
Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
339 

 

ADAPTIVE PENALTY FUNCTION FOR SOLVING 
CONSTRAINED EVOLUTIONARY OPTIMIZATION  

1Omar Al Jadaan, 2Lakshmi Rajamani, 3C. R. Rao 
1Dept. CSE, EC. Osmania University, Hyderabad 500-007, India. 

2Prof. Dept. CSE, EC. Osmania University, Hyderabad 500-007, India. 
3Prof. Dept. CSE, EC. Osmania University, Hyderabad 500-007, India. 

E-mail:  o_jadaan@yahoo.com, lakshmiraja@yahoo.com, crrcs@uohyd.ernet.in   
 

ABSTRACT 
 

A criticism of Evolutionary Algorithms might be the lack of efficient and robust generic methods to handle 
constraints. The most widespread approach for constrained search problems is to use penalty methods, 
because of their simplicity and ease of implementation. The penalty function approach is generic and 
applicable to any type of constraint (linear or nonlinear). Nonetheless, the most difficult aspect of the 
penalty function approach is to find an appropriate penalty parameters needed to guide the search towards 
the constrained optimum. In this paper, GA’s population-based approach and Ranks are exploited to devise 
a penalty function approach that does not require any penalty parameter called Adaptive GA-RRWS. 
Adaptive penalty parameters assignments among feasible and infeasible solutions are made with a view to 
provide a search direction towards the feasible region. Rank-based Roulette Wheel selection operator 
(RRWS) is used. The new adaptive penalty and rank-based roulette wheel selection operator allow GA’s to 
continuously find better feasible solutions, gradually leading the search near the true optimum solution. 
GAs with this constraint handling approach have been tested on thirteen problems commonly used in the 
literature. In all cases, the proposed approach has been able to repeatedly find solutions closer to the true 
optimum solution than that reported earlier.  

Keywords: Constrained Optimization, Constraint Handling, Genetic Algorithm, Penalty Functions, 
Ranking. 

 
1. INTRODUCTION  
 
The general nonlinear programming (A) problem 
can be formulated as solving the objective function 

}{ ( )Min f x
x S F n∈ ∪ ⊆ℜ

   (1) 

Where { }; , ( 1,..., )n l us x x x x i ni i i= ∈ℜ ≤ ≤ = , 

defines the search space which is a n-dimensional 
space bounded by the parametric constraints 

, ( 1,..., )l ux x x i ni i i≤ ≤ =   (2) 

and the feasible region F is defined by 

( ) { }{ }| 0, 1,...,nF x g x j mj= ∈ℜ ≤ ∀ ∈   (3) 

Where ( ) { }, 1,...jg x j m∈  are constraints, which 
include all equality constraints after transforming 
them to inequality constraints using (4) 

( )| | 0h x ε− ≤   (4) 
Where ε is a small tolerance. Since the algorithm 
that will be discussed does not use gradient 

information, it does not mater if equality constraint 
(4) is non-differentiable. 
Constraint handling methods used in classical 
optimization algorithms can be classified into two 
groups: (i) generic methods that do not exploit the 
mathematical structure (whether linear or 
nonlinear) of the constraint, and (ii) specific 
methods that are only applicable to a special type of 
constraints. Generic methods, such as the penalty 
function method, the Lagrange multiplier method, 
and the complex search method [3], [7] are popular 
because each one of them can be easily applied to 
most problems without much change in the 
algorithm. Nevertheless, since these methods are 
generic, the performance of these methods in most 
cases is not satisfactory. However, specific 
methods, such as the cutting plane method, the 
reduced gradient method, and the gradient 
projection method [3], [7], are applicable either to 
problems having convex feasible regions only or to 
problems having a few variables because of 
increased computational burden with large number 
of variables. Since genetic algorithms (GAs) are 
generic search methods, most applications of GAs 
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to constraint optimization problems have used the 
penalty function approach of handling constraints 
[8], [6]. The penalty function approach involves a 
number of penalty parameters, which must be set 
right in any problem to obtain feasible solutions. 
This dependency of GA’s performance on penalty 
parameters has led researchers to devise 
sophisticated penalty function approaches such as 
multi-level penalty functions [1], dynamic penalty 
functions [9], and penalty functions involving 
temperature-based evolution of penalty parameters 
with repair operators [24]. All these approaches 
require extensive experimentation for setting up 
appropriate parameters needed to define the penalty 
function. Michalewicz describes the difficulties in 
each method and compares the performance of 
these algorithms on a number of test problems [14]. 
In a similar study, Michalewicz and Schoenauer 
concluded that the static penalty function method 
(Without any sophistication) is a more robust 
approach than the sophisticated methods [23]. This 
is because one such sophisticated method may work 
well on some problems but may not work so well in 
another problem. 
The introduction of the penalty term enables us to 
transform a constrained optimization problem (A) 
into an unconstrained one ( A ′ ), such as the one 
given by (5): 

