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ABSTRACT 
 

The group mutual exclusion (GME) problem is an interesting generalization of the mutual exclusion 
problem. Several solutions of the GME problem have been proposed for message passing distributed 
systems. In this paper we present a new Distributed Group Mutual Exclusion (DGME) based on 
Clients/Servers model, and uses a dynamic data structure. Several processes (Clients) can access 
simultaneously to a same opened session (Server). The algorithm ensures that, at any time, at most one 
session is opened, and any requested session will be opened in a finite time. The number of messages is 
between 0 and m, where m is the number of session in the network. In the average case, O(Log(m)) 
messages are necessary to open a session. The maximum concurrency is n, where n is the number of 
processes in the network. 

Keywords: Group Mutual Exclusion (GME), Client/Server 
 
1. INTRODUCTION  
 

The mutual exclusion problem states that only a 
single process can be allowed to access in its 
critical section (CS). Hence, the mutual exclusion 
problems plays an important role in the design of 
computer systems. Several distributed systems are 
based on asynchronous messages passing, and 
without global clock. 

In the first class Permission-Based Algorithm 
(PBA) [3][7][10], where all involved processes vote 
to select one which receives the permission to 
access the CS. Lamport [9] was the first to design a 
fully distributed permission-based mutual exclusion 
algorithm using logical timestamps. In his 
algorithm each request set is the entire distributed 
system. Then, if n is the number of processes in the 
distributed system, the algorithm requires (n-1) 
request, (n-1) reply, and (n-1) releases. The 
algorithm requires 3(n-1) messages per critical 
section execution. Ricart and Agrawala [12] have 
reduced the number of messages in Lamport’s 
algorithm to 2(n-1). Carvalho and Roucairol’s 
algorithm [5] has further improved the number of 
messages in Ricart and Agrawala’s algorithm by 
avoiding some unnecessary request and reply 

messages. They have shown that the number of 
messages exchanged in their algorithm is between 0 
and 2(n-1). Maekawa uses the number of message 
from O(n) to √n. 

In the second class, Token-Based Algorithms 
(TBA) [8][12], in which only one process, holding a 
special message called the token, may enter the 
critical section. The dynamical spanning tree is used 
in [13] to ensure the mutual exclusion. The reversal 
path permits to reduce the number of messages to 
Log(n) where n is the number of processes in the 
network. The performance metrics of the mutual 
exclusion algorithms are: the average number of 
messages necessary per critical section invocation, 
the response time, the fault tolerance. The mutual 
exclusion algorithm should be starvation-free, and 
fairness. The reversal path principle is used in [13] 
to solve the mutual exclusion problem in distributed 
system without logical time. The average number of 
messages needed per request is O(Log(n)), where n 
is the number of processes in networks. 

The rest of this paper is organized as follow: the 
principle of DGME is presented in the section 2. 
Section 3 describes the computational model 
assumed and we then present the algorithm. In 
section 4, we present an example. The section 5 
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gives a proof of liveness and fairness properties. 
The performance and message complexity are 
discussed in the section 6. The last section 
concludes this work.  

2. RELATED WORK 
 

The design issues for mutual exclusion between 
groups of processes have recently been modeled by 
Joung [11] as the Congenial Talking Philosophers 
(CTP). In [11], another type of mutual exclusion 
called Group Mutual Exclusion (GME for short) is 
presented. In the GME problem, every critical 
section to the same group can be executed 
simultaneously. However CS belonging to different 
groups must executed in a sequential mode with 
mutual exclusion principle. 

An example of GME, described by Joung in [8], 
is a CD juke box shared by several processes. Any 
number of processes can simultaneously access the 
currently loaded CD, but processes wishing to 
access different CD other than the currently loaded 
one must wait. In this case, the sessions are the CDs 
in juke box. Joung introduced the concept of m-
group quorum system. Several solutions for GME 
problem are proposed without shared memory and 
global clock, where the processes communicate by 
exchanging message. J. Beauquier and al. [4] 
presented three new distributed solutions for GME: 
two solutions based on static spanning tree, and the 
third solution uses a dynamical spanning tree. In 
[1], the notion of surrogate-quorum is used to solve 
the GME, and requires a low message complexity, 
low minimum synchronization delays is two 
message hops. The maximum concurrency is n, 
which implies that it is possible for all processes to 
the same group. In this paper, we propose a new 
distributed solution for GME problem based on 
reversal path. The problem is to design a solution 
for DGME satisfying the following requirements: 

• Mutual exclusion: if some process 
participates an opened session, then no 
other process participates to a different 
session simultaneously. 

