
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

360

A HYBRID ALGORITHM FOR FINDING SHORTEST PATH IN
NETWORK ROUTING

1,2MOHAMMAD REZA SOLTAN AGHAEI, 3ZURIATI AHMAD ZUKARNAIN, 4ALI MAMAT,
5HISHAMUDDIN ZAINUDDIN

1PhD Candidate, Dep. of Communication Tech. and Network, Faculty of Computer Science,UPM, Malaysia.
2Department of Computer Engineering, Islamic Azad University of Khorasgan, Esfahan, Iran.

3Asstt Prof., Department of Communication Technology and Network, University of Putra Malaysia.
4Assoc. Prof., Faculty of Computer Science, University of Putra Malaysia (UPM), Malaysia.

5Assoc. Prof., Institute for Mathematical Research, University of Putra Malaysia (UPM), Malaysia.
E-mail: msoltanaghaii@yahoo.com1, zuriati@fsktm.upm.edu.my3, ali@fsktm.upm.edu.my4,

hisham@fsas.upm.edu.my5

ABSTRACT

Classical algorithms have been used to search over some space for finding the shortest paths problem
between two points in a network and a minimal weight spanning tree for routing. Any classical algorithm
deterministic or probabilistic will clearly used O(N) steps since on the average it will measure a large
fraction of N records. Quantum algorithm is the fastest possible algorithm that can do several operations
simultaneously due to their wave like properties. This wave gives an O(N) steps quantum algorithm for
identifying that record, where was used classical Dijkstra’s algorithm for finding shortest path problem in
the graph of network and implement quantum search. Also we proposed the structure for non-classical
algorithms and design the various phases of the probabilistic quantum-classical algorithm for classical and
quantum parts. Finally, we represent the result of implementing and simulating Dijkstra's algorithm as the
probabilistic quantum-classical algorithm.

Keywords: Graph Theory, Algorithm Design, Quantum Algorithm, Network Routing

1. INTRODUCTION

Over the last few years, several quantum
algorithms have emerged. Some are exponentially
faster than their best classical counterparts [1, 2];
others are polynomially faster [3,4]. While a
polynomial speedup is less than we would like
ideally, quantum search has proven to be
considerably more versatile than the quantum
algorithms exhibiting exponential speedups. Hence,
quantum search is likely to find widespread use in
future quantum computers.

In this study, a classical-quantum algorithm is
proposed to find the shortest path in graph. The
Dijkstra's algorithm being used for finding shortest
path in a given graph and also use quantum search
in this algorithm. Simulation results shown that
quantum search algorithm is faster than classical
one for finding the shortest path in graph.

The rest of this paper is organized as follows.
First we have a review on related work on quantum
search algorithm and discuss some of the exciting

ways that can be used in science and engineering.
Then, in section 3, we consider the Dijkstra's
algorithm for finding the shortest path for a given
graph. Next, in section 4, a new framework is
proposed to improve the analyses and design of
non-classical algorithm. After that, in section 5, we
did a simulation on a classical-quantum algorithm.
Finally, the analysis of the results and conclusion
are discussed.

2. RELATED WORKS

The related works contain of three parts. The
first part explains about the research on quantum
search algorithm. The second part is describe the
NP-hard problems and followed by the latest
research on quantum search.

2.1 The Quantum Search Algorithm

The quantum algorithm discovered in 1996 has

solved the unstructured search problem, under the

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

361

assumption that there exists a computational oracle
that can decide whether a candidate solution (such
as the index of an entry in the telephone directory)
is the true solution the index of the sought-after
number [3,4].

Grover’s algorithm was called the database
search algorithm, but this name was dropped
because it misled people into thinking that it could
be used to search real databases when, in fact, it
cannot [6], at least not without first encoding the
database in the quantum state to be amplitude
amplified. If this encoding is done naively, the cost
of creating the database would be linear in its size
that is, O(N). Thus, the cost of encoding followed
by quantum search would be O(N + N), whereas
the cost of a classical search alone would be just
O(N) beating the quantum scheme.