( ){ } ( ) ( ) ( )( ); , 1,...,Min y y f x r g x j mg jnx S
ψ ψ φ= + =

∈ ⊆ℜ
(5) 

Where 0φ ≥  is a real-valued function which 
imposes a penalty controlled by a sequence of 
penalty coefficients rg ,where g is the generation 

counter. The general form of φ function includes 
both the generation counter (for dynamic penalty) 
and the population (for adaptive penalty). In the 
current notation, this is reflected in the penalty 
coefficient rg . 

This transformation (i.e.(5)) has been used widely 
in evolutionary constrained optimization [11], [20]. 
The penalty function method may work quite well 
for some problems; however, deciding an optimal 
(or near-optimal) value for rg turns out to be a 

difficult optimization problem itself! If rg is too 

small, an infeasible solution may not be penalized 
enough. Hence, an infeasible solution may be 
evolved by an evolutionary algorithm. If rg is too 

large, a feasible solution is very likely to be found, 
but could be of very poor quality. A large 
rg discourages the exploration of infeasible 

regions, even in the early stages of evolution. This 
is particularly inefficient for problems where 

feasible regions in the whole search space are 
disjointed. In this case, it may be difficult for an 
evolutionary algorithm to move from one feasible 
region to another unless they are very close to each 
other. Reasonable exploration of infeasible regions 
may act as bridges connecting two or more 
different feasible regions. The critical issue here is 
how much exploration of infeasible regions (i.e., 
how large rg is) should be considered as 

reasonable. 
The answer to this question is problem dependent. 
Even for the same problem, different stages of 
evolutionary search may require different 
rg values. 

There has been some work on the dynamic setting 
of rg values in evolutionary constrained 

optimization [10], [11], and [15].Such work usually 
relies on a predefined monotonically nondecreasing 
sequence of rg values. This approach worked well 

for some simple problems, but failed for more 
difficult ones because the optimal setting of 
rg values is problem dependent [18]. A fixed and 

predefined sequence cannot treat a variety of 
different problems satisfactorily. In such cases trial-
and-error process has to be used in order to find a 
proper function for rg as is done in [10], [11]. An 

adaptive approach, where rg values are adjusted 

dynamically and automatically by an evolutionary 
algorithm itself, appears to be most promising in 
tackling different constrained optimization 
problems. For example, population information can 
be used to adjust rg values adaptively [21]. 

Different problems lead to different populations in 
evolutionary search, and thus lead to different 
rg values. The advantage of such an adaptive 

approach is that it can be applied to problems where 
little prior knowledge is available because there is 
no need to find a predefined rg value (or a 

sequence of rg  values) that is optimal for this 

problem. According to (5), different rg values 

define different fitness functions. A fit individual 
under one fitness function may not be fit under a 
different fitness function. Finding a near-optimal 
rg adaptively is equivalent to ranking individuals 

adaptively in a population. Hence, the issue 
becomes how to rank individuals according to their 
objective and penalty values. 
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A novel method for ranking individuals without 
specifying an rg value is proposed. Experimental 

studies test the effectiveness and efficiency of this 
method which can be regarded as an adaptive 
penalty approach. 
One approach to avoid setting a hard-to-set 
parameter rg is to treat constrained optimization as 

a multi-objective optimization where constraints are 
regarded as an additional objective function [22], 
[2]. However, multi-objective optimization does not 
appear to be any easier than constrained 
optimization since one has to balance different 
objectives in optimization. The rest of this paper is 
organized as follows. Section II discusses the 
proposed constraint handling method, where 
relationship between rg and ranking are described 

in more details. The concept of dominance is 
introduced, which is somewhat similar to, but not 
the same as an early work [20].The analysis of 
penalty methods from the point of view of 
balancing dominance between the objective and 
penalty functions has revealed what penalty 
methods are trying to do, and has led to the 
development of this new constraint handling 
technique which balances such dominance directly 
and implicitly in order to improve the effectiveness 
and efficiency of constrained algorithms. Section 
III describes the details of the implementation of 
the evolutionary algorithm for constrained 
optimization, and presents the experimental results 
on 13 benchmark problems. The results are also 
compared with best-known solutions obtained using 
earlier Evolutionary Algorithms implementations. 
Finally, Section IV ends up with conclusions and 
hints at future work. 
 