• Concurrent access: if some processes 
are interested to participate to a session, 
and no process is interested in a 
different solution, then the process can 
attend the session concurrently. 

• Fairness: a process attempting to 
participate to a session will eventually 
succeed. 

We use the same principle to solve the DGME 
problem in a distributed system. A process can 
enter several times in the critical section, while any 
other session does not is requested. The leader, and 
root manage one or more sessions, the token is 
managed by the root. 

3. DISTRIBUTED MUTUAL EXCLUSION 
3.1 DISTRIBUTED SYSTEM MODEL 

 
The distributed system consists of n distinct 

failure-free nodes (processors), which communicate 
with each other by message passing over a 
connected network. The messages take finite but 
arbitrary time to reach at the receiving nodes. The 
order of message through the reliable 
communication links is FIFO. The algorithm 
presented in this paper share in their design to 
following assumptions and conditions for the 
distributed system environment. All processes in 
the distributed system are assigned unique 
identification integers numbers. There is only one 
requesting process executing at each node. 
Processes are competing for a single resource. At 
any time, each process initiates at most one 
outstanding request for mutual exclusion. 

3.2 MUTUAL EXCLUSION PROBLEM 
 

A mutual exclusion algorithm must satisfy the 
following requirements: 

• at most one process can execute its critical 
section at a given time if no process is in 
its critical section. 

• any process requesting to enter its critical 
section must be allowed to do so in finite 
time. 

3.3 PRINCIPLE OF THE ALGORITHM 
 

From at any connected graph, we construct a 
spanning tree. Every node y belongs to the 
spanning tree, y knows its neighbors in the 
network, successors and predecessors in the 
spanning tree. The spanning tree is used to 
minimize the number of messages exchanged, and 
to eliminate the duplicate message. Initially, one 
token is assigned to one node. 
When a node x request to enter in its critical 
section, two cases are possible: 

• node x holds the token, in this case, it 
enters immediately in its critical section 
without sending a request message. 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
279 

 

• node x does not hold the token, it sends a 
request to its successor in its spanning tree, 
and waits for the token. 

When a node y receives the request message sent 
by the node x, several cases are possible: 

• the node y holds the token, and does not 
use it, then y sends it immediately to the 
node x. 

• the node y is its critical section, then, y 
records this request in its waiting queue. 

• in the other case, y broadcasts this request 
to successors in the spanning tree 
excepted the node from which it has 
received the request. 
 

3.4  MESSAGES OF THE ALGORITHM 
 

Initially, all sessions in the network are 
connected logically to a tree rooted at one session 
(Leader). We give the token to the root session. 
When a session X receives a request to be opened 
from a process Pi, several cases are possible: the 
session holds the token, and no other session is 
waiting for the token, in his case, the session X 
sends immediately an authorization to Pi. Else, if it 
exists another session in waiting queue, the 
request’s of Pi is added to a waiting set. Now, we 
examine the situation where a session X receives a 
request from a process Pi and does not hold the 
token, and it does not exist process in its waiting 
set. In this case X sends immediately a request 
message to the leader, to obtain the token from it. 
The session X waits for the token. 
 When a session X receives a request for the token 
from another session Y. The session X broadcasts a 
message to all processes in its waiting set, and 
waits for all release messages. Once, the all release 
messages received by session X, it sends the token 
to the next session. When a session X receives the 
token from another session Y, it sends an 
authorization messages to all processes in its 
waiting set. Each process Pi behaves like a 
customer. Indeed, when Pi wish to take part in 
session X, it sends an OPEN request to him, then 
attend its agreement. Once its participation with the 
session is finished, it sends a message REL to the 
session. 
 
3.5 LOCAL VARIABLES AT SESSION X 
 

We consider two kinds of messages: messages 
exchanged between sessions, and messages 
exchanged between sessions and processes. 

• Messages exchanged between session: 

REQ(x): to obtain the token, this message is 
sent to leader session. 
TOKEN(x): message to denote the permission 
to open a session x. 
• Messages exchanged between sessions 

and processes: 
OPEN(x): request sent by a process to open the 
session x. 
OK(x): authorization to participate to the 
session x by process Pi. 
REL(x): message sent by process Pi to session 
x, to signify that process Pi has closed the 
session x. 
      

