
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

339

ADAPTIVE PENALTY FUNCTION FOR SOLVING
CONSTRAINED EVOLUTIONARY OPTIMIZATION

1Omar Al Jadaan, 2Lakshmi Rajamani, 3C. R. Rao
1Dept. CSE, EC. Osmania University, Hyderabad 500-007, India.

2Prof. Dept. CSE, EC. Osmania University, Hyderabad 500-007, India.
3Prof. Dept. CSE, EC. Osmania University, Hyderabad 500-007, India.

E-mail: o_jadaan@yahoo.com, lakshmiraja@yahoo.com, crrcs@uohyd.ernet.in

ABSTRACT

A criticism of Evolutionary Algorithms might be the lack of efficient and robust generic methods to handle
constraints. The most widespread approach for constrained search problems is to use penalty methods,
because of their simplicity and ease of implementation. The penalty function approach is generic and
applicable to any type of constraint (linear or nonlinear). Nonetheless, the most difficult aspect of the
penalty function approach is to find an appropriate penalty parameters needed to guide the search towards
the constrained optimum. In this paper, GA’s population-based approach and Ranks are exploited to devise
a penalty function approach that does not require any penalty parameter called Adaptive GA-RRWS.
Adaptive penalty parameters assignments among feasible and infeasible solutions are made with a view to
provide a search direction towards the feasible region. Rank-based Roulette Wheel selection operator
(RRWS) is used. The new adaptive penalty and rank-based roulette wheel selection operator allow GA’s to
continuously find better feasible solutions, gradually leading the search near the true optimum solution.
GAs with this constraint handling approach have been tested on thirteen problems commonly used in the
literature. In all cases, the proposed approach has been able to repeatedly find solutions closer to the true
optimum solution than that reported earlier.

Keywords: Constrained Optimization, Constraint Handling, Genetic Algorithm, Penalty Functions,
Ranking.

1. INTRODUCTION

The general nonlinear programming (A) problem
can be formulated as solving the objective function

}{ ()Min f x
x S F n∈ ∪ ⊆ℜ

 (1)

Where { }; , (1,...,)n l us x x x x i ni i i= ∈ℜ ≤ ≤ = ,

defines the search space which is a n-dimensional
space bounded by the parametric constraints

, (1,...,)l ux x x i ni i i≤ ≤ = (2)

and the feasible region F is defined by

() { }{ }| 0, 1,...,nF x g x j mj= ∈ℜ ≤ ∀ ∈ (3)

Where () { }, 1,...jg x j m∈ are constraints, which
include all equality constraints after transforming
them to inequality constraints using (4)

()| | 0h x ε− ≤ (4)
Where ε is a small tolerance. Since the algorithm
that will be discussed does not use gradient

information, it does not mater if equality constraint
(4) is non-differentiable.
Constraint handling methods used in classical
optimization algorithms can be classified into two
groups: (i) generic methods that do not exploit the
mathematical structure (whether linear or
nonlinear) of the constraint, and (ii) specific
methods that are only applicable to a special type of
constraints. Generic methods, such as the penalty
function method, the Lagrange multiplier method,
and the complex search method [3], [7] are popular
because each one of them can be easily applied to
most problems without much change in the
algorithm. Nevertheless, since these methods are
generic, the performance of these methods in most
cases is not satisfactory. However, specific
methods, such as the cutting plane method, the
reduced gradient method, and the gradient
projection method [3], [7], are applicable either to
problems having convex feasible regions only or to
problems having a few variables because of
increased computational burden with large number
of variables. Since genetic algorithms (GAs) are
generic search methods, most applications of GAs

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

340

to constraint optimization problems have used the
penalty function approach of handling constraints
[8], [6]. The penalty function approach involves a
number of penalty parameters, which must be set
right in any problem to obtain feasible solutions.
This dependency of GA’s performance on penalty
parameters has led researchers to devise
sophisticated penalty function approaches such as
multi-level penalty functions [1], dynamic penalty
functions [9], and penalty functions involving
temperature-based evolution of penalty parameters
with repair operators [24]. All these approaches
require extensive experimentation for setting up
appropriate parameters needed to define the penalty
function. Michalewicz describes the difficulties in
each method and compares the performance of
these algorithms on a number of test problems [14].
In a similar study, Michalewicz and Schoenauer
concluded that the static penalty function method
(Without any sophistication) is a more robust
approach than the sophisticated methods [23]. This
is because one such sophisticated method may work
well on some problems but may not work so well in
another problem.
The introduction of the penalty term enables us to
transform a constrained optimization problem (A)
into an unconstrained one (A ′), such as the one
given by (5):

(){ } () () ()(); , 1,...,Min y y f x r g x j mg jnx S
ψ ψ φ= + =

∈ ⊆ℜ
(5)

Where 0φ ≥ is a real-valued function which
imposes a penalty controlled by a sequence of
penalty coefficients rg ,where g is the generation

counter. The general form of φ function includes
both the generation counter (for dynamic penalty)
and the population (for adaptive penalty). In the
current notation, this is reflected in the penalty
coefficient rg .