2. PROPOSED CONSTRAINT HANDLING 
METHOD 
 

A. Penalty Method 
For a given penalty coefficient 0rg ≥ let the 

ranking of n individuals be  
( ) ( ) ... ( )1 2y y y nψ ψ ψ≤ ≤ ≤  (6) 

Where ( ); 1, 2,...,y i niψ = is the transformation 

function given by (5) for a set of n individuals. Let 
us examine the adjacent pair i and i + 1 in the 
ranked order 

{ }1, 1,..., 11f r f r i ng gi i i iφ φ+ ≤ + + ∈ −+  (7) 

Where the notations ( )f f xi i=  and 

( )( ), (1,..., )g x j mi i iφ φ= = are used for 

convenience. We now introduce a parameter 
( )r ic  Which will be referred to as the critical 

penalty coefficient for the adjacent pair i and i + 1 

( ) 1

1

f fi ir ic
i iφ φ

−+=
−+

 For 1i iφ φ=/ +   (8) 

For the given choice of 0rg ≥ , there are three 

different cases, which may give rise to the 
inequality (7). 

1) If 1f fi i≤ +  an 1i iφ φ≥ + : The comparison is 

said to be dominated by the objective function 
and ( )0 r r ig c≤ ≤ because the objective 

function f plays the dominant role in 
determining the inequality. When individuals 
are feasible, 1i iφ φ= + and ( )r ic →∞ . 

2)  If 1f fi i≥ +  and 1i iφ φ< + : The 

comparison is said to be dominated by the 
penalty function and ( )0 r i rc g≤ ≤ because 

the penalty function φ plays the dominant role 
in determining the inequality. 

3) If 1f fi i< +  and 1i iφ φ< + : The 

comparison is said to be non-dominated 
and ( ) 0r ic < , neither the objective nor the 
penalty function can determine the inequality 
by itself. 

   When comparing nondominant and feasible 
individuals, the value of rg has no impact on the 

inequality (7). In other words, it does not change 
the order of ranking of the two individuals. 
However, the value of rg  is critical in the first two 

cases as rg is the flipping point that will determine 

whether the comparison is objective or penalty 
function dominated. For example, if rg  increased 

to a value greater than ( )r ic in the first case, 
individual i+1 would change from a fitter 
individual into a less-fit one. For the entire 
population, the chosen value of rg  is used for 

comparisons will determine the fraction of 
individuals dominated by the objective and penalty 
functions. Not all possible rg  values can influence 

the ranking of individuals. They have to be within a 
certain range, i.e. l ur r rg g g< < to influence the 
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ranking, where the lower bound lrg is the minimum 

critical penalty coefficient computed from adjacent 
individuals ranked only according to the objective 
function, and the upper bound urg is the maximum 

critical penalty coefficient computed from adjacent 
individuals ranked only according to the penalty 
function. In general, there are three different 
categories of values. 

1) lr rg g< : All comparisons are based only 

on the fitness function. rg  is too small to 

influence the ranking of individuals. We 
will call this under penalization. 

2) lr rg g> : All comparisons are based only 

on the penalty function. rg  Is so large that 

the impact of the objective function can be 
ignored. We will call this 
overspecialization. 

3) l ur r rg g g< < : All comparisons are based 

on a combination of objective and penalty 
functions. 

All penalty methods can be classified into one of 
the above three categories. Some methods may fall 
into different categories during different stages in 
search. It is important to understand the differences 
among these three categories because they indicate 
which function (combination of functions) is 
driving the search process and how search 
progresses. For example, most dynamic methods 
start with a low rg value (i.e. lr rg g< ) in order to 

find a good region which may contain both feasible 
and infeasible individuals. Toward the end of the 
search, a high rg  value (i.e. ur rg g< ) is often used 

in order to locate a good feasible individual. Such a 
dynamic method would work well for problems for 
which the unconstrained global optimum is close to 
its constrained global optimum. It is unlikely to 
work well for problems for which the constrained 
global optimum is far away from its unconstrained 
one because the initial low rg  value would drive 

the search toward the unconstrained global 
optimum, and thus further away from the 
constrained one. 
It has been widely recognized that neither under 
penalization nor over-penalization is a good 
constraint handling technique, and there should be a 
balance between preserving feasible individuals and 
rejecting infeasible ones [5]. In other words, 
ranking should be dominated by a combination of 

objective and penalty functions, and so the penalty 
coefficient rg  should be within the 

bounds l ur r rg g g< < . It is worth noting that the 

two bounds are not fixed. They are problem 
dependent, and may change from generation to 
generation as they are also determined by the 
current population. It is clear from the analysis in 
this section which has been carried out by [19] that 
all penalty methods try to obtain the right balance 
between objective and penalty functions so that the 
search moves toward the optimum in the feasible 
space, not just toward the optimum in the combined 
feasible and infeasible space. One way to achieve 
such balancing effectively and efficiently is to 
adjust such balance directly and implicitly. This is 
what ranking, described in the next section, does. 
 