 
Fig. 1. Messages exchanged between processes 

and sessions 

                        
Fig. 1. State session 
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3.6 LOCAL VARIABLES AT SESSION X  
 
 
Leaderx: a pointer which denotes a path from a 
session to the session at root of the logical rooted 
tree. Initially, Leaderx=Nil if x is the root, and 
Leaderx≠Nil otherwise. 
Nextx: pointer which indicates the next session for 
which the token will be transmitted. Initially, 
Nextx=Nil. 
HTx: Boolean, true if the session x holds the token, 
false otherwise. Initially, HTx=true if x is at the 
root, otherwise, HTx=false.   
RSx: group of processes waiting to participate to the 
session x. Initially, RSx=Ø for all session x. 
Nrelx: denotes the number of release messages that 
the session x waits from its group. Initially, Nrelx=0 
for all session x. 
 
3.7 LOCAL VARIABLES FOR EVERY 

PROCESS Pi  
 
 X: where X={x, y, z,…} is a dynamic set of  m 
sessions in the network. 
Open_Session: Boolean set to true if a session 
requested by Pi is opened, false otherwise. Initially, 
Open_Session=false for all processes. 
CSi: denotes the current session requested by 
process Pi. Initially, CSi=Nil.  

 
3.8 ALGORITHM DESCRIPTION 
 

The distributed algorithm is based on the 
following rules: rules of processes and rules of 
sessions. 
Rules of processes 
Rule 1:: 

When a process Pi wants to open a session x 

Do 

     CSi← x 

     SEND OPEN(Pi) to x 

Od 

Rule 2:: 

When a process receives OK(x) 

Do 

      Open_Session← true 

Od 

Rule 3:: 

When a process Pi releases session x 

Do 

      SEND REL(Pi) to x 

      CSi← Nil 

     Open_Session← false 

Od 

To open a session x, every process Pi must execute 
the following steps: 

<Rule 1>  Wait(Open_Session)  <Rule 3> 

Rules of sessions 

Rule 4:: 

When session x receives OPEN(P) 

Do 

    If ((HTx) � (Nextx=Nil)) then  

        SEND OK() to Pi 

        Nrelx= Nrelx+1 

    Else 

        If ((Nextx=Nil) � (RSx=Ø)) then  

           SEND REQ() to Leaderx 

           Leaderx← Nil 

        EndIf 

           RSx← RSx ׫ {P} 

    EndIf 

Od 

Rule 5:: 

When a session x receives REQ(y) 

Do 

    If (Leaderx=Nil) then  

       If((HTx) � (Nrelx=0)) then 

          SEND TOKEN() to y 

          HTx= false 

       Else 

             Nextx← y 

 

       EndIf 
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       Else SEND REQ(y) to Leaderx 

    EndIf 

           Leaderx← y 

Od 

Rule 6:: 

When a session x receives REL(P) 

Do 

     Nrelx← Nrelx-1 

     If ((Nrelx=0) � (Nextx≠Nil)) then  

          SEND TOKEN() to Nextx 

          HTx← false 

          Nextx← Nil 

         If (RSx≠Ø) then 

              SEND REQ(x) to Leaderx 

              Leaderx← Nil 

         EndIf 

      EndIf 

Od 

Rule 7:: 

When a session x receives TOKEN() 

Do 

     HTx← true 

 RSx SEND OK() to Pi א Pi ׊     

     Nrelx← |RSx| 

     RSx← Ø 

Od 

Initially, we construct a rooted tree from the 
network, where the root is a session holding the 
token and called Leader. 

A process sends directly its request to a session, 
and waits for authorization. Every session manages 
a group of processes requesting it and a process 
opens only one session at time if it is the root in a 
rooted spanning of a given network, and manages 
all the sessions. When a process x wants to open a 
session k. Several cases are possible: 

• the session k is opened, in this case x can 
access immediately to CS. 

• the session k is closed: 

• x is a root, if all sessions are closed, x 
opens the session k. 

• x is not root, it sends a request to the root, 
and waits. 

4. EXAMPLE 

 
Fig. 3. Graph of sessions and processes.  

 

 
Fig. 4. Initial logical rooted tree. 

 

 

 U x y z 

Leader X Nil x x 

Next Nil Nil Nil Nil 

HT False True False False 

RS Ø Ø Ø Ø 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
282 

 

Nrel 0 0 0 0 

 

Fig. 5. Initial global state. 

            

 

 

 u x y z 

Leader Nil u x u 

Next Nil z Nil u 

HT False True False False 

RS {P5} {P1} Ø {P3, P6, 
P7} 

Nrel 0 1 0 0 

 

Fig. 6. Global state after execution of the 
algorithm. 

 

       Initially, the global state of distributed system 
is given by Fig. 5. And Fig. 4 represents the initial 
logical rooted tree. 