This transformation (i.e.(5)) has been used widely
in evolutionary constrained optimization [11], [20].
The penalty function method may work quite well
for some problems; however, deciding an optimal
(or near-optimal) value for rg turns out to be a

difficult optimization problem itself! If rg is too

small, an infeasible solution may not be penalized
enough. Hence, an infeasible solution may be
evolved by an evolutionary algorithm. If rg is too

large, a feasible solution is very likely to be found,
but could be of very poor quality. A large
rg discourages the exploration of infeasible

regions, even in the early stages of evolution. This
is particularly inefficient for problems where

feasible regions in the whole search space are
disjointed. In this case, it may be difficult for an
evolutionary algorithm to move from one feasible
region to another unless they are very close to each
other. Reasonable exploration of infeasible regions
may act as bridges connecting two or more
different feasible regions. The critical issue here is
how much exploration of infeasible regions (i.e.,
how large rg is) should be considered as

reasonable.
The answer to this question is problem dependent.
Even for the same problem, different stages of
evolutionary search may require different
rg values.

There has been some work on the dynamic setting
of rg values in evolutionary constrained

optimization [10], [11], and [15].Such work usually
relies on a predefined monotonically nondecreasing
sequence of rg values. This approach worked well

for some simple problems, but failed for more
difficult ones because the optimal setting of
rg values is problem dependent [18]. A fixed and

predefined sequence cannot treat a variety of
different problems satisfactorily. In such cases trial-
and-error process has to be used in order to find a
proper function for rg as is done in [10], [11]. An

adaptive approach, where rg values are adjusted

dynamically and automatically by an evolutionary
algorithm itself, appears to be most promising in
tackling different constrained optimization
problems. For example, population information can
be used to adjust rg values adaptively [21].

Different problems lead to different populations in
evolutionary search, and thus lead to different
rg values. The advantage of such an adaptive

approach is that it can be applied to problems where
little prior knowledge is available because there is
no need to find a predefined rg value (or a

sequence of rg values) that is optimal for this

problem. According to (5), different rg values

define different fitness functions. A fit individual
under one fitness function may not be fit under a
different fitness function. Finding a near-optimal
rg adaptively is equivalent to ranking individuals

adaptively in a population. Hence, the issue
becomes how to rank individuals according to their
objective and penalty values.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

341

A novel method for ranking individuals without
specifying an rg value is proposed. Experimental

studies test the effectiveness and efficiency of this
method which can be regarded as an adaptive
penalty approach.
One approach to avoid setting a hard-to-set
parameter rg is to treat constrained optimization as

a multi-objective optimization where constraints are
regarded as an additional objective function [22],
[2]. However, multi-objective optimization does not
appear to be any easier than constrained
optimization since one has to balance different
objectives in optimization. The rest of this paper is
organized as follows. Section II discusses the
proposed constraint handling method, where
relationship between rg and ranking are described

in more details. The concept of dominance is
introduced, which is somewhat similar to, but not
the same as an early work [20].The analysis of
penalty methods from the point of view of
balancing dominance between the objective and
penalty functions has revealed what penalty
methods are trying to do, and has led to the
development of this new constraint handling
technique which balances such dominance directly
and implicitly in order to improve the effectiveness
and efficiency of constrained algorithms. Section
III describes the details of the implementation of
the evolutionary algorithm for constrained
optimization, and presents the experimental results
on 13 benchmark problems. The results are also
compared with best-known solutions obtained using
earlier Evolutionary Algorithms implementations.
Finally, Section IV ends up with conclusions and
hints at future work.

2. PROPOSED CONSTRAINT HANDLING
METHOD

A. Penalty Method
For a given penalty coefficient 0rg ≥ let the

ranking of n individuals be
() () ... ()1 2y y y nψ ψ ψ≤ ≤ ≤ (6)

Where (); 1, 2,...,y i niψ = is the transformation

function given by (5) for a set of n individuals. Let
us examine the adjacent pair i and i + 1 in the
ranked order

{ }1, 1,..., 11f r f r i ng gi i i iφ φ+ ≤ + + ∈ −+ (7)

Where the notations ()f f xi i= and

()(), (1,...,)g x j mi i iφ φ= = are used for

convenience. We now introduce a parameter
()r ic Which will be referred to as the critical

penalty coefficient for the adjacent pair i and i + 1

() 1

1

f fi ir ic
i iφ φ

−+=
−+

 For 1i iφ φ=/ + (8)

For the given choice of 0rg ≥ , there are three

different cases, which may give rise to the
inequality (7).