2.2 Quantum Search and NP-Hard Problems

NP-hard problems constitute a class of
computational problems that arise frequently in
science and engineering. If any one NP-hard
problem could be solved efficiently, then all of
them could be solved efficiently due to polynomial
cost reductions from one NP-hard problem to
another. No one has yet found a polynomial time
quantum algorithm for solving NP-hard problems
[7]. NP-hard problem can be solved by exploiting
its internal structure to “grow” complete solutions
by recursively extending consistent partial
solutions.

Grover’s quantum search algorithm are used to
solve an NP-hard problem, such as graph coloring,
by creating a superposition of all N possible
colorings of the graph, building a polynomial time
quantum circuit for testing candidate colorings, and
then creating an amplitude-amplification operator
based on this circuit to concentrate amplitude in the
solution states in O(π/4 N) steps [9].

3. THE DIJKSTRA'S ALGORITHM

Dijkstra's algorithm solves the single-source
shortest-path problem when all edges have non-
negative weights [8]. Algorithm starts at the source
vertex, s, it grows a tree, T, that ultimately spans all
vertices reachable from S. Vertices are added to T
in order of distance i.e., first S, then the vertex
closest to S, then the next closest, and so on.
Following implementation assumes that graph G is
represented by adjacency lists [8].

DIJKSTRA (G, w, s)

1. INITIALIZE SINGLE-SOURCE (G, s)
2. S ← { }
3. Q ← V[G] // Initialize priority queue Q
4. while Q ≠ ∅ do //while queue is not empty
5. u ← EXTRACT_MIN(Q)
6. S ← S ∪ {u} // Relaxation
7. for each vertex v in Adj[u] do
8. Relax (u, v, w)

INITIALIZE SINGLE-SOURCE (G, s)
1. for each vertex v ∈ V[G]
2. do d[v]←∞
3. π[v] ←NIL
4. d[s] ←0

3.1 Analysis

The performance of Dijkstra's algorithm
depends of how being choose to implement the
priority queue Q [8].
Definitions: Sparse graphs are those for which |E| is
much less than |V|2 i.e., |E| << |V|2 we preferred the
adjacency-list representation of the graph in this
case. On the other hand, dense graphs are those for
which |E| is graphs are those for which |E| is close
to |V|2. In this case, we like to represent graph with
adjacency-matrix representation.

When a Q is implemented as a linear array,
EXTRACT_MIN takes O(V) time and there are |V|
such operations. Therefore, a total time for
EXTRACT_MIN in while-loop is O(V2). Since the
total number of edges in all the adjacency list is |E|.
Therefore for-loop iterates |E| times with each
iteration taking O(1) time. Hence, the running time
of the algorithm with array implementation is O(V2
+ E) = O(V2).

When a Q is implemented as a binary heap, In
this case, EXTRACT_MIN operations takes O(lgV)
time and there are |V| such operations. The binary
heap can be build in O(V) time. Operation
DECREASE (in the RELAX) takes O(lgV) time
and there are at most such operations. Hence, the
running time of the algorithm with binary heap
provided given graph is sparse is O((V + E) lgV).
Note that this time becomes O(VlgV) if all vertices
in the graph is reachable from the source vertices,
and Graph G to be sparse.

4. A QUANTUM-CLASSICAL ALGORITHM

A quantum computer is a device that takes
advantage of quantum mechanical effects to

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

362

perform certain computations faster than a purely
classical machine can.

In this work, we are going to do two things.
First, we are going to develop a classical algorithm
that can be run on classical computer. Then
quantum algorithm will be simulated on classical
computer. Figure 1 shows the structure link of
classical part and quantum part of algorithm.

Classical
input

Classical
output

Quantum
input

Quantum
output

Quantum

Algorithm
(On Quantum

Computer)

Classical

Algorithm
(On Classical

Computer)Input
Data

Output
Data

Feedback from Quantum algorithm to Classical Algorithm

Figure 1: The structure link of classical part and quantum

part of algorithm.

