,
and no process is interested in a
different solution, then the process can
attend the session concurrently.

• Fairness: a process attempting to
participate to a session will eventually
succeed.

We use the same principle to solve the DGME
problem in a distributed system. A process can
enter several times in the critical section, while any
other session does not is requested. The leader, and
root manage one or more sessions, the token is
managed by the root.

3. DISTRIBUTED MUTUAL EXCLUSION
3.1 DISTRIBUTED SYSTEM MODEL

The distributed system consists of n distinct

failure-free nodes (processors), which communicate
with each other by message passing over a
connected network. The messages take finite but
arbitrary time to reach at the receiving nodes. The
order of message through the reliable
communication links is FIFO. The algorithm
presented in this paper share in their design to
following assumptions and conditions for the
distributed system environment. All processes in
the distributed system are assigned unique
identification integers numbers. There is only one
requesting process executing at each node.
Processes are competing for a single resource. At
any time, each process initiates at most one
outstanding request for mutual exclusion.

3.2 MUTUAL EXCLUSION PROBLEM

A mutual exclusion algorithm must satisfy the
following requirements:

• at most one process can execute its critical
section at a given time if no process is in
its critical section.

• any process requesting to enter its critical
section must be allowed to do so in finite
time.

3.3 PRINCIPLE OF THE ALGORITHM

From at any connected graph, we construct a
spanning tree. Every node y belongs to the
spanning tree, y knows its neighbors in the
network, successors and predecessors in the
spanning tree. The spanning tree is used to
minimize the number of messages exchanged, and
to eliminate the duplicate message. Initially, one
token is assigned to one node.
When a node x request to enter in its critical
section, two cases are possible:

• node x holds the token, in this case, it
enters immediately in its critical section
without sending a request message.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

279

• node x does not hold the token, it sends a
request to its successor in its spanning tree,
and waits for the token.

When a node y receives the request message sent
by the node x, several cases are possible:

• the node y holds the token, and does not
use it, then y sends it immediately to the
node x.

• the node y is its critical section, then, y
records this request in its waiting queue.

• in the other case, y broadcasts this request
to successors in the spanning tree
excepted the node from which it has
received the request.

3.4 MESSAGES OF THE ALGORITHM

Initially, all sessions in the network are
connected logically to a tree rooted at one session
(Leader). We give the token to the root session.
When a session X receives a request to be opened
from a process Pi, several cases are possible: the
session holds the token, and no other session is
waiting for the token, in his case, the session X
sends immediately an authorization to Pi. Else, if it
exists another session in waiting queue, the
request’s of Pi is added to a waiting set. Now, we
examine the situation where a session X receives a
request from a process Pi and does not hold the
token, and it does not exist process in its waiting
set. In this case X sends immediately a request
message to the leader, to obtain the token from it.
The session X waits for the token.
 When a session X receives a request for the token
from another session Y. The session X broadcasts a
message to all processes in its waiting set, and
waits for all release messages. Once, the all release
messages received by session X, it sends the token
to the next session. When a session X receives the
token from another session Y, it sends an
authorization messages to all processes in its
waiting set. Each process Pi behaves like a
customer. Indeed, when Pi wish to take part in
session X, it sends an OPEN request to him, then
attend its agreement. Once its participation with the
session is finished, it sends a message REL to the
session.

3.5 LOCAL VARIABLES AT SESSION X

We consider two kinds of messages: messages
exchanged between sessions, and messages
exchanged between sessions and processes.

• Messages exchanged between session:

REQ(x): to obtain the token, this message is
sent to leader session.
TOKEN(x): message to denote the permission
to open a session x.
• Messages exchanged between sessions

and processes:
OPEN(x): request sent by a process to open the
session x.
OK(x): authorization to participate to the
session x by process Pi.
REL(x): message sent by process Pi to session
x, to signify that process Pi has closed the
session x.

Fig. 1. Messages exchanged between processes

and sessions

Fig. 1. State session

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

280

3.6 LOCAL VARIABLES AT SESSION X

Leaderx: a pointer which denotes a path from a
session to the session at root of the logical rooted
tree. Initially, Leaderx=Nil if x is the root, and
Leaderx≠Nil otherwise.
Nextx: pointer which indicates the next session for
which the token will be transmitted. Initially,
Nextx=Nil.
HTx: Boolean, true if the session x holds the token,
false otherwise. Initially, HTx=true if x is at the
root, otherwise, HTx=false.
RSx: group of processes waiting to participate to the
session x. Initially, RSx=Ø for all session x.
Nrelx: denotes the number of release messages that
the session x waits from its group. Initially, Nrelx=0
for all session x.