1) If 1f fi i≤ + an 1i iφ φ≥ + : The comparison is

said to be dominated by the objective function
and ()0 r r ig c≤ ≤ because the objective

function f plays the dominant role in
determining the inequality. When individuals
are feasible, 1i iφ φ= + and ()r ic →∞ .

2) If 1f fi i≥ + and 1i iφ φ< + : The

comparison is said to be dominated by the
penalty function and ()0 r i rc g≤ ≤ because

the penalty function φ plays the dominant role
in determining the inequality.

3) If 1f fi i< + and 1i iφ φ< + : The

comparison is said to be non-dominated
and () 0r ic < , neither the objective nor the
penalty function can determine the inequality
by itself.

 When comparing nondominant and feasible
individuals, the value of rg has no impact on the

inequality (7). In other words, it does not change
the order of ranking of the two individuals.
However, the value of rg is critical in the first two

cases as rg is the flipping point that will determine

whether the comparison is objective or penalty
function dominated. For example, if rg increased

to a value greater than ()r ic in the first case,
individual i+1 would change from a fitter
individual into a less-fit one. For the entire
population, the chosen value of rg is used for

comparisons will determine the fraction of
individuals dominated by the objective and penalty
functions. Not all possible rg values can influence

the ranking of individuals. They have to be within a
certain range, i.e. l ur r rg g g< < to influence the

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

342

ranking, where the lower bound lrg is the minimum

critical penalty coefficient computed from adjacent
individuals ranked only according to the objective
function, and the upper bound urg is the maximum

critical penalty coefficient computed from adjacent
individuals ranked only according to the penalty
function. In general, there are three different
categories of values.

1) lr rg g< : All comparisons are based only

on the fitness function. rg is too small to

influence the ranking of individuals. We
will call this under penalization.

2) lr rg g> : All comparisons are based only

on the penalty function. rg Is so large that

the impact of the objective function can be
ignored. We will call this
overspecialization.

3) l ur r rg g g< < : All comparisons are based

on a combination of objective and penalty
functions.

All penalty methods can be classified into one of
the above three categories. Some methods may fall
into different categories during different stages in
search. It is important to understand the differences
among these three categories because they indicate
which function (combination of functions) is
driving the search process and how search
progresses. For example, most dynamic methods
start with a low rg value (i.e. lr rg g<) in order to

find a good region which may contain both feasible
and infeasible individuals. Toward the end of the
search, a high rg value (i.e. ur rg g<) is often used

in order to locate a good feasible individual. Such a
dynamic method would work well for problems for
which the unconstrained global optimum is close to
its constrained global optimum. It is unlikely to
work well for problems for which the constrained
global optimum is far away from its unconstrained
one because the initial low rg value would drive

the search toward the unconstrained global
optimum, and thus further away from the
constrained one.
It has been widely recognized that neither under
penalization nor over-penalization is a good
constraint handling technique, and there should be a
balance between preserving feasible individuals and
rejecting infeasible ones [5]. In other words,
ranking should be dominated by a combination of

objective and penalty functions, and so the penalty
coefficient rg should be within the

bounds l ur r rg g g< < . It is worth noting that the

two bounds are not fixed. They are problem
dependent, and may change from generation to
generation as they are also determined by the
current population. It is clear from the analysis in
this section which has been carried out by [19] that
all penalty methods try to obtain the right balance
between objective and penalty functions so that the
search moves toward the optimum in the feasible
space, not just toward the optimum in the combined
feasible and infeasible space. One way to achieve
such balancing effectively and efficiently is to
adjust such balance directly and implicitly. This is
what ranking, described in the next section, does.

3. IMPLEMENTATION OF THE
EVOLUTIONARY ALGORITHM FOR
CONSTRAINED OPTIMIZATION

It is clear from the analysis in this section which
has been carried out by [19] that all penalty
methods try to obtain the right balance between
objective and penalty functions so that the search
moves toward the optimum in the feasible space,
not just toward the optimum in the combined
feasible and infeasible space. One way to achieve
such balancing effectively and efficiently is to
adjust such balance directly and implicitly. This is
what ranking, described in the next section, does.

A. Ranking
To overcome the difficulty of determining the
optimal rg a different approach is suggested in this

section to balance the dominance of the objective
and penalty functions. The following fitness
function is introduced

() () ()*
1

m
fitness x f x rank rank xgf j

φ= + + ∑
=

(9)

Where rank f is the rank of the objective function

values, which takes values in the range of [1 −
population size]. rank g Is the rank of the sum of

the constraints violation for each solution, which
takes values from [(population size + 1)−(2*
population size)]. What (9) above mounts to is that
minimum fitness value and less constraints
violation inevitably leads to best fitness value. By
using rank-based roulette wheel selection [16],
[17], self-adapting is achieved without any extra
computational cost. More importantly, the
motivation of ranking comes from the need for

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

343

balancing objective and penalty functions directly
and implicitly in optimization. Equation (9)
provides a convenient way of balancing the
dominance in a ranked set. The algorithm is listed
below.

