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ABSTRACT 
A  Neural network is a machine that is designed to model the way in which the brain performs a particular task 
or function of interest: The network is usually implemented by using electronic components or is simulated in 
software on a digital computer. “ A neural network is a massively parallel distributed processor made up of 
simple processing units which has a natural propensity for storing experiential  knowledge and making it 
available for use. It resembles the brain in two respects: 
1)Knowledge is required by the network from its environment through a learning process. 
2)Interneuron connection strengths, known as synaptic weights, are used to store the acquired knowledge”. 
 
In this paper, we proposed a system capable of recognizing handwritten characters or symbols, inputted by the 
means of a  mouse. The system provides means for training the input characters first, then there is a 
classification option where the patterns or symbols that have already been trained should be fed, in order to 
recognize it. There are full options for the users, like (1) To load a default set of patterns which can either be 
trained or the default training file can be loaded. After which the recognition takes place. (2) To classify a line 
of text and (3) Options to either load a pattern file, trained or untrained & finally the option to create new 
patterns by the user to train & classify. 
 
Key words : Neural Network, ANN, Neuron, Knowledge, BPN, Supervised, Pattern Recognition. 
 
INTRODUCTION:  

An Artificial Neural Network (ANN) is information 
processing paradigm that is inspired by the way 
biological nervous systems, such as the brain, process 
information. The key element of this paradigm is the 
novel structure of the information processing system. 
It is composed of a large number of highly 
interconnected processing elements (neurons) working 
in unison to solve specific problems. ANNs, like 
people, learn by example. An ANN is configured for a 
specific application, such as pattern recognition or data 
classification, through a learning process. Learning in 
biological systems involves adjustments to the 
synaptic connections that exist between the neurons. 
This is true of ANNs as well. 

 
Neural networks, with their remarkable ability to 
derive meaning from complicated or imprecise data, 
can be used to extract patterns and detect trends that 
are too complex to be noticed by either humans or 
other computer techniques. A trained neural network 
can be thought of as an "expert" in the category of 
information it has been given to analyze. This expert 
can then be used to provide projections given new 
situations of interest.  Other advantages include: 
 

1. Adaptive learning: An ability to learn 
how to do tasks based on the data     given 
for training or initial experience. 
2.Self-Organization: An ANN can create 
its own organization or  representation of 
the information it receives during learning 
time. 
3. Real Time Operation: ANN 
computations may be carried out in parallel, 
and special hardware devices are being 
designed and manufactured which take 
advantage of this capability. 
4. Fault Tolerance via Redundant 
Information Coding: Partial destruction  of 
a network leads to the corresponding 
degradation of performance. However, some 
network capabilities may be retained even 
with major network damage. 
 

Neural networks take a different approach to 
problem solving than that of conventional 
computers. Conventional computers use an 
algorithmic approach i.e. the computer follows 
a set of instructions in order to solve a 
problem. Unless the specific steps that the 
computer needs to follow are known the 
computer cannot solve the problem. That 
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restricts the problem solving capability of conventional 
computers to problems that we already understand and 
know how to solve. But computers would be so much 
more useful if they could do things that we don't 
exactly know how to do. Neural networks process 
information in a similar way the human brain does. 
The network is composed of a large number of highly 
interconnected processing elements (neurons) working 
in parallel to solve a specific problem. Neural 
networks learn by example. They cannot be 
programmed to perform a specific task. The examples 
must be selected carefully otherwise useful time is 
wasted or even worse the network might be 
functioning incorrectly. The disadvantage is that 
because the network finds out how to solve the 
problem by itself, its operation can be unpredictable. 

 
Neural networks are a form of multiprocessor 
computer system, with i)simple processing elements, 
ii)a high degree of interconnection, iii)simple scalar 
messages, & iv)adaptive interaction between elements. 
Conventional computers use a cognitive approach to 
problem solving; the way the problem is to solved 
must be known and stated in small unambiguous 
instructions. These instructions are then converted to a 
high level language program and then into machine 
code that the computer can understand. These 
machines are totally predictable; if anything goes 
wrong is due to a software or hardware fault. Neural 
networks and conventional algorithmic computers are 
not in competition but complement each other. There 
are tasks are more suited to an algorithmic approach 
like arithmetic operations and tasks that are more 
suited to neural networks. Even more, a large number 
of tasks, require systems that use a combination of the 
two approaches (normally a conventional computer is 
used to supervise the neural network) in order to 
perform at maximum efficiency. 

 
Historical background 
Neural network simulations appear to be a recent 
development. However, this field was established 
before the advent of computers, and has survived at 
least one major setback and several years. Many 
important advances have been boosted by the use of 
inexpensive computer emulations. Following an initial 
period of enthusiasm, the field survived a period of 
frustration and disrepute. During this period when 
funding and professional support was minimal, 
important advances were made by relatively few 
researchers. These pioneers were able to develop 
convincing technology which surpassed the limitations 
identified by Minsky and Papert. Minsky and Papert, 
published a book (in 1969) in which they summed up a 
general feeling of frustration (against neural networks) 
among researchers, and was thus accepted by most 

without further analysis. Currently, the neural 
network field enjoys a resurgence of interest 
and a corresponding increase in funding. 