3.7 LOCAL VARIABLES FOR EVERY

PROCESS Pi

 X: where X={x, y, z,…} is a dynamic set of m
sessions in the network.
Open_Session: Boolean set to true if a session
requested by Pi is opened, false otherwise. Initially,
Open_Session=false for all processes.
CSi: denotes the current session requested by
process Pi. Initially, CSi=Nil.

3.8 ALGORITHM DESCRIPTION

The distributed algorithm is based on the
following rules: rules of processes and rules of
sessions.
Rules of processes
Rule 1::

When a process Pi wants to open a session x

Do

 CSi← x

 SEND OPEN(Pi) to x

Od

Rule 2::

When a process receives OK(x)

Do

 Open_Session← true

Od

Rule 3::

When a process Pi releases session x

Do

 SEND REL(Pi) to x

 CSi← Nil

 Open_Session← false

Od

To open a session x, every process Pi must execute
the following steps:

<Rule 1> Wait(Open_Session) <Rule 3>

Rules of sessions

Rule 4::

When session x receives OPEN(P)

Do

 If ((HTx) � (Nextx=Nil)) then

 SEND OK() to Pi

 Nrelx= Nrelx+1

 Else

 If ((Nextx=Nil) � (RSx=Ø)) then

 SEND REQ() to Leaderx

 Leaderx← Nil

 EndIf

 RSx← RSx ׫ {P}

 EndIf

Od

Rule 5::

When a session x receives REQ(y)

Do

 If (Leaderx=Nil) then

 If((HTx) � (Nrelx=0)) then

 SEND TOKEN() to y

 HTx= false

 Else

 Nextx← y

 EndIf

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

281

 Else SEND REQ(y) to Leaderx

 EndIf

 Leaderx← y

Od

Rule 6::

When a session x receives REL(P)

Do

 Nrelx← Nrelx-1

 If ((Nrelx=0) � (Nextx≠Nil)) then

 SEND TOKEN() to Nextx

 HTx← false

 Nextx← Nil

 If (RSx≠Ø) then

 SEND REQ(x) to Leaderx

 Leaderx← Nil

 EndIf

 EndIf

Od

Rule 7::

When a session x receives TOKEN()

Do

 HTx← true

 RSx SEND OK() to Pi א Pi ׊

 Nrelx← |RSx|

 RSx← Ø

Od

Initially, we construct a rooted tree from the
network, where the root is a session holding the
token and called Leader.

A process sends directly its request to a session,
and waits for authorization. Every session manages
a group of processes requesting it and a process
opens only one session at time if it is the root in a
rooted spanning of a given network, and manages
all the sessions. When a process x wants to open a
session k. Several cases are possible:

• the session k is opened, in this case x can
access immediately to CS.

• the session k is closed:

• x is a root, if all sessions are closed, x
opens the session k.

• x is not root, it sends a request to the root,
and waits.

4. EXAMPLE

Fig. 3. Graph of sessions and processes.

Fig. 4. Initial logical rooted tree.

 U x y z

Leader X Nil x x

Next Nil Nil Nil Nil

HT False True False False

RS Ø Ø Ø Ø

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

282

Nrel 0 0 0 0

Fig. 5. Initial global state.

 u x y z

Leader Nil u x u

Next Nil z Nil u

HT False True False False

RS {P5} {P1} Ø {P3, P6,
P7}

Nrel 0 1 0 0

Fig. 6. Global state after execution of the
algorithm.

 Initially, the global state of distributed system
is given by Fig. 5. And Fig. 4 represents the initial
logical rooted tree.

Now, we illustrate the algorithm by the following
scenario:

T1: Processes P1 and P4 want to a session x, and
send the message OPEN to session x.

T2: Process P5 wants to open the session u, and
sends a message OPEN to session u.

T3: Processes P3, P6, and P7, want to open the
session z, they send a message OPEN to z.

T4: The session u receives the message OPEN for
P5, t is not leader, it sends a message REQ to
session x.

T5: The session x receives a message OPEN from
P4, x sends a message OK to P1.

T6: the session z receives a message OPEN from P6,
it sends a message REQ to session x.

T7: The session x receives a message REQ from the
session z. The session z becomes the next session
for which, x must send the token.

T8: The session x receives a message REQ from u,
it transmits it to the new leader z.

T9: The session z receives the message OPEN from
the processes P3 and P7. The processes P3, P6, and P7
are in the waiting set RSz.

T10: the session x receives a message OPEN from
P1, the waiting set RSx contains now, the process
P1.

T11: The session z receives the request of u from
session x. The new leader becomes u.

Looking at the overall state after running the
algorithm (Fig. 6.), the new logical rooted tree is
given by Fig. 7.

Fig. 5. New logical rooted tree.

5. PROOF

 Let x, y and z the sessions in the network.

Lemma 1: For all session x, y, we have (HTx �
HTy)=false is invariant.