B. An Illustrative Example
In this section the ranking based on (9) is discussed
for a simple NLP problem. The purpose of this
section is to show the important effects of the
ranking and not to solve the NLP problem. First,
the results of an actual search are presented, and
then the imposed search direction is discussed.
The problem is as follows. A quadratic function is
to be minimized and the feasible region formed by

1g and 2g constraints is a narrow crescent-shaped

region (approximately 0.7% of the total search
space) with the optimum solution lying on the first
constraint. The problem is stated as follows:

() () ()2 22 211 71 2 1 2f x x x x x= + − + + −

Subject to:

() () ()2 2
4.84 0.05 2.5 01 1 2g x x x= − + − + − ≤

() ()22 2.25 _ 4.84 02 1 2g x x x= − − − ≤ (10)

0 61x≤ ≤ , 0 62x≤ ≤

For the corresponding unconstrained problem the
optimal solution is x* = [3, 2]. For the constrained
problem (10) the optimal solution is x* =
(2.246826, 2.381865) with a function value equal
to f* = 13.59085. The population size is set to 10,
the maximum number of generations is 50, the
mutation probability is set to 0.01, and crossover
probability is set to 0.9. The initial generation is
shown in Figure 1. The rank of initial generation
according to (9) is also given in the figure. The best
solution in the initial generation corresponds to
ranking 1. Figure 1shows clearly that the search
direction is towards the feasible region in the initial
generation.
Figure 2 shows the ratio of feasible solutions, the
mean normalized Euclidean distance and the ratio
between the true optimum and the best-found
feasible objective value. To avoid premature
convergence it is crucial to have sufficient diversity
in the population. Such diversity in the population
is achieved by using rank-based roulette wheel
selection [16], [17]. The first feasible solution is
found in generation 5. In the early generations (5 to
8) the number of feasible individuals increases
rapidly. In generation 10 all individuals are feasible
and the improvement in the objective function by
generation 30 is very close to the optimum since the

population has converged too fast. To make this
variation of the search direction clearer, two
populations with different ratios of feasible
individuals are studied in figures 3 and 4. In both
figures an infeasible individual is created by a
mutation. This individual is better than all the
feasible individuals in terms of the objective value,
f(x). Due to the rank in Equation (9), this infeasible
individual becomes the best individual. The search
is then directed out of the feasible region towards
the unconstrained optimum and as a result better
feasible solutions are found.

Fig.1. Initial generation (black circles) shown in decision space.
The red circle indicates the best solution based on equation (9),
the black star is the optimum solution

Fig. 2. Search results for problem (10)

This example shows the dynamic behavior of the
search direction. The variation of the search
direction has a positive effect for the population
diversity. Thus, no special operation to preserve the
diversity in the population is required for most

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

344

cases. In the next section the method is evaluated
using a set of selected test problems gathered from
the literature.

Fig. 3. Rank according to Equation (9) for a population.

Fig. 4. Rank according to Equation (9) for a population.

C. Experimental Results and Discussions

The thirteen benchmark functions chosen from
[12], [14] contain characteristics that are
representative of what can be considered “difficult
global optimization problems” for an evolutionary
algorithm. To get an estimate of how difficult it is
to generate feasible points through a purely random
process, Mezura and Carlos [13] computed the ρ
½ metric (as suggested by Michalewicz and
Schoenauer [23]) using the following expression:

| |
| |
F
S

ρ = (11)

where |S| is the number of random solutions
generated (|S| = 1000000 in their case), and |F| is
the number of feasible solutions found (out of the
|S| total solutions randomly generated).
The values of ρ for each of the functions chosen
are shown in Table I, where n is the number of
decision variables, LI is the number of linear
inequalities, NI the number of nonlinear
inequalities, LE is the number of linear equalities,
and NE is the number of nonlinear equalities.

Problems g02, g03, g08, and g12 are maximization
problems. They are transformed into minimization
problems using −f(x). For each of the benchmark
problems, 50 independent runs are performed. All
experiments are performed in MATLAB.
In [4] Deb tested his method on nine different
problems of which test problems #1 to test problem
#6. These problems are a subset of the test
problems considered in this study. The results
obtained by the proposed method in this paper are
compared to the results obtained by Deb on all
these six test problems. Furthermore, Deb stated
that “in all cases, the proposed approach has been
able to repeatedly find solutions closer to the true

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

345

optimum solution than that reported earlier.”
Therefore, a fair comparison to the results reported
in [4] should give good indication of the
performance of the method presented in this paper.