 
The first artificial neuron was produced in 
1943 by the neurophysiologist Warren 
McCulloch and the logician Walter Pits. But 
the technology available at that time did not 
allow them to do too much. Neural networks 
have seen an explosion of interest over the 
last few years, and are being successfully 
applied across an extraordinary range of 
problem domains, in areas as diverse as 
finance, medicine, engineering, geology and 
physics. Indeed, anywhere that there are 
problems of prediction, classification or 
control, neural networks are being 
introduced. This sweeping success can be 
attributed to a few key factors:  
Power. Neural networks are very 
sophisticated modeling techniques capable 
of modeling extremely complex functions. 
In particular, neural networks are nonlinear 
(a term which is discussed in more detail 
later in this section). Neural networks also 
keep in check the curse of dimensionality 
problem that bedevils attempts to model 
nonlinear functions with large numbers of 
variables.  
Ease of use. Neural networks learn by 
example. The neural network user gathers 
representative data, and then invokes 
training algorithms to automatically learn 
the structure of the data. Although the user 
does need to have some heuristic knowledge 
of how to select and prepare data, how to 
select an appropriate neural network, and 
how to interpret the results, the level of user 
knowledge needed to successfully apply 
neural networks is much lower than would 
be the case using (for example) some more 
traditional nonlinear statistical methods.  
Basic Study :The Biological Model -How 
the Human Brain Learns?: The brain is 
principally composed of a very large 
number (circa 10,000,000,000) of neurons, 
massively interconnected (with an average 
of several thousand interconnects per 
neuron, although this varies enormously). 
Each neuron is a specialized cell which can 
propagate an electrochemical signal. The 
neuron has a branching input structure, a 
cell body, and a branching output structure 
(the axon). The axons of one cell connect to 
the dendrites of another via a synapse. 
When a neuron is activated, it fires an 
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electrochemical signal along the axon. This signal 
crosses the synapses to other neurons, which may in 
turn fire. A neuron fires only if the total signal 
received at the cell body from the dendrites exceeds 
a certain level (the firing threshold).  

Recent research in cognitive science, in particular in 
the area of no conscious information processing, have 
further demonstrated the enormous capacity of the 
human mind to infer ("learn") simple input-output co 
variations from extremely complex stimuli. Thus, from 
a very large number of extremely simple processing 
units (each performing a weighted sum of its inputs, 
and then firing a binary signal if the total input exceeds 
a certain level) the brain manages to perform 
extremely complex tasks. Of course, there is a great 
deal of complexity in the brain is interesting that 
artificial neural networks can achieve some remarkable 
results using a model not much more complex than 
this. Much is still unknown about how the brain trains 
itself to process information, so theories abound. In the 
human brain, a typical neuron collects signals from 
others through a host of fine structures called 
dendrites. The neuron sends out spikes of electrical 
activity through a long, thin stand known as an axon, 
which splits into thousands of branches. At the end of 
each branch, a structure called a synapse converts the 
activity from the axon into electrical effects that inhibit 
or excite activity from the axon into electrical effects 
that inhibit or excite activity in the connected neurons. 
When a neuron receives excitatory input that is 
sufficiently large compared with its inhibitory input, it 
sends a spike of electrical activity down its axon. 
Learning occurs by changing the effectiveness of the 
synapses so that the influence of one neuron on 
another changes. 
From Human Neurons to Artificial Neurons 
We conduct these neural networks by first trying to 
deduce the essential features of neurons and their 
interconnections. We then typically program a 
computer to simulate these features.  

Figure 1) Biological Neuron 
However because our knowledge of neurons is 

incomplete and our computing power is limited, our 
models are necessarily gross idealizations of real 
networks of neurons. To capture the essence of 

biological neural systems, an artificial 
neuron is defined as follows:  
It receives a number of inputs. Each input 
comes via a connection that has a strength 
(or weight); these weights correspond to 
synaptic efficacy in a biological neuron. 
Each neuron also has a single threshold 
value. The weighted sum of the inputs is 
formed, and the threshold subtracted, to 
compose the activation of the neuron. The 
activation signal is passed through an 
activation function to produce the output of 
the neuron. If the step activation function is 
used (i.e., the neuron's output is 0 if the 
input is less than zero, and 1 if the input is 
greater than or equal to 0).              
A neural network has its neurons divided 
into subgroups of fields and elements in 
each subgroup are placed in a row or a 
column. Each subgroup is then called to as 
layer of neurons in the network. A neural 
network may have input layer that supply 
the input signals for the neurons in the next 
layer, output layer where output is generated 

and in between them hidden layer(s) that 
process information between input and 
output layers. Two neurons are connected 
with a weight which may be  

Figure 2) The neuron model 
positive, negative, or zero. Basically, the 
internal activation or raw output of a neuron 
in a neural network is a weighted sum of its 
inputs multiplied by weights connected to it. 
In mathematical form   Y =    Wi Xi    where, 
Y is the activation (output); Wi, the ith 
weight of ith neuron; and Xi; is the ith input 
to ith neuron. 
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Figurue 3) A simple Neuron 

Artificial Neural Networks : A simple neuron 
An artificial neuron is a device with many inputs 
and one output. The neuron has two modes of 
operation; the training mode and the using mode. In 
the training mode, the neuron can be trained to fire 
(or not), for particular input patterns. In the using 
mode, when a taught input pattern is detected at the 
input, its associated output becomes the current 
output. If the input pattern does not belong in the 
taught list of input patterns, the firing rule is used to 
determine whether to fire or not. 
 