The probabilistic quantum-classical algorithm

can be developed as following steps:

1- Initialize classical part of algorithm.
2- Run first classical part of algorithm.
3- Initialize Machine State.
4- Apply the Unitary Transformation.
5- Measure Machine Stat.
6- Evaluate Measurement.
7- If find solution then go to step 8 else go to

step 3.
8- Run second classical part of algorithm.
9- Stop.

Steps 1, 2, 6, 7 and 8 do by classical operations,

but steps 3, 4 and 5 do by quantum operations.
Figure 2 shows a probabilistic classical-quantum
algorithm that can simulated on classical computer
and categorized in two parts of classical and
quantum. This diagram helps to find a general plan
for quantum algorithms and simulation that on
classical computer.

Dijkstra's algorithm will be run on the classical
part of algorithm except EXTRACT_MIN
procedure in line 5. This procedure find the
minimum value of a computable function as the set
of input arguments ranges over a finite, but
unordered list. In this case, if the list is of length N,
then the quantum cost of finding the minimum is
O(N), while the classical cost is O(N). We
implement EXTRACT_MIN as a quantum

procedure and use quantum search on quantum
computer to find minimum value. Using both parts
of algorithm, the quantum part is simulated on
classical computer.

Initialize classical
part of algorithm

Run first classical
part of algorithm

Start

Initialize Machine
State

Apply Unitary
Transformations

Measure Machine
State

Evaluate
Measurement

Solution
found ?

Stop

Yes

No

Run second classical
part of algorithm

The Classical part of Algorithm The Quantum part of Algorithm

Quantum
Operation

Classical
Operation

and Control

Figure 2: A probabilistic classical-quantum algorithm

5. IMPLEMENTATION Q AS A QUANTUM
SEARCH

There are only a few general techniques known

in the field of quantum computing and finding new
problems that are amenable to quantum speedups is
a high priority. Classically, one area of mathematics
that is full of interesting algorithms is computational
graph theory.

Grover’s algorithm is for searching an unsorted
list for a specified element. This original idea has
been extended to general amplitude amplification
that can be applied to any classical algorithm. There
are some interesting cases where “Grover-like”
techniques do that lead to speedups of classical
algorithms. This algorithm is used to find the
minimum value of a computable function as the set
of input arguments ranges over a finite, but
unordered list. In this case, the length of the list is
N, then the quantum cost of finding the minimum is
O(N), while the classical cost is O(N).

5.1. Grover's Search Algorithm

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

363

The quantum search algorithm performs a
generic search for a solution to a very wide range of
problems. [3,4,5,6,15]. Quantum searching is a tool
for speeding up these sorts of generic searches
through a space of potential solutions.

The problem of unstructured search is
paradigmatic for any problem where an optimal
solution needs to be found in a black box fashion,
i.e., without using the possible structure of the
problem:
Problem: Given a Boolean black box function

 which is equal to 0 for all
inputs except one ("marked item" w), find the
marked item w.

A black box function is often used to model a
subroutine of calculate. We are then interested to
know how often this subroutine needs to be
performed to solve a problem. Many of the
separations between classical and quantum
computing power will be formulated in the black
box or oracle model. In certain problems a quantum
algorithm needs to make substantially less calls - or
queries - to the black box than any classical
algorithm. Classically, a black-box function can be
simply thought of as a box that evaluates an
unknown function f. The input is some n-bit string
|x〉 and the output is given by an m-bit string f(x).
Quantumly, such a box can only exist if it is
reversible [10].

Classically, a deterministic algorithm needs to
make 2n - 1 queries to identify w in the worst case
and a probabilistic algorithm still needs O(2n)
queries. Grover gave a quantum algorithm that
solves this problem with O(n2) queries and this is
known to be the best possible. Grover's algorithm
can hence speed up quadratically any algorithm that
uses searching as a subroutine. Grover's quantum
algorithm is shown schematically in Figure 3.