The source code may be obtained from the authors upon request

The GA parameters used in this study are presented
in Table II for each problem. Then, the results for
this algorithm are compared to the best results
reported in [4].
First, some typical search results for the problems
are presented in Figure 5 to Figure 17. These
figures show the ratio of feasible solutions, the
mean normalized Euclidean distance and the ratio
between the optimal solution and the best-found
feasible solution.
Obviously, the easiest problem is the test problem
g12. Near optimal solutions are found in early
generations. Surprisingly, the most difficult of these
thirteen problems for this method are test problems
g05, g07 and g13 where the ρ metric is 0% as
shown in Table I. The results for adaptive GA-
RRWS algorithm are now compared to the best
results for all tested methods in [4] and summarized
in Table III. The problems g02, g03, g05, g06, g08,
g11, and g12 are not a part of the test problems
studied in [4].
As can be seen from Table III, adaptive GA-RRWS
algorithm outperforms the Deb method [4] in all the
problems except problem g13 where the algorithm
fails to get solutions close to the optimum which
requires further research and modification.
The best found results of the 50 independent runs
for adaptive GA-RRWS algorithm are almost better

than the results reported by Deb. For these
problems the variation in the best results found is
less for the proposed method than those reported in
[4]. It should be mentioned, however, that the
results presented by Deb are based on tournament
selection with a niching method that required two
extra parameters. Furthermore, the maximum
number of generations for the results of test
problem g01 in [4] is not known. Hence it is
difficult to make a fair comparison of the results on
this problem.

For all the test problems the algorithm has
consistently found solutions closer to the optimal
solution for all 50 runs.
Deb used 50 Independent runs. The maximum
function evaluations equal to product of the
maximum number of generations and population
size. The table IV shows why the proposed
approach is outperforming the approach used by
Deb. Deb did not show the maximum number of
generations for problem g01, so we cannot compare
with it.
From the table IV, this comparison between Deb’s
method and the proposed method shows that the
proposed method has outperformed Deb’s method
with gain 52.25%.

4. CONCLUSIONS AND FUTURE WORK

This paper has proposed a new constraint
handling technique based on ranking called
Adaptive GA-RRWS. Ranking is motivated by the
analysis of penalty methods from the point of view
of dominance. The balance between the objective
and penalty functions is achieved through rank and
the fitness function (9). The introduction of rank
and using that rank in the fitness function enables
the algorithm to bias toward the global optimum.
The proposed method could get solutions closer to
the optimum solution on twelve test problems and
fails in getting any good solution on problem g13
which requires further research and modification.

The new constraint-handling technique was
tested on a set of 13 benchmark problems.
Experimental results have been presented and have
outperformed Deb’s method with gain 52.25%. The
future work of this study includes the application of
ranking to other types of evolutionary algorithms.
The Adaptive GA-RRWS algorithm does not

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

346

introduce any specialized variation operators, and
does not require a priori knowledge about a
problem since it uses adaptive penalty coefficient
rg in a penalty function.

REFRENCES:

[1] X. Qi A. Homaifar, S.H.-V. Lai. “Constrained
optimization via genetic algorithms”.
Simulation, 62(4):242–254, 1994.

[2] E. Camponogara and S. N. Talukdar. “A
genetic algorithm for constrained and
multiobjective optimization”. In Jarmo T.
Alander, editor, 3rd Nordic Workshop Genetic
Algorithms and Their Appl.(3NWGA), pages
49–62, Finland, 1997. Univ. Vaasa.

[3] K. Deb. “Optimization for Engineering
Design: Algorithms and Examples”. Prentice-
Hall, New Delhi, 1995.

[4] K. Deb. “An efficient constrained handling
method for genetic algorithms”. Computer
Methods in Applied Mechanics and
Engineering, 1999.

[5] M. Gen and R. Cheng. “Genetic Algorithms
and Engineering Design”. Wiley, New York,
1997.

[6] D. E. Goldberg. “Genetic Algorithms in
Search, Optimization, and Machine Learning”.
Addison-Wesley, New York, NY, 1989.

[7] K.M. Ragsdell G.V. Reklaitis, A. Ravindran.
“Engineering Optimization Methods and
Applications”. Wiley, New York, 1983.

[8] J. H. Holland. “Adaptation in Natural and
Artificial Systems”. University of Michigan
Press, Ann Arbor, MI, 1975.

[9] C. R. Houck J.A. Joines. “On the use of
nonstationary penalty functions to solve
nonlinear constrained optimization problems
with GAs”. In Z. Michalewicz, editor,
International Conference on Evolutionary
Computation, pages 579–584, Piscataway,
1994. IEEE Press.

[10] J. Joines and C. Houck. “On the use of
nonstationary penalty functions to solve
nonlinear constrained optimization problems
with GAs”. In IEEE Int. Conf. Evolutionary
Computing, 1994.

[11] S. Kazarlis and V. Petridis. “Varying fitness
functions in genetic algorithms: Studying the
rate of increase in the dynamic penalty terms”.
In Parallel Problem Solving from Nature, pages
211–220, 1998.