This describes an individual neuron. The next 

question is: how should neurons are connected 
together? If a network is to be of any use, there must 
be inputs and outputs. Inputs and outputs correspond 
to sensory and motor nerves such as those coming 
from the eyes and leading to the hands. However, 
there also can be hidden neurons that play an 
internal role in the network. The input, hidden and 
output neurons need to be connected together. A 
simple network has a feed forward structure: signals 
flow from inputs, forwards through any hidden 
units, eventually reaching the output units. Such a 
structure has stable behavior. However, if the 
network is recurrent  it can be unstable, and has 
very complex dynamics. Recurrent networks are 
very interesting to researchers in neural networks, 
but so far it is the feed forward structures that have 
proved most useful in solving real problems.  
When the network is executed, the input variable 
values are placed in the input units, and then the 
hidden and output layer units are progressively 
executed. Each of them calculates its activation 
value by taking the weighted sum of the outputs of 
the units in the preceding layer, and subtracting the 
threshold. The activation value is passed through the 

activation function to produce the output of 
the neuron. When the entire network has 
been executed, the outputs of the output 
layer act as the output of the entire network.  
Firing rules 
The firing rule is an important concept in 
neural networks and accounts for their high 
flexibility. A firing rule determines how one 
calculates whether a neuron should fire for 
any input pattern. It relates to all the input 
patterns, not only the ones on which the 
node was trained. A simple firing rule can 
be implemented by using Hamming distance 
technique. The rule goes as follows: 
Take a collection of training patterns for a 
node, some of which cause it to fire (the 1-
taught set of patterns) and others which 
prevent it from doing so (the 0-taught set). 
Then the patterns not in the collection cause 
the node to fire if, on comparison, they have 
more input elements in common with the 
'nearest' pattern in the 1-taught set than with 
the 'nearest' pattern  
in the 0-taught set. If there is a tie, then the 
pattern remains in the undefined state. 

 
For example, a 3-input neuron is taught to 
output 1 when the input (X1,X2 and X3) is 
111 or 101 and to output 0 when the input is 
000 or 001. Then, before applying the firing 
rule, the truth table is;  
 
 As an example of the way the firing rule is 
applied, take the pattern 010. It differs from 
000 in 1 element, from 001 in 2 elements, 
from 101 in 3 elements and from 111 in 2 
elements. Therefore, the ‘nearest’ pattern is 
000 which belongs in the 0-taught set. Thus 
the firing rule requires that the neuron 
should not fire when the input is 001. On the 
other hand, 011 is equally distant from two 
taught patterns that have different outputs 
and thus the output stays undefined (0/1).By 
applying the firing in every column the 
following truth table is obtained: 

X1:  0 0 0 0 1 1 1 1 
X2:  0 0 1 1 0 0 1 1 
X3:  0 1 0 1 0 1 0 1 
          
OUT:  0 0 0 0/1 0/1 1 1 1 

The difference between the two truth tables 
is called the generalization of the neuron. 
Therefore the firing rule gives the neuron a 
sense of similarity and enables it to respond 
'sensibly' to patterns not seen during 

X1:  0 0 0 0 1 1 1 1
X2:  0 0 1 1 0 0 1 1
X3:  0 1 0 1 0 1 0 1
          
OUT:  0 0 0/1 0/1 0/1 1 0/1 1
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training. The single artificial neurons can now be 
interconnected in many different ways leading to a 
variety of neural networks with different 
architectures, learning rules and abilities. The most 
important ones are: Feed forward networks, 
Adaptive Resonance Theory (ART), Hopfield nets, 
Kohonen's self-organizing feature maps, Radial 
Basis Functions (RBF), Boltzmann-machines, and 
Cascade-correlation. A very simple way is to 
organize the neurons in several layers as shown in 
Figure. This architecture is called a feed forward net, 
since neurons of one layer are only connected with 
neurons of the succeeding layer, without any 
recurrent connections. Normally these nets consist 
of one input layer, one or two hidden layers and one 
output layer. With such a net, input data are mapped 
from the n-dimensional input space to an m-
dimensional output space.  
 

Figure4)  Feed Forward Neural Network 
 

The set of Fourier coefficients of the spoken 
character "a" is presented to the input layer. The 
desired output is that output neuron no. 1, 
representing the character "a", should be 1 and all 
other output neurons should be zero. When 
presenting the spectrum of the character "b" as input 
to the net, output neuron no. 2, representing the 
character "b", should be 1 and all the others, zero 
and so on. In order to be able to accomplish this 
task, the net has to be trained by a supervisor 
(supervised learning) just as a child learns to read 
and to write. This is done by presenting each pattern 
(in this example the Fourier coefficients of every 
character of the alphabet) many times to the net and 
at the same time furnishing the desired output (in 
this case the corresponding symbol associated with 
one output neuron), until it correctly classifies the 
presented patterns. In order to assess the 
performance of the trained neural net, it has to be 
tested with patterns not contained in the training data 
set (e.g. the Fourier spectrum of characters spoken 
by another person and/or superposed with various 

amounts of noise). However, the net should 
not produce an output for which it has not 
been trained.  
 