3. IMPLEMENTATION OF THE  
EVOLUTIONARY ALGORITHM FOR 
CONSTRAINED OPTIMIZATION 
 
It is clear from the analysis in this section which 
has been carried out by [19] that all penalty 
methods try to obtain the right balance between 
objective and penalty functions so that the search 
moves toward the optimum in the feasible space, 
not just toward the optimum in the combined 
feasible and infeasible space. One way to achieve 
such balancing effectively and efficiently is to 
adjust such balance directly and implicitly. This is 
what ranking, described in the next section, does. 
 

A. Ranking 
To overcome the difficulty of determining the 
optimal rg  a different approach is suggested in this 

section to balance the dominance of the objective 
and penalty functions. The following fitness 
function is introduced  

( ) ( ) ( )*
1

m
fitness x f x rank rank xgf j

φ= + + ∑
=

(9) 

Where rank f  is the rank of the objective function 

values, which takes values in the range of [1 − 
population size]. rank g Is the rank of the sum of 

the constraints violation for each solution, which 
takes values from [(population size + 1)−(2* 
population size)]. What (9) above mounts to is that 
minimum fitness value and less constraints 
violation inevitably leads to best fitness value. By 
using rank-based roulette wheel selection [16], 
[17], self-adapting is achieved without any extra 
computational cost. More importantly, the 
motivation of ranking comes from the need for 
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balancing objective and penalty functions directly 
and implicitly in optimization. Equation (9) 
provides a convenient way of balancing the 
dominance in a ranked set. The algorithm is listed 
below. 
 

B. An Illustrative Example 
In this section the ranking based on (9) is discussed 
for a simple NLP problem. The purpose of this 
section is to show the important effects of the 
ranking and not to solve the NLP problem. First, 
the results of an actual search are presented, and 
then the imposed search direction is discussed. 
The problem is as follows. A quadratic function is 
to be minimized and the feasible region formed by 

1g  and 2g constraints is a narrow crescent-shaped 

region (approximately 0.7% of the total search 
space) with the optimum solution lying on the first 
constraint. The problem is stated as follows: 

( ) ( ) ( )2 22 211 71 2 1 2f x x x x x= + − + + −  

Subject to: 

( ) ( ) ( )2 2
4.84 0.05 2.5 01 1 2g x x x= − + − + − ≤  

( ) ( )22 2.25 _ 4.84 02 1 2g x x x= − − − ≤      (10) 

0 61x≤ ≤  , 0 62x≤ ≤  

For the corresponding unconstrained problem the 
optimal solution is x* = [3, 2]. For the constrained 
problem (10) the optimal solution is x* = 
(2.246826, 2.381865) with a function value equal 
to f* = 13.59085. The population size is set to 10, 
the maximum number of generations is 50, the 
mutation probability is set to 0.01, and crossover 
probability is set to 0.9. The initial generation is 
shown in Figure 1. The rank of initial generation 
according to (9) is also given in the figure. The best 
solution in the initial generation corresponds to 
ranking 1. Figure 1shows clearly that the search 
direction is towards the feasible region in the initial 
generation. 
Figure 2 shows the ratio of feasible solutions, the 
mean normalized Euclidean distance and the ratio 
between the true optimum and the best-found 
feasible objective value. To avoid premature 
convergence it is crucial to have sufficient diversity 
in the population. Such diversity in the population 
is achieved by using rank-based roulette wheel 
selection [16], [17]. The first feasible solution is 
found in generation 5. In the early generations (5 to 
8) the number of feasible individuals increases 
rapidly. In generation 10 all individuals are feasible 
and the improvement in the objective function by 
generation 30 is very close to the optimum since the 

population has converged too fast. To make this 
variation of the search direction clearer, two 
populations with different ratios of feasible 
individuals are studied in figures 3 and 4. In both 
figures an infeasible individual is created by a 
mutation. This individual is better than all the 
feasible individuals in terms of the objective value, 
f(x). Due to the rank in Equation (9), this infeasible 
individual becomes the best individual. The search 
is then directed out of the feasible region towards 
the unconstrained optimum and as a result better 
feasible solutions are found. 

