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ABSTRACT 
 

Classical algorithms have been used to search over some space for finding the shortest paths problem 
between two points in a network and a minimal weight spanning tree for routing. Any classical algorithm 
deterministic or probabilistic will clearly used O(N) steps since on the average it will measure a large 
fraction of N records. Quantum algorithm is the fastest possible algorithm that can do several operations 
simultaneously due to their wave like properties. This wave gives an O( N ) steps quantum algorithm for 
identifying that record, where was used classical Dijkstra’s algorithm for finding shortest path problem in 
the graph of network and implement quantum search. Also we proposed the structure for non-classical 
algorithms and design the various phases of the probabilistic quantum-classical algorithm for classical and 
quantum parts. Finally, we represent the result of implementing and simulating Dijkstra's algorithm as the 
probabilistic quantum-classical algorithm. 
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1. INTRODUCTION 
 

Over the last few years, several quantum 
algorithms have emerged. Some are exponentially 
faster than their best classical counterparts [1, 2]; 
others are polynomially faster [3,4]. While a 
polynomial speedup is less than we would like 
ideally, quantum search has proven to be 
considerably more versatile than the quantum 
algorithms exhibiting exponential speedups. Hence, 
quantum search is likely to find widespread use in 
future quantum computers.  

In this study, a classical-quantum algorithm is 
proposed to find the shortest path in graph. The 
Dijkstra's algorithm being used for finding shortest 
path in a given graph and also use quantum search 
in this algorithm.  Simulation results shown that 
quantum search algorithm is faster than classical 
one for finding the shortest path in graph. 

The rest of this paper is organized as follows. 
First we have a review on related work on quantum 
search algorithm and discuss some of the exciting 

ways that can be used in science and engineering. 
Then, in section 3, we consider the Dijkstra's 
algorithm for finding the shortest path for a given 
graph. Next, in section 4, a new framework is 
proposed to improve the analyses and design of 
non-classical algorithm. After that, in section 5, we 
did a simulation on a classical-quantum algorithm. 
Finally, the analysis of the results and conclusion 
are discussed.  

 
2. RELATED WORKS 
 

The related works contain of three parts. The 
first part explains about the research on quantum 
search algorithm. The second part is describe the 
NP-hard problems and followed by the latest 
research on quantum search.  
 
2.1 The Quantum Search Algorithm 

 
The quantum algorithm discovered in 1996 has 

solved the unstructured search problem, under the 
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assumption that there exists a computational oracle 
that can decide whether a candidate solution (such 
as the index of an entry in the telephone directory) 
is the true solution the index of the sought-after 
number [3,4].  

Grover’s algorithm was called the database 
search algorithm, but this name was dropped 
because it misled people into thinking that it could 
be used to search real databases when, in fact, it 
cannot [6], at least not without first encoding the 
database in the quantum state to be amplitude 
amplified. If this encoding is done naively, the cost 
of creating the database would be linear in its size 
that is, O(N). Thus, the cost of encoding followed 
by quantum search would be O(N + N ), whereas 
the cost of a classical search alone would be just 
O(N) beating the quantum scheme. 
 
2.2 Quantum Search and NP-Hard Problems 
 

NP-hard problems constitute a class of 
computational problems that arise frequently in 
science and engineering. If any one NP-hard 
problem could be solved efficiently, then all of 
them could be solved efficiently due to polynomial 
cost reductions from one NP-hard problem to 
another. No one has yet found a polynomial time 
quantum algorithm for solving NP-hard problems 
[7]. NP-hard problem can be solved by exploiting 
its internal structure to “grow” complete solutions 
by recursively extending consistent partial 
solutions.   

Grover’s quantum search algorithm are used to 
solve an NP-hard problem, such as graph coloring, 
by creating a superposition of all N possible 
colorings of the graph, building a polynomial time 
quantum circuit for testing candidate colorings, and 
then creating an amplitude-amplification operator 
based on this circuit to concentrate amplitude in the 
solution states in O( π/4 N ) steps [9]. 

 
3. THE DIJKSTRA'S ALGORITHM 
 

Dijkstra's algorithm solves the single-source 
shortest-path problem when all edges have non-
negative weights [8]. Algorithm starts at the source 
vertex, s, it grows a tree, T, that ultimately spans all 
vertices reachable from S. Vertices are added to T 
in order of distance i.e., first S, then the vertex 
closest to S, then the next closest, and so on. 
Following implementation assumes that graph G is 
represented by adjacency lists [8]. 
 