The detailed training procedure is as 
follows: 
1. Split the data set into a training set and a 

test set. Normally the training set is larger 
than the test set. Often the desired outputs 
have to be normalized to the range [0 : 1] 
since the sigmoid function only returns 
values in this range. The input patterns do 
not have to be normalized. 

2. Initialize all weights, including all biases, 
to small random values normally in the 
range of     [ -1 : +1]. This determines   
the starting point on the error surface for 
the gradient descent method, whose 
position can be essential for the 
convergence of the network. 

3. Forward propagation of the first input 
pattern of the training set from the input 
layer over the hidden layer(s) to the 
output layer, where each neuron sums the 
weighted inputs, passes them through the 
nonlinearity and passes this weighted sum 
to the neurons in the next layer. 

4. Calculation of the difference between the 
actual output of each output neuron and 
its corresponding desired output. This is 
the error associated with each output 
neuron.  

5. Back propagating this error through each 
connection by using the Back propagation 
learning rule and thus determining the 
amount each weight has to be changed in 
order to decrease the error at the output 
layer. 

6. Correcting each weight by its individual 
weight update. 

7. Presenting and forward propagating the 
next input pattern. Repeat steps 3-7 until a 
certain stopping criterion is reached, for 
example that the error falls below a 
predefined value.  

 
The one-time presentation of the entire set 
of training patterns to the net constitutes a 
training epoch. After terminating the 
training phase the trained net is tested with 
new, unseen patterns from the test data set. 
The patterns are forward propagated, using 
the weights now available from training, 
and the error at the output layer is 
determined (no weight-update is 
performed!). If performance is sufficiently 
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good, the net is ready for- use. If not, it has to be 
retrained with the same patterns and parameters or 
something has to be changed (e.g. number of hidden 
neurons, additional input patterns, different kinds of 
information contained in the input patterns, ...). 

 
 It is also important that the net not be "over 
trained": if it is trained for too many epochs it starts 
"memorizing" the training patterns and can no 
longer recognize patterns other than those it was 
explicitly trained for. This effect can be compared to 
the over fitting of a discretely sampled function. 

 
Figure 5) Example of a neural net trying to fit a 
discretely sampled function 
 
In summary the goal of training a neural network is 
that it becomes able to generalize. This means that it 
only extracts some important features of the data and 
thus also classifies slightly differing patterns to 
belong to the same class. This also provides 
robustness in the presence of noise. 
  
In general, we don't know the exact nature of the 
relationship between inputs and outputs - if you 
knew the relationship, you would model it directly. 
The other key feature of neural networks is that they 
learn the input/output relationship through training. 
There are two types of training used in neural 
networks, with different types of networks using 
different types of training. These are supervised and 
unsupervised training, of which supervised is the 
most. The functionality of a neural network is 
determined by the combination of the topology and 
the weights of the connections within the network. 
The topology is usually held fixed, and the weights 
are determined by a certain training algorithm. The 
process of adjusting the weights to make the 
network learn the relationship between the inputs 
and targets is called learning, or training.  Many 
learning algorithm have been invented to help find 
an optimum set of weights that results in the solution 
of the problems. They can roughly be divided into 
two main groups. 
 
1) Supervised Learning  
The network is trained by providing it with inputs 
and desired outputs (target values). These input- 
output pairs are provided by an external teacher, or 
by the system containing the network. The 

difference between the real outputs and the 
desired outputs is used by the algorithm to 
adapt the weights in the network. It  is often 
posed as function approximation problem 
given training data consisting or pairs of 
input patterns x, and corresponding target t, 
the goal is to find a function f(x) that 
matches the desired response for each 
training input. 

 
Figure 6) Supervised Learning Model 

2) Unsupervised Learning 
 With unsupervised learning, there is no 
feedback from the environment to indicate if 
the outputs of the network are correct. The 
network must discover features, regulations, 
correlations, or categories in the input data 
automatically. In fact, for most varieties of 
unsupervised learning, the targets are the 
same as inputs. In other words, 
unsupervised learning usually performs the 
some task as an auto-associative network, 
compressing the information from the 
inputs. In this mode of learning, the network 
must discover for itself any possibly 
existing patterns, regularities, separating 
properties etc. While discovering, these, the 
network undergoes changes of its 
parameters, which is called self –
organization. The technique is unsupervised 
learning is often used to perform clustering 
as the unsupervised classification of  objects 
without providing information about the 
actual classes. Finally, learning is often not 
possible in an unsupervised environment, as 
would probably be true in the case 
illustrated pattern classes not easily 
discernible even for a human. 
       