[12] S. Koziel and Z. Michalewicz. “Evolutionary
algorithms, homomorphous mappings, and
constrained parameter optimization”. Evol.
Comput., 7(1):19–44, 1999.

[13] Coello C.A.C. Mezura-Montes, E. “A simple
multimembered evolution strategy to solve
constrained optimization problems”. IEEE
Trans, Evolutionary Computation, 9(1):1–17,
2005.

[14] Z. Michalewicz. “Genetic algorithms,
numerical optimization, and constraints”. In
Eshelman, editor, the Sixth International
Conference on Genetic Algorithms, pages 151–
158, San Mateo, 1995. Morgan Kauman.

[15] Z. Michalewicz and N. Attia. “Evolutionary
optimization of constrained problems”. In A.
V. Sebald and L. J. Fogel, editors, 3rd Annu.
Conf. Evolutionary Programming, page 98108,
River Edge, 1994. World Scientific.

[16] Omar Al Jadaan, Lakshmi Rajamani, C. R.
Rao. “Improved selection operator for GA”.
Journal of Theoretical and Applied Information
Technology, 4(4):269277, 2008.

[17] Omar Al Jadaan, Lakshmi Rajamani, C. R.
Rao. “Parametric study to enhance genetic
algorithm performance, using ranked based
roulette wheel selection method”. In
InSciT2006, volume 2, pages 274–278,
Merida, Spain, 2006.

[18] C. R. Reeves. “Genetic algorithms for the
operations researcher”. INFORMS J.
Comput., 9(3):231–247, 1997.

[19] Thomas P. Runarsson and Xin Yao.
“Stochastic ranking for constrained
evolutionary optimization”. IEEE Transactions
on Evolutionary Computation, 4(3):284294,
2000.

[20] W. Siedlecki and J. Sklansky. “Constrained
genetic optimization via dynamic reward-
penalty balancing and its use in pattern
recognition”. In Int. Conf. Genetic Algorithms,
pages 141–149, 1989.

[21] A. E. Smith and D. W. Coit. “Handbook on
Evolutionary Computation, chapter Penalty
functions”, pages C5.2:1–C5.2:6. Oxford Univ.
Press, Oxford, U.K., 1997.

[22] P. D. Surry and N. J. Radcliffe. “The
COMOGA method: Constrained optimization
by multiobjective genetic algorithms”. Contr.
Cybern., 26(3), 1997.

[23] M. Schoenauer Z. Michalewicz. “Evolutionary
algorithms for constrained parameter
optimization problems”. Evolutionary
Computation, 4(1):1–32, 1996.

[24] N. Attia Z. Michalewicz. “Evolutionary
optimization of constrained problems”. In L.J.
Fogel A.V. Sebald, editor, the Third Annual
Conference on Evolutionary Programming,
pages 98–108, Singapore, 1994. World
Scientific.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

347

Algorithm 1 Adaptive GA-RRWS

1: Initialize Population P
2: Generate random population − size N
3: Evaluate objective values and constraints
4: Calculate the rank of objective values

Rf for each solution []1R Nf ∈ −

5: Calculate the rank of the sum of the
constraints violation Rf for each solution

()1 2R N Nf ∈ + −⎡ ⎤⎣ ⎦

6: Assign fitness values based on (9) for each
solution in P

7: Generate offspring Population Q from P
8: {Ranked based Roulette Wheel Selection
9: Recombination and Mutation
10: Evaluate objective values and constraints }
11: For g=1 to G do
12: Calculate the rank of objective values

fR for each solution in the combined
population [], 1 2P Q R Nf∪ ∈ −

13: Calculate the rank of the sum of the
constraints violation fR for each solution
in the combined population

() (), 2 1 4P Q R N Ng∪ ∈ + −⎡ ⎤⎣ ⎦

14: Assign fitness values based on (9) for each
solution in the combined population
P Q∪

15: P = Select the best N members of the
combined population based on Fitness
values to make the population of the next
generation

16: Q = Create next generation from P {
17: Ranked based Roulette Wheel Selection
18: Recombination and Mutation
19: Evaluate objective values and constraints }
20: end for

APPENDIX
TEST FUNCTION SUITE

All benchmark functions with the exception of g13
are described in [14]. They are summarized here for
completeness.

1) g01

Min 4 4 132() 5 5
1 1 1

f x x x xi i ii i i
= − −∑ ∑ ∑

= = =

Subject to:
() 2 2 10 01 1 2 10 11g x x x x x= + + + − ≤

() 2 2 10 02 1 3 10 12g x x x x x= + + + − ≤

() 2 2 10 03 1 3 11 12g x x x x x= + + + − ≤

() 8 04 1 10g x x x= − + ≤

() 8 05 2 11g x x x= − + ≤

() 8 06 3 12g x x x= − + ≤

() 2 07 54 10g x x x x= − + + ≤

() 2 078 6 11g x x x x= − + + ≤

() 2 09 8 9 12g x x x x= − + + ≤

Where the bounds are ()0 1 1, ..., 9x ii≤ ≤ = ,

()0 100 10,10,12x ii≤ ≤ = and 0 113x≤ ≤ the
global minimum is at

* (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)x = where six
constraints are active (g1, g2, g3, g7, g8, and g9 and
f(x*) = −15.