Proof

Initially true. When a session x transmits the token
to another requesting session y, it sets its local
variable HTx to false (from rules 5 and -) in the
algorithm. When the token is in transit to a
requesting session, we have HTx=false for all
session x in the network. Upon receiving the token,
the session x sets HTy to true.

Theorem 2: The algorithm ensures mutual
exclusion (at most one session is opened).

Proof

 At any time during execution of the algorithm,
only one single token is either located at a session

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

283

or in transit between two sessions in the network
(Lemma 1). Therefore, mutual exclusion is always
guaranteed by the protocol.

Lemma 3: At any time, if we start from any
session x and traverse along the chain of pointers
Leaderx variables, then we will reach a session y
which is the root of the tree.

Theorem 4: The algorithm is starvation free.

Proof

Starvation occurs when one session must wait
indefinitely to be opened even though sessions are
opened. Consider a requesting session x, and let us
examine the reception of a message OPEN from a
process P. If x is the leader (Leaderx=Nil), it waits
for the token. Otherwise, the request of session x is
transmitted by arcs corresponding to leader, to a
session y for which Leadery=Nil. If y has invoked
the critical section, x will be the successor (Next) of
session y; otherwise, y sends immediately the token
to session x.

We have checked that:

• The request of session x is transmitted to a
session y for which Leadery=Nil, within a
finite delay. This will by Lemma 3 in
which we use the fact that there are no
circuits (Lemma 1).

• If y has requested the critical section, x
becomes the successors of y, and that fact
will allow x to hold the token within a
finite delay. That will be proved in Lemma
9 and we shall use the file data structures
(Lemma 6 and Lemma 7).

Lemma 5: The following properties are satisfied.

• The mapping leader constitutes a set of
rooted trees (a forest)

• The set of rooted trees is reduced to a one
rooted tree if no request message is in
transit between two sessions.

Proof

 Initially, the two points of the Lemma are
satisfied.

Let us suppose they are true at some instant.

We assume that x invokes the critical section and
let us consider the use of the Rule 1. If x is leader,
there is no change made to the set of rooted trees;
otherwise a rooted tree is disconnected from the
rest. The number of rooted trees is increased by

one. Let us examine the receiving of the request
message. When a request message is received by a
leader session y, the new value of pointer becomes
x, y is cut off from the rooted tree in which it was
and is attached to the rooted tree of the requesting
session. We have a new forest. The number of
rooted trees is unchanged. When a leader session y
receives a request message, y is connected to
session x. The number of rooted trees is decreased
by one.

Lemma 6: A request message is transmitted to a
session for which Leader=Nil which a finite delay.

Proof

 Let us that session x requests the critical section
without having the token. A request is therefore
sent from session x toward the leader of a tree.
Consider an instant during the transmission of this
request, when it is in transit between session y and
z. the arc from y to z has been deleted and the forest
is partitioned into two parts: part A which the
message comes from, and part B which the request
message. No other request message can pass
between A and B because no path can be crated
before the request has arrived at z.

 When the request message has arrived at z, if z is
not the leader, the request message is sent from z to
v. Part A is increased and part B is decreased and
there is always a cut between A and B. Therefore,
the request message can never again reach a session
of A. We have proved a request message can never
received twice times by the same session; i.e., the
number of sessions which the request message
passes by is less than n.

Otherwise, the delays of transmission are finite. We
have proved that the request message will reach a
leader within a finite delay.

Lemma 7: (Leaderx=Nil)→ (Nextx=Nil) is an
invariant.

Proof

True initially, and remains true for all actions of the
algorithm.

Lemma 8: (Leaderx=Nil) � (RSx=Ø) →
(HTx=true).

Proof

 Initially true, only the root session holds the token,
and for which the Leaderx=Nil. A session lost a
token, when it receives a request from another
session in this case Leaderx≠Nil.

Lemma 9: (Nextx≠Nil) ↔ (Leaderx≠Nil) �
(RSx≠Ø).

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

284

Proof

 Initially true and remains true for all actions of the
algorithm.

6. PERFORMANCE

 The performance of a distributed mutual
exclusion algorithm can be evaluated in terms of a
number of metrics. Messages complexity and
synchronization delay are two parameters, which
can be used to compare the performance of various
distributed mutual exclusion algorithm. The
message complexity of a distributed mutual
exclusion algorithm is the number of messages
exchanged by a process per critical section access.

6.1 SYNCHRONIZATION DELAY

 One of the performance measurement criteria of
mutual exclusion algorithms is synchronization
delay. In mutual exclusion, the synchronization
delay is the time required after a process exists to
the CS and before the next process enters to the CS.
In group mutual exclusion it is defined as the time
between two consecutive sessions. A
synchronization delay is measured in terms of
maximum message delay, t. Figure 8. depicts the
synchronization delay both in mutual exclusion.