 
 
Fig.1. Initial generation (black circles) shown in decision space. 
The red circle indicates the best solution based on equation (9), 
the black star is the optimum solution 
 
 

 
Fig. 2. Search results for problem (10) 
 
This example shows the dynamic behavior of the 
search direction. The variation of the search 
direction has a positive effect for the population 
diversity. Thus, no special operation to preserve the 
diversity in the population is required for most 
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cases. In the next section the method is evaluated 
using a set of selected test problems gathered from 
the literature.   

 
Fig. 3. Rank according to Equation (9) for a population. 
 

 
Fig. 4. Rank according to Equation (9) for a population. 
 

C. Experimental Results and Discussions 
 
The thirteen benchmark functions chosen from 
[12], [14] contain characteristics that are 
representative of what can be considered “difficult 
global optimization problems” for an evolutionary 
algorithm. To get an estimate of how difficult it is 
to generate feasible points through a purely random 
process, Mezura and Carlos [13] computed the ρ  
½ metric (as suggested by Michalewicz and 
Schoenauer [23]) using the following expression: 

| |
| |
F
S

ρ =   (11) 

where |S| is the number of random solutions 
generated (|S| = 1000000 in their case), and |F| is  
the number of feasible solutions found (out of the 
|S| total solutions randomly generated). 
The values of ρ  for each of the functions chosen 
are shown in Table I, where n is the number of 
decision variables, LI is the number of linear 
inequalities, NI the number of nonlinear 
inequalities, LE is the number of linear equalities, 
and NE is the number of nonlinear equalities. 

 

 
Problems g02, g03, g08, and g12 are maximization 
problems. They are transformed into minimization 
problems using −f(x). For each of the benchmark 
problems, 50 independent runs are performed. All 
experiments are performed in MATLAB. 
In [4] Deb tested his method on nine different 
problems of which test problems #1 to test problem 
#6. These problems are a subset of the test 
problems considered in this study. The results 
obtained by the proposed method in this paper are 
compared to the results obtained by Deb on all 
these six test problems. Furthermore, Deb stated 
that “in all cases, the proposed approach has been 
able to repeatedly find solutions closer to the true 
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optimum solution than that reported earlier.” 
Therefore, a fair comparison to the results reported 
in [4] should give good indication of the 
performance of the method presented in this paper. 
 
The source code may be obtained from the authors upon request 

The GA parameters used in this study are presented 
in Table II for each problem. Then, the results for 
this algorithm are compared to the best results 
reported in [4]. 
First, some typical search results for the problems 
are presented in Figure 5 to Figure 17. These 
figures show the ratio of feasible solutions, the 
mean normalized Euclidean distance and the ratio 
between the optimal solution and the best-found 
feasible solution.  
Obviously, the easiest problem is the test problem 
g12. Near optimal solutions are found in early 
generations. Surprisingly, the most difficult of these 
thirteen problems for this method are test problems 
g05, g07 and g13 where the ρ  metric is 0% as 
shown in Table I. The results for adaptive GA-
RRWS algorithm are now compared to the best 
results for all tested methods in [4] and summarized 
in Table III. The problems g02, g03, g05, g06, g08, 
g11, and g12 are not a part of the test problems 
studied in [4]. 
As can be seen from Table III, adaptive GA-RRWS 
algorithm outperforms the Deb method [4] in all the 
problems except problem g13 where the algorithm 
fails to get solutions close to the optimum which 
requires further research and modification.  
The best found results of the 50 independent runs 
for adaptive GA-RRWS algorithm are almost better 

than the results reported by Deb. For these 
problems the variation in the best results found is 
less for the proposed method than those reported in 
[4]. It should be mentioned, however, that the 
results presented by Deb are based on tournament 
selection with a niching method that required two 
extra parameters. Furthermore, the maximum 
number of generations for the results of test 
problem g01 in [4] is not known. Hence it is 
difficult to make a fair comparison of the results on 
this problem. 

 
For all the test problems the algorithm has 
consistently found solutions closer to the optimal 
solution for all 50 runs.  
Deb used 50 Independent runs. The maximum 
function evaluations equal to product of the 
maximum number of generations and population 
size. The table IV shows why the proposed 
approach is outperforming the approach used by 
Deb. Deb did not show the maximum number of 
generations for problem g01, so we cannot compare 
with it. 
From the table IV, this comparison between Deb’s 
method and the proposed method shows that the 
proposed method has outperformed Deb’s method 
with gain 52.25%. 
  
4. CONCLUSIONS AND FUTURE WORK 

This paper has proposed a new constraint 
handling technique based on ranking called 
Adaptive GA-RRWS. Ranking is motivated by the 
analysis of penalty methods from the point of view 
of dominance. The balance between the objective 
and penalty functions is achieved through rank and 
the fitness function (9). The introduction of rank 
and using that rank in the fitness function enables 
the algorithm to bias toward the global optimum. 
The proposed method could get solutions closer to 
the optimum solution on twelve test problems and 
fails in getting any good solution on problem g13 
which requires further research and modification. 