To illustrate some problems that often arise 
when we are attempting to automate 
complex pattern- recognition applications 
let us consider the design of a computer 
program that must translate a 5*7 matrix of 
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binary numbers representing the bit-mapped pixel 
image of an alphanumeric character to its equivalent 
eight-bit ASCII code. This basic problem, pictured 
below, appears to be relatively trivial at first glance. 
Since there is no obvious mathematical function that 
will perform the desired translation, and because it 
would undoubtedly take too much time (both human 
and computer time) to perform a pixel by pixel 
correlation, the best algorithmic solution would be to 
use a lookup table 
The lookup table needed to solve this problem 
would be a non dimensional linear array of ordered 
pairs, each taking the form: 
 

 
Figure 7) Mapping of “A”Character image 

 
Each character image is mapped to its corresponding 
code. The first is the numeric equivalent of the bit-
pattern code, which we generate by moving the 
seven rows of the matrix to a single row and 
considering the result to be a 35-bit binary number. 
The second is the ASCII code associated with the 
character. The array would contain exactly the same 
number of the pairs as there were characters to 
convert.  
 
Although the lookup-table approach is reasonably 
faster and easy to maintain, there are many 
situations that occur in real systems that cannot be 
handled by this method. For example, consider the 
same pixel-image –to –ASCII conversion process in 
a more realistic environment. Let suppose that our 
character image scanner alters a random pixel in the 
input image matrix due to noise when the image was 
read. This single pixel error would cause the lookup 
algorithm to return either a null or the wrong ASCII  
Code, since the match between the input pattern and 
the target pattern must be exact. Now consider the 
amount of additional software  that must be added to 
the lookup table algorithm to improve the ability of 
the computer to guess at which character the noisy 
image should have been. Single-bit errors are fairly 
easy to find and correct. Multibit errors become 

increasing difficult as the number of bit 
errors grows.  
 
To complicate matters even further, how 
could our software compensate for noise on 
the image if that noise happened to make an 
Output look like a Q or an E look like an 
accurate output all the time, an inordinate 
amount of CPU time would be spent 
eliminating noise from the input-pattern 
period to attempting to translate it to ASCII. 
 
One solution to this dilemma is to take 
advantage of the parallel nature of the 
neural network to reduce the time required 
by the sequential processor to perform the 
mapping. In addition, system- development 
time can be reduced because the network 
can learn proper algorithm without having 
some one deduce that algorithm in advance. 
Our paper deals with the recognition of the 
hand written characters which are 
predefined by the user. It maps to the actual 
patterns but not the ASCII Character set 
 
To simplify our project, we will restrict the 
number of characters the neural network 
recognize to the ten decimal 
digits,0,1,….9,rather than using the full 
ASCII  character set .We adopt this 
constraint only to the clarify the example: 
there is no reason why an ANS could not be 
recognize all characters, regardless of case 
or style. Since our objective is to have the 
neural network determine which of ten 
digits a particular hand –drawn character is 
,we can create a network structure that has 
ten discrete output units, one for each 
character to be identified .The strategy 
simplifies the character –discrimination 
function of the network ,as it allows us to 
use a network that contains binary units on 
the output layer. Further more ,if we insist 
that the output units behave according to a 
simple on-off strategy, the process of 
converting an input signal to an output 
signal becomes a simple majority function . 
           
Based on these considerations, we now 
know that our network should contain ten 
binary units as its output structure. 
Similarly, we must determine how we will 
model the character input for the network 
.Keeping in mind that we have already 
indicated a preference for binary output 
units, we can again simplify our task if we 
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model the input data as a vector containing binary 
elements, which will allow us to use a network with 
only one type of processing unit. To create this type 
of input, we borrow an idea from the video world 
and pixels the character .We will arbitrarily size the 
pixels image as a 10*8 matrix ,using a 1 to represent 
a pixel that is on and a 0 to represent a pixel that is 
off. 
 
Furthermore, we can dissect the matrix into a set of 
row vectors, which can then be concatenated into a 
single row vector of dimension 80.Thus; we have 
defined the dimension and characteristics of the 
input pattern for our network. At this point ,all that 
remains is to the size the number of processing units 
(called hidden units)that must be used internally , to 
connect them to the input and output units already 
defined using weighted connections and to train the  
network with example data pairs, This concept of 
learning by example is externally important .As we 
shall see a significant advantage of an ANS 
approach to solving a problem is that we need  not 
have a well –defined process for algorithmically 
converting an input to an output .Rather, all that we 
need for most networks  is a collection of 
representative  examples of the desired translation. 
The ANS than adapts itself to reproduce the desired 
outputs when presented with the example inputs. 
               
In addition, as our example network illustrates, an 
ANS is robust in the sense that it will respond with 
an output even when presented with input that it has 
never seen before, such as patterns containing noise. 
If the input noise has not obliterated the image of the 
character, the network will produce a good guess 
using those portions of the image that where not 
obscured and the information that it has stored about 
how the character are supposed to look. the inherent 
ability to deal with noisy or obscured patterns is a 
significant advantage of an ANS approach over a 
traditional algorithmic solution .It also illustrates a 
neural network maxim: the power of an ANS 
approach lies not necessarily in the elegancy of the 
particular solution, but rather in the generality of the 
network to find its own solution to particular 
problems given only examples of the desired 
behavior          
 
Once our network is trained adequately, we can 
show images of numerals written by people whose 
writing was not used to train the network  .If the 
training as been adequate the information 
propagating through the network will result in a 
single element at the output having binary one value 
and that unit will be one that corresponds to the 
neural network that has written  

 
As an example of how we might benefit 
from this separation considers a system that 
utilizes software simulation of a neural 
network has part of its programming. In this 
case, the network would be modeled in the 
host computer system as set of data 
structures that represents the current state of 
network. 
 