Now, we illustrate the algorithm by the following 
scenario: 

T1: Processes P1 and P4 want to a session x, and 
send the message OPEN to session x. 

T2: Process P5 wants to open the session u, and 
sends a message OPEN to session u. 

T3: Processes P3, P6, and P7, want to open the 
session z, they send a message OPEN to z. 

T4: The session u receives the message OPEN for 
P5, t is not leader, it sends a message REQ to 
session x. 

T5: The session x receives a message OPEN from 
P4, x sends a message OK to P1. 

T6: the session z receives a message OPEN from P6, 
it sends a message REQ to session x. 

T7: The session x receives a message REQ from the 
session z. The session z becomes the next session 
for which, x must send the token. 

T8: The session x receives a message REQ from u, 
it transmits it to the new leader z. 

T9: The session z receives the message OPEN from 
the processes P3 and P7. The processes P3, P6, and P7 
are in the waiting set RSz. 

T10: the session x receives a message OPEN from 
P1, the waiting set RSx contains now, the process 
P1. 

T11: The session z receives the request of u from 
session x. The new leader becomes u. 

Looking at the overall state after running the 
algorithm (Fig. 6.), the new logical rooted tree is 
given by Fig. 7. 

 
Fig. 5. New logical rooted tree. 

 

5. PROOF 

 
    Let x, y and z the sessions in the network. 

Lemma 1: For all session x, y, we have (HTx � 
HTy)=false is invariant. 

Proof 

Initially true. When a session x transmits the token 
to another requesting session y, it sets its local 
variable HTx to false (from rules 5 and -) in the 
algorithm. When the token is in transit to a 
requesting session, we have HTx=false for all 
session x in the network. Upon receiving the token, 
the session x sets HTy to true. 

Theorem 2: The algorithm ensures mutual 
exclusion (at most one session is opened). 

Proof 

 At any time during execution of the algorithm, 
only one single token is either located at a session 
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or in transit between two sessions in the network 
(Lemma 1). Therefore, mutual exclusion is always 
guaranteed by the protocol. 

Lemma 3:  At any time, if we start from any 
session x and traverse along the chain of pointers 
Leaderx variables, then we will reach a session y 
which is the root of the tree. 

Theorem 4:  The algorithm is starvation free. 

 

Proof 

Starvation occurs when one session must wait 
indefinitely to be opened even though sessions are 
opened. Consider a requesting session x, and let us 
examine the reception of a message OPEN from a 
process P. If x is the leader (Leaderx=Nil), it waits 
for the token. Otherwise, the request of session x is 
transmitted by arcs corresponding to leader, to a 
session y for which Leadery=Nil. If y has invoked 
the critical section, x will be the successor (Next) of 
session y; otherwise, y sends immediately the token 
to session x. 

We have checked that: 

• The request of session x is transmitted to a 
session y for which Leadery=Nil, within a 
finite delay. This will by Lemma 3 in 
which we use the fact that there are no 
circuits (Lemma 1). 

• If y has requested the critical section, x 
becomes the successors of y, and that fact 
will allow x to hold the token within a 
finite delay. That will be proved in Lemma 
9 and we shall use the file data structures 
(Lemma 6 and Lemma 7). 

Lemma 5: The following properties are satisfied. 

• The mapping leader constitutes a set of 
rooted trees (a forest) 

• The set of rooted trees is reduced to a one 
rooted tree if no request message is in 
transit between two sessions. 

Proof 

   Initially, the two points of the Lemma are 
satisfied. 

Let us suppose they are true at some instant. 

We assume that x invokes the critical section and 
let us consider the use of the Rule 1. If x is leader, 
there is no change made to the set of rooted trees; 
otherwise a rooted tree is disconnected from the 
rest. The number of rooted trees is increased by 

one. Let us examine the receiving of the request 
message. When a request message is received by a 
leader session y, the new value of pointer becomes 
x, y is cut off from the rooted tree in which it was 
and is attached to the rooted tree of the requesting 
session. We have a new forest. The number of 
rooted trees is unchanged. When a leader session y 
receives a request message, y is connected to 
session x. The number of rooted trees is decreased 
by one. 

Lemma 6: A request message is transmitted to a 
session for which Leader=Nil which a finite delay. 

Proof 

    Let us that session x requests the critical section 
without having the token. A request is therefore 
sent from session x toward the leader of a tree. 
Consider an instant during the transmission of this 
request, when it is in transit between session y and 
z. the arc from y to z has been deleted and the forest 
is partitioned into two parts: part A which the 
message comes from, and part B which the request 
message. No other request message can pass 
between A and B because no path can be crated 
before the request has arrived at z. 