The new constraint-handling technique was 
tested on a set of 13 benchmark problems. 
Experimental results have been presented and have 
outperformed Deb’s method with gain 52.25%. The 
future work of this study includes the application of 
ranking to other types of evolutionary algorithms. 
The Adaptive GA-RRWS algorithm does not 
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introduce any specialized variation operators, and 
does not require a priori knowledge about a 
problem since it uses adaptive penalty coefficient 
rg in a penalty function.  
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Algorithm 1 Adaptive GA-RRWS 
 

1: Initialize Population P 
2: Generate random population − size N 
3: Evaluate objective values and constraints 
4: Calculate the rank of objective values 

Rf for each solution [ ]1R Nf ∈ −  

5: Calculate the rank of the sum of the 
constraints violation Rf for each solution 

( )1 2R N Nf ∈ + −⎡ ⎤⎣ ⎦  

6: Assign fitness values based on (9) for each 
solution in P 

7: Generate offspring Population Q from P 
8: {Ranked based Roulette Wheel Selection 
9: Recombination and Mutation 
10: Evaluate objective values and constraints } 
11: For g=1 to G do 
12: Calculate the rank of objective values 

fR for each solution in the combined 
population [ ], 1 2P Q R Nf∪ ∈ −  

13: Calculate the rank of the sum of the 
constraints violation fR for each solution 
in the combined population 

( ) ( ), 2 1 4P Q R N Ng∪ ∈ + −⎡ ⎤⎣ ⎦  

14: Assign fitness values based on (9) for each 
solution in the combined population 
P Q∪  

15: P = Select the best N members of the 
combined population based on Fitness 
values to make the population of the next 
generation 

16: Q = Create next generation from P { 
17: Ranked based Roulette Wheel Selection 
18: Recombination and Mutation 
19: Evaluate objective values and constraints } 
20: end for 

 
 

APPENDIX 
TEST FUNCTION SUITE 

 
All benchmark functions with the exception of g13 
are described in [14]. They are summarized here for 
completeness. 

1) g01 

Min  4 4 132( ) 5 5
1 1 1

f x x x xi i ii i i
= − −∑ ∑ ∑

= = =
 

Subject to: 
( ) 2 2 10 01 1 2 10 11g x x x x x= + + + − ≤  

( ) 2 2 10 02 1 3 10 12g x x x x x= + + + − ≤  

( ) 2 2 10 03 1 3 11 12g x x x x x= + + + − ≤  

( ) 8 04 1 10g x x x= − + ≤  

( ) 8 05 2 11g x x x= − + ≤  

( ) 8 06 3 12g x x x= − + ≤  

( ) 2 07 54 10g x x x x= − + + ≤  

( ) 2 078 6 11g x x x x= − + + ≤  

( ) 2 09 8 9 12g x x x x= − + + ≤  

Where the bounds are ( )0 1 1, ..., 9x ii≤ ≤ = , 

( )0 100 10,10,12x ii≤ ≤ =  and 0 113x≤ ≤  the 
global minimum is at 

* (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)x = where six 
constraints are active (g1, g2, g3, g7, g8, and g9 and 
f(x*) = −15. 
 

2) g02 

MAX 
( )4 2cos 2 cos ( )1 1( )

2
1

nn x xi i i if x
n ixi i

− Π∑ = ==
∑ =

 

Subject to: 

( ) 0.75 01 1

n
g x x ii

= − Π ≤
=

 

( ) 7.5 01 1

n
g x x nii

= − ≤∑
=

 

Where n = 20 and 0 10( 1,...,10)x ii≤ ≤ = . 

The global maximum is unknown; the best we 
found is f(x*) = 0.803619 (which, to the best of our 
knowledge, is better than any reported value), 

1g constraint is close to being active 8( 10 )1g −= − . 

 
3) g03 

Max ( ) ( )
1

nnf x n x ii
= Π

=  

Subject to: 
2( ) 1 01 1

n
h x x ii

= − =∑
=

 

Where n = 10 and 0 1( 1,..., )x i ni≤ ≤ = the global 

maximum is at 1* ( 1,..., )x i ni n
= =  ; where  

f(x*) = 1. 
 