The process of training the network is 
simply a matter of altering the connection 
weights systematically to encode the desired 
input –output relationship. If we code the 
network simulator such that the data 
structures used by the network are allocated 
dynamically, and are initialized by reading 
of connection-weight the data from the disc 
five, we can also create a network simulator 
with a similar structure in another offline 
computer system. When the on-line system 
must change to satisfy new operational 
requirements, we can develop the new 
connection weights off-line by training the 
network simulator in the remote system. 
Later; we can update the operational system 
by simply changing the connection-weight 
initialization file from the previous version 
produced by the off-line system. 
           
These examples hint at the ability of the 
neural network to deal with complex pattern 
recognition problem, but they are by no 
means indicative of the limits of the 
technology. Finally the distinction made 
between the natural and artificial system is 
intentional. We cannot overemphasize the 
fact that the ANS models we will examine 
bear only a perfunctory resemblance to their 
biological counterparts. What is important 
about these models is that they all exhibit 
the useful behaviors of learning, 
recognizing, and applying relationships 
between objects and patterns of object in the 
real world. In this regard they provide us 
with a whole new set of tools that we can 
use to solve difficult problems. 
 
The back propagation approach  
Problems such as noisy image-to –ASCII   
example are difficult to solve by the 
computer due to the incompatibility 
between the machine and the problem. 
Mathematical process is not what is needed 
to recognize complex patterns in noisy 
environments. In fact, an algorithmic search 
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of even a relatively small input space can prove to 
be time consuming. The problem is the sequential 
nature of the computer itself. In most cases, the time 
required by the computer to perform each instruction 
is so short that the aggregate time required for even 
a large program is insignificant to the human users. 
However, for applications that must search through a 
large input space, or attempt to correlate all possible 
 
Backpropagation Algorithm: 
1)Let A be the number of units in the input layer, as 
determined by the length of the training input 
vectors. Let C be the number of units in the output 
layer. Now choose B, the number of units in the 
hidden layer. The input and hidden layers each have 
an extra unit used for thresholding; therefore, the 
units in these layers will sometimes be indexed by 
the ranges (0,…..,A) and (0,…..,B). We denote the 
activation levels of the units in the input layer by xj , 
in the hidden layer by hj , and in the output layer by 
oj . Weights connecting the input layer to the hidden 
layer are denoted by w1ij, where the subscript i 
indexes the input units and j indexes the hidden 
units. Likewise, weights connecting the hidden layer 
to the output layer are denoted by w2ij, with i 
indexing to hidden units and j indexing output units. 
2)Initialize the weights in the network. Each should 
be set randomly to a number between -0.1 and 0.1. 
Wij = random(-0.1,0.1) for all i =0,…..A, j = 
1,……B Wij = random(-0.1,0.1) for all i =0,…..B, j 
= 1,……C 
3)Initialize the activations of the network. The 
values of these thresholding units should never 
change.  a)X0= 1.0      b)h0 = 1.0 
4)Choose an input-output pair. Suppose the input 
vector is Xi and the  target output vector is Yi Assign 
activation levels to the input units. 
5)Propagate the activations from the units in the 
input layer to the 

    units in the hidden layer using the activation 
functions  

Δ
0

1

1 1,...,
1

B
ij ii

j W h
h for j C

e =
−

= =
∑+

 

Note that i ranges from 0 to A. W10j is the 
thresholding weight for     hidden unit j (its 
propensity to fire irrespective of it inputs).X0 is 
always 1.0. 
6)Propagates the activations from the units in the 
hidden layer to    the units in the output layer 

0
2

1 1,...,
1

B
ij ii

j W h
h for j C

e =
−

= =
∑+

 

 

Again, the thresholding weight w20j for 
output unit j plays a role in the weighted 
summation. h0 is always 1.0. 
7)Compute the errors of the units in the 
output layer denoted  2 jδ . Error is based on 
the network’s actual output (Oj) and the 
target output  (Yi) 
 

2 (1 )( ) 1, ...j j j j jo o y o for all j Bδ = − − =

 
               
  8)Compute the errors in the units in the 
hidden layer, denoted 1 jδ . 

1 (1 ) 2 2 1,...
c

j j j i ji
i

h h w for all j BδΔ = − × =∑
1 1 0,..., , 1,...,ij j iw h for all i A j Bη δΔ = • • = =

 
   9)Adjust the weights between the hidden 
layer and the output layer. The  learning rate 
denoted is denoted byη η   ; its functions is 
in the same as in perception learning. A 
reasonable value of η  is 0.35.      

2 2 0,..., , 1,...,ij j iw h for all i B j Cη δΔ = • • = =
10)Adjust the weights between the input 
layer and the hidden layer.      

1 1 0,..., , 1,...,ij j iw h for all i A j Bη δΔ = • • = =
 
11)Go to step 4 and repeat. When all the 
inputs-output pairs have been presented to 
the network, one epoch has been completed. 
 