DIJKSTRA (G, w, s) 

1. INITIALIZE SINGLE-SOURCE (G, s)  
2.   S ← { }      
3.   Q  ←  V[G]     // Initialize priority queue Q  
4.   while Q ≠ ∅   do //while queue  is not empty  
5.          u  ←  EXTRACT_MIN(Q)    
6.         S  ←  S ∪ {u}    // Relaxation   
7.         for each vertex v in Adj[u] do  
8.               Relax (u, v, w)  
 
INITIALIZE SINGLE-SOURCE (G, s)  
1. for each vertex v ∈ V[G] 
2.         do d[v]←∞ 
3.              π[v] ←NIL 
4. d[s] ←0 
 
3.1 Analysis 
 

The performance of Dijkstra's algorithm 
depends of how being choose to implement the 
priority queue Q [8]. 
Definitions: Sparse graphs are those for which |E| is 
much less than |V|2 i.e., |E| << |V|2 we preferred the 
adjacency-list representation of the graph in this 
case. On the other hand, dense graphs are those for 
which |E| is graphs are those for which |E| is close 
to |V|2. In this case, we like to represent graph with 
adjacency-matrix representation. 

When a Q is implemented as a linear array, 
EXTRACT_MIN takes O(V) time and there are |V| 
such operations. Therefore, a total time for 
EXTRACT_MIN in while-loop is O(V2). Since the 
total number of edges in all the adjacency list is |E|. 
Therefore for-loop iterates |E| times with each 
iteration taking O(1) time. Hence, the running time 
of the algorithm with array implementation is O(V2 
+ E) = O(V2). 

When a Q is implemented as a binary heap, In 
this case, EXTRACT_MIN operations takes O(lgV) 
time and there are |V| such operations. The binary 
heap can be build in O(V) time. Operation 
DECREASE (in the RELAX) takes O(lgV) time 
and there are at most such operations. Hence, the 
running time of the algorithm with binary heap 
provided given graph is sparse is O((V + E) lgV). 
Note that this time becomes O(VlgV) if all vertices 
in the graph is reachable from the source vertices, 
and Graph G to be sparse.  
 
4. A QUANTUM-CLASSICAL ALGORITHM 
 

A quantum computer is a device that takes 
advantage of quantum mechanical effects to 
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perform certain computations faster than a purely 
classical machine can.  

In this work, we are going to do two things. 
First, we are going to develop a classical algorithm 
that can be run on classical computer. Then 
quantum algorithm will be simulated on classical 
computer. Figure 1 shows the structure link of 
classical part and quantum part of algorithm. 
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input
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Quantum 
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Quantum 
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Quantum 

Algorithm
(On Quantum 

Computer)

Classical 

Algorithm
(On Classical 

Computer)Input 
Data

Output 
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Figure 1: The structure link of classical part and quantum 

part of algorithm. 
 
The probabilistic quantum-classical algorithm 

can be developed as following steps: 
 
1- Initialize classical part of algorithm. 
2- Run first classical part of algorithm. 
3- Initialize Machine State.  
4- Apply the Unitary Transformation. 
5- Measure Machine Stat. 
6- Evaluate Measurement. 
7- If find solution then go to step 8 else go to 

step 3. 
8- Run second classical part of algorithm. 
9- Stop. 
 
Steps 1, 2, 6, 7 and 8 do by classical operations, 

but steps 3, 4 and 5 do by quantum operations. 
Figure 2 shows a probabilistic classical-quantum 
algorithm that can simulated on classical computer 
and categorized in two parts of classical and 
quantum. This diagram helps to find a general plan 
for quantum algorithms and simulation that on 
classical computer.  

Dijkstra's algorithm will be run on the classical 
part of algorithm except EXTRACT_MIN 
procedure in line 5. This procedure find the 
minimum value of a computable function as the set 
of input arguments ranges over a finite, but 
unordered list. In this case, if the list is of length N, 
then the quantum cost of finding the minimum is 
O( N ), while the classical cost is O(N). We 
implement EXTRACT_MIN as a quantum 

procedure and use quantum search on quantum 
computer to find minimum value. Using both parts 
of algorithm, the quantum part is simulated on 
classical computer.  

 

Initialize classical 
part of algorithm

Run first classical 
part of algorithm

Start

Initialize Machine 
State

Apply Unitary 
Transformations

Measure Machine 
State

Evaluate 
Measurement

Solution 
found ?