   When the request message has arrived at z, if z is 
not the leader, the request message is sent from z to 
v. Part A is increased and part B is decreased and 
there is always a cut between A and B. Therefore, 
the request message can never again reach a session 
of A. We have proved a request message can never 
received twice times by the same session; i.e., the 
number of sessions which the request message 
passes by is less than n. 

Otherwise, the delays of transmission are finite. We 
have proved that the request message will reach a 
leader within a finite delay. 

Lemma 7: (Leaderx=Nil)→ (Nextx=Nil) is an 
invariant. 

Proof 

True initially, and remains true for all actions of the 
algorithm. 

Lemma 8: (Leaderx=Nil) � (RSx=Ø) → 
(HTx=true). 

Proof  

  Initially true, only the root session holds the token, 
and for which the Leaderx=Nil. A session lost a 
token, when it receives a request from another 
session in this case Leaderx≠Nil. 

Lemma 9: (Nextx≠Nil) ↔ (Leaderx≠Nil) � 
(RSx≠Ø). 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
284 

 

Proof 

  Initially true and remains true for all actions of the 
algorithm. 

6. PERFORMANCE 

    The performance of a distributed mutual 
exclusion algorithm can be evaluated in terms of a 
number of metrics. Messages complexity and 
synchronization delay are two parameters, which 
can be used to compare the performance of various 
distributed mutual exclusion algorithm. The 
message complexity of a distributed mutual 
exclusion algorithm is the number of messages 
exchanged by a process per critical section access. 

6.1  SYNCHRONIZATION DELAY 

     One of the performance measurement criteria of 
mutual exclusion algorithms is synchronization 
delay. In mutual exclusion, the synchronization 
delay is the time required after a process exists to 
the CS and before the next process enters to the CS. 
In group mutual exclusion it is defined as the time 
between two consecutive sessions. A 
synchronization delay is measured in terms of 
maximum message delay, t. Figure 8. depicts the 
synchronization delay both in mutual exclusion. 

Theorem 10: The synchronization delays of our 
algorithm environment Is at most 2t where t is the 
maximum message delay. 

 
Fig. 6. Synchronisation delay in (a) mutual 

exclusion (b) group mutual exclusion 

 

6.2 CONCURRENCY 

     The (maximum) degree of concurrency is 
defined by the maximum number of session that 
can still be established while a session is going and 
some process is waiting for a different session. 
Obviously, higher degree concurrency implies 
better resource utilization. According to our 

algorithm, if all the processes are interested to join 
the same session simultaneously, one of the 
processes (the current token holder) will start the 
session and declares the session to other processes. 

Theorem 11: the maximum concurrency of our 
algorithm is n. 

 

     The fault tolerance of a distributed mutual 
exclusion algorithm is the maximal number of 
nodes that can fail before it become impossible for 
any node to access its critical session.  

The availability is the probability that the critical 
section can be entered in the presence of failure. In 
fact, availability of a distributed mutual exclusion 
algorithm is a measure of its fault tolerance. 

Lemma 12: the number of request message sent by 
requesting session is bounded by (m-1) where m is 
the number of sessions in a given network. 

Proof 

   When a session x holds the token, it does not send 
any request messages; otherwise, the session x 
sends the request message to the current root, and 
waits for the token. From Lemma 4, never session 
receives the same request twice. Let h be the hight 
of session x in the rooted tree. We have 0≤ √h ≤ 
(m-1). 

Lemma 13: the number of message necessary to 
transmit the token from a session x to another 
requesting session is 1. 

Proof 

The token is transmitted directly from a session to 
another requesting session. 

Theorem 14:  the algorithm requires m messages 
by access to a critical section in the worst case. 

Proof 

    By the lemmas 7 and 9, a complete topology 
where every node x has (n-1) neighbors and the 
radius is equal to 1. The number of request 
messages sent is (n-1). In a spanning tree every 
request is sent exactly one time at every node, and 
the number of message is equal to (n-1). 

7. CONCLUSION 

In this paper, we have presented a Distributed 
Group Mutual exclusion algorithm based on 
clients/servers model. The number of message 
necessary to satisfy each request is between 0 and 
m messages in the best case and worst case 
respectively, where m is the number of sessions in 
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distributed system. If some processes are interested 
to participate to an opened session, and no process 
is interested in a different session, then the process 
can attend the session concurrently. Future works 
involves a more detailed study of the performance 
in the face of failure, as well as comparisons with 
additional algorithms. 
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