Repeat steps 4 to 10 for as many epochs as 
desired. 
BPN Training Algorithm 
The following description tends to assume a 
pattern classification problem, since that is 
where the BP network has its greatest 
strength. However, you can use back-
propagation for many other problems as 
well, including compression, prediction and 
digital signal processing. When you present 
your network with data and find that the 
output is not as desired, what will you do? 
The answer is obvious: we will modify 
some connection weights. Since the network 
weights are initially random, it is likely that 
the initial output value will be very far from 
the desired output. 

 
We wish to improve the behavior of the 
network. Which connection weights must be 
modified, and by how much, to achieve this 
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objective? To put it another way, how do you know 
which connection is responsible for the greatest 
contribution to the error in the output? Clearly, we 
must use an algorithm which efficiently modifies the 
different connection weights to minimize the errors 
at the output. This is a common problem in 
engineering; it is known as optimization. The 
famous LMS algorithm was developed to solve a 
similar problem; however the neural network is a 
more generic system and requires a more complex 
algorithm to adjust the many network parameters. 
One algorithm which has hugely contributed to 
neural network fame is the back-propagation 
algorithm. The principal advantages of back-
propagation are simplicity and reasonable speed 
(though there are several modifications which can 
make it work faster). Back-propagation is well 
suited to pattern recognition Problems.  The training 
algorithm for a BPN consists of the following 
steps:(i) Selection and Preparation of Training Data 
(ii) Modification of the neuron connection weights 
(iii) Repetition (iv) Running (v) Hazards. 
Selection and Preparation of Training Data 
A neural network is useless if it only sees one 
example of a matching input/output pair. It cannot 
infer the characteristics of the input data for which 
you are looking for from only one example; rather, 
many examples are required. This is analogous to a 
child learning the difference between different types 
of animals -the child will need to see several 
examples of each to be able to classify an arbitrary 
animal. If they are to successfully classify birds they 
will need to see examples of sparrows, ducks, 
pelicans and others so that he or she can work out 
the common characteristics which distinguish a bird 
From other animals (such as feathers, beaks and so 
forth). It is also unlikely that a child would 
remember these differences after seeing them only 
once - many repetitions may be required until the 
information `sinks in'. It is the same with neural 
networks. The best training procedure is to compile 
a wide range of examples  which exhibit all the 
different characteristics you are interested in. It is 
important to select examples which do not have 
major dominant features which are of no interest to 
you, but are common to your input data anyway. 
One famous example is of the US Army `Artificial 
Intelligence' tank classifier. It was shown examples 
of Soviet tanks from many different distances and 
angles on a bright sunny day, and examples of US 
tanks on a Cloudy day. Needless to say it was great 
at classifying weather, but not so good at picking out 
enemy tanks. If possible, prior to training, add some 
noise or other randomness to your example (such as 
a random scaling factor). This helps to account for 
noise and natural variability in real data, and tends to 

produce a more reliable network. If you are 
using a standard unscaled sigmoid node 
transfer function, please note that the 
desired output must never be set to exactly 0 
or 1. The reason is simple: whatever the 
inputs, the outputs of the nodes in the 
hidden layer are restricted to between 0 and 
1 these values are the asymptotes of the 
function. To approach these values would 
require enormous weights and/or input 
values, and most importantly, they cannot 
be exceeded. By contrast, setting a desired 
output of  0.9 allows the network to 
approach and ultimately reach this value 
from either side, or indeed to overshoot. 
This allows the network to converge 
relatively quickly. It is unlikely to ever 
converge if the desired outputs are set too 
high or too low. Once again, it cannot be 
overemphasized: a neural network is only as 
good as the training data! Poor training data 
inevitably leads to an unreliable and 
unpredictable network.  
Repetition :Since we have only moved a 
small step towards the desired state of a 
minimized error, the above procedure must 
be repeated many times until the MSE drops 
below a specified value. When this happens, 
the network is performing satisfactorily, and 
this training session for this particular 
example has been completed. Once this 
occurs, randomly select another example, 
and repeat the procedure. Continue until you 
have used all of your examples many times. 
Running:Finally, the network should be 
ready for testing. While it is possible to test 
it with the data you have used for training, 
this isn't really telling you very much. 
Instead, get some real data which the 
network has never seen and present it at the 
input. Hopefully it should correctly classify, 
compress, or otherwise process the data in a 
satisfactory way. 
Hazards:A consequence of the back-
propagation algorithm is that there are 
situations where it can get `stuck'. Think of 
it as a marble dropped onto a steep road full 
of potholes. The potholes are `local minima' 
- they can trap the algorithm and prevent it 
from descending further. In the event that 
this happens, you can resize the network or 
try a different starting point. Some 
enhancements to the BP algorithm have 
been developed to get around this - for 
example one approach adds a momentum 
term, which essentially makes the marble 
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heavier - so it can escape from small potholes. Other 
approaches may use alternatives to the Mean 
Squared Error as a measure of how well the network 
is performing. 
Existing System: Before the age of the computer, 
there were many mathematical problems that 
humans could not easily solve, or more precisely  
humans were too slow in solving. Computers 
enabled these often simple but slow and tedious 
tasks to be performed quickly and accurately. The 
first problems solved with computers were 
calculating equations to resolve important physical 
problems, and later displaying a nice GUI, making 
word processors and so on. However, there are many 
common tasks which are trivial for humans to 
perform  yet which are extremely difficult to 
formulate in a way that a computer may easily solve. 
These include: (i)Signal processing such as pattern 
recognition, voice recognition, image processing 
etc., (ii)Compression, (iii)Data reconstruction (e.g. 
classification where part of the data is missing), 
(iv)Data mining, (v)Data simplification 
Template Matching 
Earlier techniques for pattern recognitions, include 
the technique of Template Matching. In this 
technique the patterns are just matched together as a 
human compare two structures with their exact 
features & characteristics matching. Template 
Matching are oversensitive to shift in position and 
distortions in shape of the stimulus patterns, and it is 
necessary to normalize the position and the shape of 
stimulus pattern beforehand. A good method for 
normalization has not been developed yet. 
Therefore, the finding of an algorithm for character 
recognition which can cope with shift in position 
and distortion has long been desired. In this project, 
we implement an algorithm which gives an 
important solution to this problem. The algorithm 
used here can be realized with a multilayered 
network consisting of neuron like cells. It is 
organized by supervised learning and acquires the 
ability for correct character recognition. So, 
naturally, scientists, engineers and mathematicians 
tried to make an intellectual abstraction which 
would enable a computer work in a similar way to 
that in which the human brain works – a neural 
network. This paper explains the principles of the 
neural network, and will show the relationship with 
a biological neural network. After that, when the 
basics are well understood, you will be shown a 
famous neural network topology called a multi-layer 
perception, to be trained with the Feed-forward 
Back-Propagation Network (BPN) algorithm. 
Finally, we will explain you how to use a simple and 
lightweight java library which implements an 