Theorem 10: The synchronization delays of our
algorithm environment Is at most 2t where t is the
maximum message delay.

Fig. 6. Synchronisation delay in (a) mutual

exclusion (b) group mutual exclusion

6.2 CONCURRENCY

 The (maximum) degree of concurrency is
defined by the maximum number of session that
can still be established while a session is going and
some process is waiting for a different session.
Obviously, higher degree concurrency implies
better resource utilization. According to our

algorithm, if all the processes are interested to join
the same session simultaneously, one of the
processes (the current token holder) will start the
session and declares the session to other processes.

Theorem 11: the maximum concurrency of our
algorithm is n.

 The fault tolerance of a distributed mutual
exclusion algorithm is the maximal number of
nodes that can fail before it become impossible for
any node to access its critical session.

The availability is the probability that the critical
section can be entered in the presence of failure. In
fact, availability of a distributed mutual exclusion
algorithm is a measure of its fault tolerance.

Lemma 12: the number of request message sent by
requesting session is bounded by (m-1) where m is
the number of sessions in a given network.

Proof

 When a session x holds the token, it does not send
any request messages; otherwise, the session x
sends the request message to the current root, and
waits for the token. From Lemma 4, never session
receives the same request twice. Let h be the hight
of session x in the rooted tree. We have 0≤ √h ≤
(m-1).

Lemma 13: the number of message necessary to
transmit the token from a session x to another
requesting session is 1.

Proof

The token is transmitted directly from a session to
another requesting session.

Theorem 14: the algorithm requires m messages
by access to a critical section in the worst case.

Proof

 By the lemmas 7 and 9, a complete topology
where every node x has (n-1) neighbors and the
radius is equal to 1. The number of request
messages sent is (n-1). In a spanning tree every
request is sent exactly one time at every node, and
the number of message is equal to (n-1).

7. CONCLUSION

In this paper, we have presented a Distributed
Group Mutual exclusion algorithm based on
clients/servers model. The number of message
necessary to satisfy each request is between 0 and
m messages in the best case and worst case
respectively, where m is the number of sessions in

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

285

distributed system. If some processes are interested
to participate to an opened session, and no process
is interested in a different session, then the process
can attend the session concurrently. Future works
involves a more detailed study of the performance
in the face of failure, as well as comparisons with
additional algorithms.

8. REFRENCES

 [1] R. Atreya, N. Mittal, “A Distributed Group
Mutual Exclusion Algorithm using Surrogate-
Quorums”, IEEE International Conference on
Distributed Computing Systems (ICDCS), 2005,
pp. 251-260.

 [2] R. Baldoni, A. Virgilito, “A token-based mutual
exclusion algorithm Distributed mutual
exclusion for mobile ad hoc networks”, Tech.
Report 28-01, Dipartimento di Iinformatica,
Univ. di Roma, 2000,.

[3] S. Banerjee, P.K. Chrysanthis, “A new token
passing distributed mutual exclusion
algorithm”, 16th International Conference on
Distributed Computing Systems, 1996, pp. 717-
724.

[4] J. Beauquier. S. Cantarell, A.K. Datta, “Group
mutual exclusion in tree networks”, Journal of
Information Science and engineering, Vol. 19,
200, pp. 415-432.

 [5] O. Carvalho, C. Roucairol, “On mutual
exclusion in computer networks”, CACM, Vol.
26, No. 2, 1984, pp. 146-147.

[6] K.M. Chandy, J. Misra, “The drinking
philosophers problem”, ACM TOPLAS, Vol.
6(4), 1984, pp. 632-646.

[7] Y.I. Chang, M. Singhal, and Liu T, “A dynamic
token-based distributed mutual exclusion
algorithm”, 10th International Conference on
Computers and Communications, Scottsdale,
Arizona USA, 1991.

 [8] Y.J. Joung, “Asynchronous group mutual
exclusion”, Distributed Computing, Vol. 13,
No. 4, 2000, pp. 189-206.

[9] L. Lamport, “Time, clocks , and the ordering of
events in distributed system”, Communications
of the ACM, Vol. 21, No. 7, July 1978, pp. 558-
565.

[10] M. Maekawa, “A O(√݊) algorithm for mutual
exclusion in decentralized systems”, ACM
Trans. Computer systems, May 1985, pp. 145-
159.

[11] Y.J. Joung, “The congenial talking philosophers
problem in computer networks”, Distributed
Computing, 2002, pp.155-175.

 [12] G. Ricart, “An optimal algorithm for mutual
exclusion in computer networks”, CACM, Vol.
24, No. 1, 1981, pp. 9-17.

[13] M. Naimi, “Une structure arborescente pour
une classe d’algorithmes distribues d’exclusion
mutuelle”, PhD Thesis, University of Franche-
Comté, 1987.