Uf

H⊗nN-qubits N-qubits N-qubitsH⊗nU0⊥ H⊗n

G = Grover iterate

|1〉

1-qubit H

|0〉⊗n

Figure 3: Grover’s quantum searching algorithm.

Grover’s quantum searching algorithm can be

written such in the references [15]:
1. Start with the n-qubit state |00 . . . 0〉.

2. Apply the n-qubit Hadamard gate H to prepare

the state (where N = 2n).
3. Apply the Grover iterate G a total of

times.
4. Measure the resulting state.

The operator G = HU0
⊥HUf is called the Grover

iterate or the quantum search iterate. It is defined
by the following sequence of transformations.
1. Apply the oracle Uf.
2. Apply the n-qubit Hadamard gate H.
3. Apply U0

⊥.
4. Apply the n-qubit Hadamard gate H.

The effect Uf on the first register define:

The operator U0

⊥ is an n-qubit phase shift
operator U0

⊥ that acts as follows:

This operator applies a phase shift of −1 to all n-
qubit states orthogonal to the state |00 . . . 0〉.

5.2 Result

We implemented and simulated Dijkstra's
algorithm and the Grover's algorithm with Matlab
on classical computer. We have tested this
algorithm with N=2n possible inputs that n is
number of qubits.

The simulation results for n=6 qubits as a data
index is shown in the figure 4. In these diagrams,
number of possible inputs is N=64 and this number
is length of queue Q. We assumed that there is one
solution in queue Q. The amplitude value of
solution in Grover's algorithm reaches to 1 after
(π/4)Sqrt(64)=6.28 iterates and the amplitude value
of other data reached to zero. Figure 4(a) and 4(b)
show that with 6 iteration we can find solution in
queue Q, and if we continue to run the algorithm,
the amplitude value of the solution will be far from
1, and lose the solution (figure 4(b)). The maximum
iteration of algorithm is (π/4) N .

The quantum algorithm used quantum
computation and needed more memory. Our
computer had 4 GB RAM and we could run with
maximum 12-qubits. With 12-qubits as input data,
we have 212 =4096 vertices in queue Q.

The simulation results for n=12 qubits as a data
index will be shown in the figure 5(a) and 5(b). In
these diagrams, number of possible inputs is
N=4096 and this number is length of queue Q. The

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

364

element of 3750 is desired key. The amplitude
value of solution in Grover's algorithm reaches to
one after (π/4) N =50 iterates and the amplitude
value of other data reached to zero.

In figure 6(a) and 6(b) we compare the speeds of
Dijkstra's algorithm in three states of
implementation for finding the shortest path in
graph. These states depend on implementation of
EXTRACT_MIN procedure as a linear array, or as
a binary heap, or as a quantum search. When a Q is
implemented as a linear heap or quantum search, the
algorithm is more speed up than as a linear array.

(a) The amplitude value in 15 iterations for 64 elements

in queue Q that element of 14 is desired key.

(b) The amplitude value in 15 iterations.

Figure 4. The result of quantum search algorithm with 6

qubits input data and 64 elements in queue with 15
iterations (But 6 iterations are enough for finding

record).

6. CONCLUSION AND FUTURE WORK

With comparing the time complexities of the
versions of Dijkstra's algorithms, discussed in
sections 3 and 5, we can see that the time taken by
Dijkstra's algorithm is determined by the speed of
the queue operations.

When a Q is implemented as a linear array,
EXTRACT_MIN takes O(V) time and there are |V|

such operations. Hence, the running time of the
algorithm with array implementation is O(V2 + E) =
O(V2). When a Q is implemented as a binary heap,
EXTRACT_MIN operations takes O(lg V) time and
there are |V| such operations. Hence, the running
time of the algorithm with binary heap provided
given graph is O((V + E) lg V). Note that this time
becomes O((V+V)logV)=O(ElgV) if all vertices in
the graph is reachable from the source vertices and
the graph is sparse. If graph be dense, the running
time of the algorithm is O((V+V2)lgV) = O(V2
lgV).