4) g04 
Min 2( ) 5.3578547 0.08356891x 53 1f x x x= +  
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37.293239x  - 40792.1411+  

Subject to: 
g ( ) 85.334407 + 0.0056858x x51 2x =  

0.0006262x x -0.0022053x x -92 051 4 3+ ≤  

g ( ) -85.334407 - 0.0056858x x52 2x =  

+0.0006262x x -0.0022053x x 051 4 3 ≤  

g ( ) 80.51249 + 0.0071317x x53 2x =  

2+0.0029955x x +0.0021813x 110 01 2 3 − ≤  

g ( ) -80.51249 - 0.0071317x x54 2x =  

2+0.0029955*x x -0.0021813x +90 01 2 3 ≤  

g (x)=9.300961+0.0047026x x5 53  

+0.0012547x x +0.0019085x3x4-25 01 3 ≤  

g (x)=-9.300961-0.0047026x x56 3  

-0.0012547x x -0.0019085x x -20 01 3 3 4 ≤  

Where 
78 x 102, 33 x 45, 27 x 45 (i = 3, 4, 5)1 2 i≤ ≤ ≤ ≤ ≤ ≤

the optimum solution is x* = (78, 33, 
29.995256025682, 45, 36.775812905788) 
where f(x*) = −30665.539. Two constraints are 
active 
(g  and g )1 6 . 

 
5) g05 

Min 3 3
1 1 2 2( ) 3 0.000001x +2x +(0.000002/3)xf x x= +  

Subject to: 
 ( ) 0.55 01 4 3g x x x= − + − ≤  

( ) 0.55 02 3 4g x x x= − + − ≤  

( ) 1000 sin(-x -0.25) + 1000 sin(-x -0.25)3 3 4h x =  

+ 894.8-x =01  

( ) 1000sin(x -0.25) + 1000 sin(-x -x -0.25)4 3 3 4h x =

 
+ 894.8-x =02  

( ) 1000 sin(x -0.25) + 1000 sin(-x -x -0.25)5 4 4 3h x =

 
+1294.8=0  
Where 0 1200, 0.55 0.551,2 3,4x x≤ ≤ − ≤ ≤ .The 

best known solution [12] x* = (679.9453, 
1026.0670.1188764 − 0.3962336)  
Where f(x*) = 5126.4981. 
 

6) g06 

Min 3 3( ) ( 10) ( 20)1 2f x x x= − + −  

Subject to: 
5 2( ) ( 5) ( 5) 100 01 1 2g x x x= − − − − + ≤  

2 2( ) ( 6) ( 5) 82.81 02 1 2g x x x= − − − + ≤  

Where 13 1001x≤ ≤  and 0 1002x≤ ≤ . The 

optimum solution is * (14.095, 0.84296)x = . Both 
constraints are active. 
 

7) g07 
Min 2 2( ) 14 161 2 1 2 1 2f x x x x x x x= + + − −  

            2 2 2( 10) 4( 5) ( 3)53 4x x x+ − + − + −  

            2 2 22( 1) 5 7( 11)76 8x x x+ − + + −  

            2 22( _10) ( 0 7) 459 1x x+ + − +  

Subject to: 
 ( ) 105 4 5 3 9 071 1 2 8g x x x x x= + + − + ≤  

( ) 10 8 17 2 072 1 2 8g x x x x x= − − + ≤  

( ) 8 2 5 2 0 12 03 1 2 9 1g x x x x x= − + + − − ≤  

2 2 2( ) 3( 2) 4( 3) 2 7 120 04 1 2 3 4g x x x x x= − + − + − − ≤

2 2( ) 5 8 ( 6) 2 40 05 1 2 3 4g x x x x x= + + − − − ≤  

2 2( ) 2( 2) 2 14 6 056 1 2 1 2 6g x x x x x x x= + − − + − ≤

2 2 2( ) 0.5( 8) 2( 4) 3 30 07 51 2 6g x x x x x= − + − + − − ≤

2( ) 3 6 12( 8) 7 0 08 1 2 9 1g x x x x x= − + + − − ≤  

Where 10 10, ( 1,...,10).1x i− ≤ ≤ =   

The optimum solution is *x = (2.171996, 2.363683, 
8.773926, 5.095984, 0.9906548, 1.430574, 
1.321644, 9.828726, 8.280092, and 8.375927). 
 Where *( )f x =24.3062091.  Six constraints are 
active 1 2, 3 4 5( , , ,g g g g g  and 6 )g . 
 

8) g08 

          Min 
3sin(2 ) sin(2 )1 2( ) 3( )1 1 2

x x
f x

x x x

π π
=

+
 

Subject to: 
               2( ) 1 01 1 2g x x x= − + ≤  

               2( ) 1 ( 4) 02 1 2g x x x= − + − ≤  

Where 0 101,2x≤ ≤ . The optimum is located at 
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*x  = (1.2279713, 4.2453733) where *( )f x = 
0.095825. The solution lies within the feasible 
region. 
 