2) g02

MAX
()4 2cos 2 cos ()1 1()

2
1

nn x xi i i if x
n ixi i

− Π∑ = ==
∑ =

Subject to:

() 0.75 01 1

n
g x x ii

= − Π ≤
=

() 7.5 01 1

n
g x x nii

= − ≤∑
=

Where n = 20 and 0 10(1,...,10)x ii≤ ≤ = .

The global maximum is unknown; the best we
found is f(x*) = 0.803619 (which, to the best of our
knowledge, is better than any reported value),

1g constraint is close to being active 8(10)1g −= − .

3) g03

Max () ()
1

nnf x n x ii
= Π

=

Subject to:
2() 1 01 1

n
h x x ii

= − =∑
=

Where n = 10 and 0 1(1,...,)x i ni≤ ≤ = the global

maximum is at 1* (1,...,)x i ni n
= = ; where

f(x*) = 1.

4) g04
Min 2() 5.3578547 0.08356891x 53 1f x x x= +

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

348

37.293239x - 40792.1411+

Subject to:
g () 85.334407 + 0.0056858x x51 2x =

0.0006262x x -0.0022053x x -92 051 4 3+ ≤

g () -85.334407 - 0.0056858x x52 2x =

+0.0006262x x -0.0022053x x 051 4 3 ≤

g () 80.51249 + 0.0071317x x53 2x =

2+0.0029955x x +0.0021813x 110 01 2 3 − ≤

g () -80.51249 - 0.0071317x x54 2x =

2+0.0029955*x x -0.0021813x +90 01 2 3 ≤

g (x)=9.300961+0.0047026x x5 53

+0.0012547x x +0.0019085x3x4-25 01 3 ≤

g (x)=-9.300961-0.0047026x x56 3

-0.0012547x x -0.0019085x x -20 01 3 3 4 ≤

Where
78 x 102, 33 x 45, 27 x 45 (i = 3, 4, 5)1 2 i≤ ≤ ≤ ≤ ≤ ≤

the optimum solution is x* = (78, 33,
29.995256025682, 45, 36.775812905788)
where f(x*) = −30665.539. Two constraints are
active
(g and g)1 6 .

5) g05

Min 3 3
1 1 2 2() 3 0.000001x +2x +(0.000002/3)xf x x= +

Subject to:
 () 0.55 01 4 3g x x x= − + − ≤

() 0.55 02 3 4g x x x= − + − ≤

() 1000 sin(-x -0.25) + 1000 sin(-x -0.25)3 3 4h x =

+ 894.8-x =01

() 1000sin(x -0.25) + 1000 sin(-x -x -0.25)4 3 3 4h x =

+ 894.8-x =02

() 1000 sin(x -0.25) + 1000 sin(-x -x -0.25)5 4 4 3h x =

+1294.8=0
Where 0 1200, 0.55 0.551,2 3,4x x≤ ≤ − ≤ ≤ .The

best known solution [12] x* = (679.9453,
1026.0670.1188764 − 0.3962336)
Where f(x*) = 5126.4981.

6) g06

Min 3 3() (10) (20)1 2f x x x= − + −

Subject to:
5 2() (5) (5) 100 01 1 2g x x x= − − − − + ≤

2 2() (6) (5) 82.81 02 1 2g x x x= − − − + ≤

Where 13 1001x≤ ≤ and 0 1002x≤ ≤ . The

optimum solution is * (14.095, 0.84296)x = . Both
constraints are active.

7) g07
Min 2 2() 14 161 2 1 2 1 2f x x x x x x x= + + − −

 2 2 2(10) 4(5) (3)53 4x x x+ − + − + −

 2 2 22(1) 5 7(11)76 8x x x+ − + + −

 2 22(_10) (0 7) 459 1x x+ + − +

Subject to:
 () 105 4 5 3 9 071 1 2 8g x x x x x= + + − + ≤

() 10 8 17 2 072 1 2 8g x x x x x= − − + ≤

() 8 2 5 2 0 12 03 1 2 9 1g x x x x x= − + + − − ≤

2 2 2() 3(2) 4(3) 2 7 120 04 1 2 3 4g x x x x x= − + − + − − ≤

2 2() 5 8 (6) 2 40 05 1 2 3 4g x x x x x= + + − − − ≤

2 2() 2(2) 2 14 6 056 1 2 1 2 6g x x x x x x x= + − − + − ≤

2 2 2() 0.5(8) 2(4) 3 30 07 51 2 6g x x x x x= − + − + − − ≤

2() 3 6 12(8) 7 0 08 1 2 9 1g x x x x x= − + + − − ≤

Where 10 10, (1,...,10).1x i− ≤ ≤ =

The optimum solution is *x = (2.171996, 2.363683,
8.773926, 5.095984, 0.9906548, 1.430574,
1.321644, 9.828726, 8.280092, and 8.375927).
 Where *()f x =24.3062091. Six constraints are
active 1 2, 3 4 5(, , ,g g g g g and 6)g .