Stop

Yes

No

Run second classical 
part of algorithm

The Classical part of Algorithm The Quantum part of Algorithm

Quantum 
Operation

Classical 
Operation 

and Control 

 
Figure 2: A probabilistic classical-quantum algorithm 

 
5. IMPLEMENTATION Q AS A QUANTUM 
SEARCH 

 
There are only a few general techniques known 

in the field of quantum computing and finding new 
problems that are amenable to quantum speedups is 
a high priority. Classically, one area of mathematics 
that is full of interesting algorithms is computational 
graph theory.  

Grover’s algorithm is for searching an unsorted 
list for a specified element. This original idea has 
been extended to general amplitude amplification 
that can be applied to any classical algorithm. There 
are some interesting cases where “Grover-like” 
techniques do that lead to speedups of classical 
algorithms. This algorithm is used to find the 
minimum value of a computable function as the set 
of input arguments ranges over a finite, but 
unordered list. In this case, the length of the list is 
N, then the quantum cost of finding the minimum is 
O( N ), while the classical cost is O(N).  
 
5.1. Grover's Search Algorithm 
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The quantum search algorithm performs a 
generic search for a solution to a very wide range of 
problems. [3,4,5,6,15]. Quantum searching is a tool 
for speeding up these sorts of generic searches 
through a space of potential solutions.  

The problem of unstructured search is 
paradigmatic for any problem where an optimal 
solution needs to be found in a black box fashion, 
i.e., without using the possible structure of the 
problem: 
Problem: Given a Boolean black box function 

 which is equal to 0 for all 
inputs except one ("marked item" w), find the 
marked item w. 

A black box function is often used to model a 
subroutine of calculate. We are then interested to 
know how often this subroutine needs to be 
performed to solve a problem. Many of the 
separations between classical and quantum 
computing power will be formulated in the black 
box or oracle model. In certain problems a quantum 
algorithm needs to make substantially less calls - or 
queries - to the black box than any classical 
algorithm. Classically, a black-box function can be 
simply thought of as a box that evaluates an 
unknown function f. The input is some n-bit string 
|x〉 and the output is given by an m-bit string f(x). 
Quantumly, such a box can only exist if it is 
reversible [10]. 

Classically, a deterministic algorithm needs to 
make 2n - 1 queries to identify w in the worst case 
and a probabilistic algorithm still needs O(2n) 
queries. Grover gave a quantum algorithm that 
solves this problem with O( n2 ) queries and this is 
known to be the best possible. Grover's algorithm 
can hence speed up quadratically any algorithm that 
uses searching as a subroutine. Grover's quantum 
algorithm is shown schematically in Figure 3. 

 

Uf

H⊗nN-qubits N-qubits N-qubitsH⊗nU0⊥ H⊗n

G = Grover iterate

|1〉

1-qubit H

|0〉⊗n

 
Figure 3: Grover’s quantum searching algorithm. 

 
Grover’s quantum searching algorithm can be 

written such in the references [15]: 
1. Start with the n-qubit state |00 . . . 0〉. 

2. Apply the n-qubit Hadamard gate H to prepare 

the state   (where N = 2n). 
3. Apply the Grover iterate G a total of  

times. 
4. Measure the resulting state. 

The operator G = HU0
⊥HUf is called the Grover 

iterate or the quantum search iterate. It is defined 
by the following sequence of transformations. 
1. Apply the oracle Uf. 
2. Apply the n-qubit Hadamard gate H. 
3. Apply U0

⊥. 
4. Apply the n-qubit Hadamard gate H. 

The effect Uf  on the first register define:  

 
The operator U0

⊥ is an n-qubit phase shift 
operator U0

⊥  that acts as follows: 
 

 
 

This operator applies a phase shift of −1 to all n-
qubit states orthogonal to the state |00 . . . 0〉. 

 
5.2 Result 
 

We implemented and simulated Dijkstra's 
algorithm and the Grover's algorithm with Matlab 
on classical computer. We have tested this 
algorithm with N=2n possible inputs that n is 
number of qubits.  

The simulation results for n=6 qubits as a data 
index is shown in the figure 4. In these diagrams, 
number of possible inputs is N=64 and this number 
is length of queue Q. We assumed that there is one 
solution in queue Q.  The amplitude value of 
solution in Grover's algorithm reaches to 1 after 
(π/4)Sqrt(64)=6.28 iterates and the amplitude value 
of other data reached to zero. Figure 4(a) and 4(b) 
show that with 6 iteration we can find solution in 
queue Q, and if we continue to run the algorithm, 
the amplitude value of the solution will be far from 
1, and lose the solution (figure 4(b)). The maximum 
iteration of algorithm is (π/4) N . 