arbitrary 3-layer BPN and so can be used to 
solve some of the complicated problems 
described above. 
Specification : To develop a system 
capable of recognizing handwritten 
characters or symbols, inputted by the 
means of a mouse. The system provides 
means for training the input characters first, 
then there is a classification option where 
the patterns or symbols that have already 
been trained should be fed, in order to 
recognize it.  
There are full options for the users, like  
1. To load a default set of patterns which is 
already present in the system, which can 
either be trained or the default training file 
can be loaded. After which the recognition 
takes place. 
2. To classify a line of text. 
3. Options to either load a pattern file, 
trained or untrained & finally the option to 
create new patterns by the user to train & 
classify. 
Weight initialization 
Set all weights and node threshold to small 
random numbers. Note that the node threshold 
is negative of the weight from the bias unit 
(whose activation level is fixed at 1) 
Calculation of activation 
1.The activation level of an input unit is 
determined by the instance presented to the 
network. 
2.The activation level Oj of a hidden and 
output unit id determined by .is a sigmoid 
function 

Oj=F(ΣWjiOi-θj) 
Weight training 
1. Start at the output units and work 
backward to the hidden layers 
recursively.Adjust weights by 

Wji(t+1)=Wji(t)+Wji 
Where Wji (t) is the weight from unit to unit 
at time t and Wji is the  weight adjustment. 

2. The weight change is computed by  
ΔWji= ηδjOi 

    Where η is a trial-independent learning rate 
and Dj is the error gradient  at unit j. 
Convergence is sometimes faster by adding 
a momentum term: 

Wji(t+1)=Wji(t) +  η δjOi+[Wji(t)-Wji(t-1)] 
Where 0<α<1 

3. The error gradient is given by :For the 
output units: 

δj=Oj(1-Oj)(Tj-Oj) 
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    Where Tj is the desired (target) output activation and 
Oj is the actual activation at output unit j.For the 
hidden units: 

δj =Oj(1-Oj) ΣδkWkj 
where δk is the error gradient at unit k to which a 
connection points from  hidden unit j. 
4. Repeat iterations until convergence in terms of the 
selected error   criteria. An iteration includes 
presenting an instance, calculating activations, and 
modifying weight’s  
CONCLUSION: 
The BPN network designed proposed has the ability 
to recognize stimulus patterns without affecting by 
shift in position not by a small distortion in shape of 
input pattern. It also has a function of organization, 
which processes by means of Supervised Learning. 
If a set of input patterns are repeatedly presented to 
it, it gradually acquires the ability to recognize these 
patterns. It is not necessary to give any instructions 
about the categories to which the stimulus patterns 
should belong. The performance of the network has 
been demonstrated by simulating on a computer. We 
do not advocate that the network is a complete 
model for the mechanism of character recognition in 
the brain, but we propose it as a working design for 
some neural mechanisms of visual pattern 
recognition. It is conjectured that, in the Human 
Brain the process of recognizing familiar patterns 
such as alphabets of our native Language differs 
from that of recognizing unfamiliar patterns such as 
foreign alphabets, which we have just begun to 
learn. The design of information processing 
proposed in this project is of great use not only as an 
inference upon the mechanism of brain but also to 
the field of Engineering. One of the largest and 
longstanding difficulties is in designing a pattern 
recognizing machine has been the problem how to 
cope with the shift in position and the distortion in 
the shape of the input patterns. The network 
proposed in this paper gives a partial solution to this 
difficulty. This principle can also be applied to 
auditory information processing such as Speech 
Recognition. 
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