8) g08

 Min
3sin(2) sin(2)1 2() 3()1 1 2

x x
f x

x x x

π π
=

+

Subject to:
 2() 1 01 1 2g x x x= − + ≤

 2() 1 (4) 02 1 2g x x x= − + − ≤

Where 0 101,2x≤ ≤ . The optimum is located at

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

349

*x = (1.2279713, 4.2453733) where *()f x =
0.095825. The solution lies within the feasible
region.

9) g09
Min 2 2() (10) 5(12)1 2f x x x= − + −

 2 2 6 2(3) 3(11) 10 754 6x x x x+ + − + +

 4 4 10 87 7 76 6x x x x x+ − ∗ − −

 Subject to:

2 4 2() 127 2 3 4 5 051 1 2 3 4g x x x x x x= − + + + + + ≤

 2() 282 7 3 10 052 1 2 3 4g x x x x x x= − + + + + − ≤

 2 2() 196 23 6 8 073 1 2 6g x x x x x= − + + + − ≤

2 2 2() 4 3 2 5 11 074 1 2 1 2 3 6g x x x x x x x x= + − + + − ≤

Where 10 10x i− ≤ ≤ for (1,...,7)i = .

The optimum solution is *x =(2.330499, 1.951372,
0.477544, 4.365726, 0.6244870, 1.03131,1.594227)
Where *()f x = 680.6300573. Tow constraints are
active (1g and 2g).

10) g10

Min () 1 2 3f x x x x= + +

Subject to:
() 1 0.0025() 01 4 6g x x x= − + + ≤

() 1 0.0025() 05 72 4g x x x x= − + + − ≤

() 1 0.01() 053 8g x x x= − + − ≤

() 833.33252 100 83333.333 04 1 6 4 1g x x x x x= − + + − ≤

() 1250 1250 05 7 52 2 4 4g x x x x x x x= − + + − ≤

() 1250000 2500 05 56 3 8 3g x x x x x x= − + + − ≤

Where 100 10000,1000 10001 2,3x x≤ ≤ ≤ ≤ ,and

10 1000x i≤ ≤ , for (4,...,8)i = .

The optimum solution is *x =(579.3167, 1359.943,
5110.071, 182.0174, 295.5985, 217.9799,
286.4162, 395.5979) where *()f x =7049.3307.
Three constraints are active (1 2,g g and 3g).

11) g11
Min 2 2() (1)1 2f x x x= + −

 Subject to:
2() 02 1h x x x= − =

Where 1 11,2x− ≤ ≤ . The optimum solution is:

*x = 2,1/ 2± where *()f x =0.75.

12) g12
Min

2 2 2() (100 (5) (5) (5)) /1001 2 3f x x x x= − − − − − −
Subject to:

2 2 2() () () () 0.0625 01 2 3g x x p x q x r= − − + − − ≤

Where 0 101,2,3x≤ ≤ and p, q, r =1,…, 9 the

feasible region of the search space consists of
disjointed 3g spheres.
A point (, ,)1 2 3x x x is feasible if and only if there

exist p, q, r such that the above inequality holds.
The optimum is located at *x = (5,5,5) where

*()f x =1.
The solution lies within the feasible region.

13) g13

Min 51 2 3 4() exp
x x x x x

f x =
Subject to:

2 2 2 2 2() 10 051 1 2 3 4h x x x x x x= + + + + − =

() 5 052 2 3 4h x x x x x= − =

3 3() 1 03 1 2h x x x= + + =

Where 2.3 3.2, 3.2 3.21,2 3,4,5x x− ≤ ≤ − ≤ ≤ .

The optimum solution is *x =1.717143, 1.595709,
1.827247, 0.7636413, 0.763645 where

*()f x =0.0539498.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

350

 Fig. 5. Typical result for problem g01.

 Fig. 6. Typical result for problem g02.

 Fig. 7. Typical result for problem g03.

 Fig. 8. Typical result for problem g04.

 Fig. 9. Typical result for problem g05.

 Fig. 10. Typical result for problem g06.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

351

 Fig. 11. Typical result for problem g07.

 Fig. 12. Typical result for problem g08.

 Fig. 13. Typical result for problem g09.

 Fig. 14. Typical result for problem g10.

 Fig. 15. Typical result for problem g11.

 Fig. 16. Typical result for problem g12.

 Fig. 17. Typical result for problem g13.