The quantum algorithm used quantum 
computation and needed more memory. Our 
computer had 4 GB RAM and we could run with 
maximum 12-qubits. With 12-qubits as input data, 
we have 212 =4096 vertices in queue Q.  

The simulation results for n=12 qubits as a data 
index will be shown in the figure 5(a) and 5(b). In 
these diagrams, number of possible inputs is 
N=4096 and this number is length of queue Q. The 
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element of 3750 is desired key.  The amplitude 
value of solution in Grover's algorithm reaches to 
one after (π/4) N  =50 iterates and the amplitude 
value of other data reached to zero.  

In figure 6(a) and 6(b) we compare the speeds of 
Dijkstra's algorithm in three states of 
implementation for finding the shortest path in 
graph. These states depend on implementation of 
EXTRACT_MIN procedure as a linear array, or as 
a binary heap, or as a quantum search. When a Q is 
implemented as a linear heap or quantum search, the 
algorithm is more speed up than as a linear array.  

 

 
(a) The amplitude value in 15 iterations for 64 elements 

in queue Q that element of 14 is desired key. 
 

 
(b) The amplitude value in 15 iterations. 

  
Figure 4. The result of quantum search algorithm with 6 

qubits input data and 64 elements in queue with 15 
iterations (But 6 iterations are enough for finding 

record). 
 
6. CONCLUSION AND FUTURE WORK 
 

With comparing the time complexities of the 
versions of Dijkstra's algorithms, discussed in 
sections 3 and 5, we can see that the time taken by 
Dijkstra's algorithm is determined by the speed of 
the queue operations. 

When a Q is implemented as a linear array, 
EXTRACT_MIN takes O(V) time and there are |V| 

such operations. Hence, the running time of the 
algorithm with array implementation is O(V2 + E) = 
O(V2). When a Q is implemented as a binary heap, 
EXTRACT_MIN operations takes O(lg V) time and 
there are |V| such operations. Hence, the running 
time of the algorithm with binary heap provided 
given graph is O((V + E) lg V). Note that this time 
becomes O((V+V)logV)=O(ElgV) if all vertices in 
the graph is reachable from the source vertices and 
the graph is sparse. If graph be dense, the running 
time of the algorithm is O((V+V2 )lgV) = O(V2 
lgV). 

 

 
(a) Comparison the amplitude of key and other elements 

in queue Q for 50 iterations.   
 

 
(b) The amplitude of 4096 elements in 50 iterations that 

recorded 3750 solution keys in queue. 
 

Figure 5. The simulation result of quantum search 
algorithm with 12 qubits input data and 4096 elements in 

queue with (π/4) N =50 iteration. 
  
When a Q is implemented as a quantum search, 

EXTRACT_MIN takes O( V ) time. Therefore, a 
total time for EXTRACT_MIN in while-loop is 
O(V V ). Hence, the running time of the algorithm 
with quantum implementation is O(V V  + E). 
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When graph is sparse, this time is O(V V ) and for 
dense graph is O(V V  + V2)=O(V2). 

From the result, we can see that quantum 
algorithm and binary heap are faster than linear 
array for finding the shortest path in sparse graph, 
but for dense graph quantum algorithm is faster 
than binary heap. Also the quantum algorithm does 
not need any special conditions for graph and this 
algorithm can be used for all kinds of graphs with 
same cost of memory.  
 

 
(a)  Sparse graph. 

 

 
(b) Dense graph. 

 
Figure 6. Speeds comparison of Dijkstra's algorithm in 

three states of implementation to find the shortest path in 
the graph. 

 
We can use the shortest path problem for routing 

in networks. If the network topology implemented 
such as star, loop and tree, then this network have 
sparse graph, so binary heap and quantum algorithm 
are faster than linear array. The quantum algorithm 
is faster for the complete topology with dense 
graph. It’s also good for unknown graphs to find the 
shortest path.    

The quantum search algorithm can be extended 
to other classical algorithms in the future work. 
Furthermore the quantum algorithms given here can 
be readily extended to these problems, although the 
details are yet to be worked out. It is also needs to 
design a general plan for the implementation and 
simulation of non-classical algorithms. These ideas 
can be incorporated into future quantum algorithms. 
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