9) g09  
Min 2 2( ) ( 10) 5( 12)1 2f x x x= − + −  

            2 2 6 2(3) 3( 11) 10 754 6x x x x+ + − + +  

            4 4 10 87 7 76 6x x x x x+ − ∗ − −  

  Subject to: 
    

2 4 2( ) 127 2 3 4 5 051 1 2 3 4g x x x x x x= − + + + + + ≤  

 2( ) 282 7 3 10 052 1 2 3 4g x x x x x x= − + + + + − ≤  

   2 2( ) 196 23 6 8 073 1 2 6g x x x x x= − + + + − ≤  

   
2 2 2( ) 4 3 2 5 11 074 1 2 1 2 3 6g x x x x x x x x= + − + + − ≤

 
Where 10 10x i− ≤ ≤  for ( 1,...,7)i = . 

The optimum solution is *x =(2.330499, 1.951372, 
0.477544, 4.365726, 0.6244870, 1.03131,1.594227) 
Where *( )f x = 680.6300573. Tow constraints are 
active ( 1g  and 2g ). 

 
10) g10 

Min  ( ) 1 2 3f x x x x= + +  

Subject to: 
( ) 1 0.0025( ) 01 4 6g x x x= − + + ≤  

( ) 1 0.0025( ) 05 72 4g x x x x= − + + − ≤  

( ) 1 0.01( ) 053 8g x x x= − + − ≤  

( ) 833.33252 100 83333.333 04 1 6 4 1g x x x x x= − + + − ≤

( ) 1250 1250 05 7 52 2 4 4g x x x x x x x= − + + − ≤

( ) 1250000 2500 05 56 3 8 3g x x x x x x= − + + − ≤

 
Where  100 10000,1000 10001 2,3x x≤ ≤ ≤ ≤ ,and 

10 1000x i≤ ≤ , for ( 4,...,8)i = . 

The optimum solution is *x =(579.3167, 1359.943, 
5110.071, 182.0174, 295.5985, 217.9799, 
286.4162, 395.5979) where *( )f x =7049.3307. 
Three constraints are active ( 1 2,g g  and 3g ). 
 
 
 

11) g11 
Min  2 2( ) ( 1)1 2f x x x= + −  

 Subject to:       
2( ) 02 1h x x x= − =  

Where 1 11,2x− ≤ ≤ .  The optimum solution is: 

*x = 2,1/ 2± where *( )f x =0.75. 
 

12) g12   
Min 

2 2 2( ) (100 ( 5) ( 5) ( 5) ) /1001 2 3f x x x x= − − − − − −    
Subject to: 

2 2 2( ) ( ) ( ) ( ) 0.0625 01 2 3g x x p x q x r= − − + − − ≤

 
Where 0 101,2,3x≤ ≤  and p, q, r =1,…, 9 the 

feasible region of the search space consists of 
disjointed 3g spheres.  
A point ( , , )1 2 3x x x is feasible if and only if there 

exist p, q, r such that the above inequality holds. 
The optimum is located at *x = (5,5,5) where 

*( )f x =1. 
The solution lies within the feasible region. 
 

13) g13 

Min 51 2 3 4( ) exp
x x x x x

f x =  
Subject to: 

2 2 2 2 2( ) 10 051 1 2 3 4h x x x x x x= + + + + − =  

( ) 5 052 2 3 4h x x x x x= − =  

3 3( ) 1 03 1 2h x x x= + + =  

Where 2.3 3.2, 3.2 3.21,2 3,4,5x x− ≤ ≤ − ≤ ≤ . 

The optimum solution is *x =1.717143, 1.595709, 
1.827247, 0.7636413, 0.763645 where 

*( )f x =0.0539498. 
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              Fig. 5. Typical result for problem g01. 

 
                 Fig. 6. Typical result for problem g02. 

 
                  Fig. 7. Typical result for problem g03. 

 
                   Fig. 8. Typical result for problem g04. 

 
                 Fig. 9. Typical result for problem g05. 

 
                      Fig. 10. Typical result for problem g06. 
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                  Fig. 11. Typical result for problem g07. 

 
                         Fig. 12. Typical result for problem g08. 

 
                  Fig. 13. Typical result for problem g09. 

 
                  Fig. 14. Typical result for problem g10. 

 
                   Fig. 15. Typical result for problem g11. 

 
                      Fig. 16. Typical result for problem g12. 

 
                    Fig. 17. Typical result for problem g13. 