(a) Comparison the amplitude of key and other elements

in queue Q for 50 iterations.

(b) The amplitude of 4096 elements in 50 iterations that

recorded 3750 solution keys in queue.

Figure 5. The simulation result of quantum search
algorithm with 12 qubits input data and 4096 elements in

queue with (π/4) N =50 iteration.

When a Q is implemented as a quantum search,

EXTRACT_MIN takes O(V) time. Therefore, a
total time for EXTRACT_MIN in while-loop is
O(V V). Hence, the running time of the algorithm
with quantum implementation is O(V V + E).

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

365

When graph is sparse, this time is O(V V) and for
dense graph is O(V V + V2)=O(V2).

From the result, we can see that quantum
algorithm and binary heap are faster than linear
array for finding the shortest path in sparse graph,
but for dense graph quantum algorithm is faster
than binary heap. Also the quantum algorithm does
not need any special conditions for graph and this
algorithm can be used for all kinds of graphs with
same cost of memory.

(a) Sparse graph.

(b) Dense graph.

Figure 6. Speeds comparison of Dijkstra's algorithm in

three states of implementation to find the shortest path in
the graph.

We can use the shortest path problem for routing

in networks. If the network topology implemented
such as star, loop and tree, then this network have
sparse graph, so binary heap and quantum algorithm
are faster than linear array. The quantum algorithm
is faster for the complete topology with dense
graph. It’s also good for unknown graphs to find the
shortest path.

The quantum search algorithm can be extended
to other classical algorithms in the future work.
Furthermore the quantum algorithms given here can
be readily extended to these problems, although the
details are yet to be worked out. It is also needs to
design a general plan for the implementation and
simulation of non-classical algorithms. These ideas
can be incorporated into future quantum algorithms.

7. REFERENCES

[1] D. Deutsch and R. Jozsa, “Rapid Solution of

Problems by Quantum Computation,” Proc.
Royal Soc. London, London, vol. 439, 1992, pp.
553–558.

[2] P.W. Shor, “Polynomial-Time Algorithms for
Prime Factorization and Discrete Logarithms on
a Quantum Computer,” Proc. 35th Ann. Symp.
Foundations of Computer Science, IEEE CS
Press, Los Alamitos, Calif., 1994, pp. 124–134.

[3] L.K. Grover, “A Fast Quantum Mechanical
Algorithm for Database Search,” Proc. 28th
Ann. ACM Symp. Theory of Computing, ACM
Press, New York, 1996, pp. 212–219.

[4] L.K. Grover, “Quantum Mechanics Helps in
Searching for a Needle in a Haystack,” Physical
Rev. Letters, vol. 79, no. 2, 1997, pp. 325–328.

[5] G. Brassard, “Searching a Quantum Phone
Book,” Science, vol. 275, 1997, p. 627.

[6] C.H. Bennett et al., “Strengths and Weaknesses
of Quantum Computing,” SIAM J. Computing,
vol. 26, no. 5, pp. 1510–1523, 2001.

[7] R. Paturi et al., “An Improved Exponential
Time Algorithm for k- SAT,” Proc. IEEE 39th
Symp. Foundations of Computer Science, IEEE
CS Press, Los Alamitos, Calif., 1998, pp. 628–
637.

[8] K. H. Thomas, C. E. Leiserson, R. L. Rivest,
and C. Stein, Introduction of Algorithms, MIT
press, 2001.

[9] C. Zalka, “Using Grover’s Quantum Algorithm
for Searching Actual Databases,” Physical Rev.
A, vol. 62, 2000.

[10]. P. Kaya, R. Laflamme, and M. Mosca, An
Introduction to Quantum Computing, Oxford
University Press, 2007.

