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A NECESSARY AND SUFFICIENT CONDITION FOR 
OUTPUT FEEDBACK  

STABILIZABILITY: APPLICATION FOR ATTITUDE 
CONTROL SYSTEMS OF MICRO SATELLITE. 

 
ABSTRACT 

 In this paper, we deal with the attitude control of a satellite equipped with wheels of reaction, using the 
static output feedback. In the first part, we set the control and its integral in the state-feedback form. Then, 
by using the algorithm of Kucera, we establish the necessary and sufficient conditions so that the nonlinear 
system which models the satellite will be stabilizable by the Static Output Feedback. Thereafter, we present 
the robust stabilization of the attitude control; this robustness is influenced by the parametric uncertainly of 
the model and by the input noise in the system. The main results of this paper show that the sufficient 
conditions for the existence of the robust static output feedback control can stabilize the studied system. 
The controller proposed here is based upon a generalization of Gronwall’s lemma. 
 
Keywords: - Pole placement; satellite; attitude control; attitude stabilization; robustness; Bellman –

Gronwall; Output feedback. 
 
1 INTRODUCTION 
 
  In the aeronautic area, the attitude control is 
essential in the automatic control researches 
because of the severe criteria imposed by 
schedules of conditions, in terms of accuracy and 
robustness, the interest of such a system also 
resides in structural considerations, these 
nonlinear systems, actually multivariable and 
strongly sensitive to disturbances, represent 
benchmarks for checking the control laws to be 
synthesized for less constrained industrial 
systems. In addition, several works were 
established on the attitude control using various 
approaches, in particular PID regulators [8], 

quadratic regulation (LQR) [6], robust control [3, 
4]. In several works, simplified linear models 
have been considered but they neglect a part of 
the dynamic system or are based on an adaptive 
identification which may weigh down the 
calculations of the control laws. 

Our results are based on a nonlinear model 
which avoids any simplifications, as opposed to 
many reference works. Generally a model is only 
one approximate representation of the studied 
system. Therefore one should take into account 
two parameters: the origin of uncertainties and the 
validity of the control laws calculated on the basis 
of imperfect representation of the system. The 
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modelling of an earth-pointing satellite is subject 
to a certain number of idealizations which many 
result from the uncertainties of the model. Among 
the various of uncertainties, we can quote in 
particular: 

- The inaccuracy on the parameters of the 
model, 

- Parametric variations, often related to the 
operating conditions of the satellite, 

- External disturbances (solar pressure of 
radiation for example which acts on 
surfaces of the vehicle, disturbing the 
orbit and the attitude…). 

Static output – feedback, (SOF), despite its 
apparent simplicity, is one of the most researched 
problems in control theory and applications; see 
for example the survey by V.L.SYRMOS et al 
(1997), [13] which includes analytical and 
computational methods in the control of linear 
time invariant (LTI) systems. The static output 
feedback problem is to find a static or constant 
feedback gain to fulfil certain desirable 
characteristics. Stability is the most important 
one.  
In this paper, we present a necessary and 
sufficient condition, so that the attitude control 
system of micro – satellite can be stabilizable by 
static output feedback, in the second part, we will 
study the robustness of the static output feedback; 
control related to uncertainties of the parameters 
and to input noise of the system. [1,2]. The proof 
of controlled system stability is established using 
the generalization of the Bellman-Gronwall 
lemma [5, 9].  
 
 
2  STRUCTURE OF MICRO SATELLITE: 

 
 The dynamic model of a satellite with earth 
pointing, using a SCA 3axes maneuvered by the 
reaction wheels and the magneto couplers (MC), 
and evolving under the disturbances, results from 
the equations of the dynamics and the cinematic 
movement of the satellite[11,8,12].The 
mathematical model of the system is that given by 
the following state space representation:  [3]: 
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where :  

0)0( xx =  

ntx ℜ∈)( , the state representing respectively 
the Eulerian angles and their derivatives. 

( ))(),(),()( 321 tutututu =  = )(th w
•−  is the 

control with   hw(t) is the angular momentum of 
the wheel cluster; 

GandECBA i,,,  are matrices with respectively 
),();,();,();,();,( pnnnnppnnn  dimensions. 

 
 
3 STATIC OUTPUT FEEDBACK 

STABILIZATION: 
 

In this section, we consider the system of 
attitude control for the satellite described by the 
nonlinear model above. We will carry out the 
synthesis, by steps, of the stabilizing control.   

 
 LINEAR SYSTEM STABILIZATION 
 

Neglecting the quasi-bilinear term in the 
system of equation (1), we obtain the following 
linear system:  
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 Where x (0) =x0       
 
Proposition: 
Consider the system described by the simplified 
model (2), and let the pair (A1, B1) be 
controllable, with:   
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There exists a state feedback of the form  

)()( tKxtu −=  that stabilizes the system. 
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Where I and 0 are respectively identity and null 
matrix. 
Let:  
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(5)                                                             Where: 

p)p,(n is   and p)np,(n is 
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If the pair (A1, B1) is controllable, then there is a 
linear state feedback allowing the system (5) to be 
stable. To design this control, we will use pole 
placement; this pole placement allows having a 
relation between u(t) and its integral 

∫−−=
t
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021 )()()(                                         

(6)                               
 Poles placement: 
Let us seek a gain matrix K such as )( 11 KBA −  is 
asymptotically stable, and then stabilizes the 
system (5). 
Hence:   
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Remark:  K2 is chosen to be invertible (p, p) 
matrix. 
So we have: 
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Let us replace this integral in the linear system 
(2), we obtains: 
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Such as:    
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 The system (2) becomes: 
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Let us consider the following static output 
feedback 

Fyu −=                            (10)                                   
F is a matrix. We say that the system (9) is output 
feedback stabilizable if there exists a feedback 
control law (10) such that the matrix FCBA 22 −  
has all its eigenvalues with negative real part. 
Such matrices will be called stable. 
We recall some standard terminology.  
The pair (A2, B2) is said to be stabilizable if there 
exists a real matrix K such that  KBA 22 +  is 
stable. 
 The pair (A2, C) is said to be detectable if there 
exists a real matrix L such that LCA +2  is stable. 
Theorem 3.1. The system (9) is output feedback 
stabilizable if and only if: 

 (i) (A2, B2) is stabilizable and (A2, C) is 
detectable, and 

(ii) There exist real matrices F and G such that 

      GPBFC T =+ 2                                                 
(11)                                               
Where P  is the real symmetric nonnegative-
definite solution of: 

02222 =++−+ GGCCBPBPAPA TTTT                 
(12) 
Proof. To prove necessity, suppose that 

FCBA 22 + is stable for some F . Then ),( 22 BA  
is stabilizable, since KBA 22 +  is stable 
for FCK = , and ),( 2 CA  is detectable, since 

LCA +2 is stable for FBL 2= . This proves (i). 
Since FCBA 22 +  is stable, there exists (Wonham, 
1985) [14] a unique symmetric nonnegative-
definite matrix P  such that 

0)()( 2222 =+++++ FCFCCCFCBAPPFCBA TTTT         
(13) 
Rearranging (13), we obtain 

0)()( 222222 =++++−+ PBFCPBFCCCPBPBPAPA TTTTTT

 
Hence setting PBFCG T

2+=  implies that (ii) is 
verified. 
To prove sufficiency, suppose that (i) and (ii) 
hold. It follows from (ii) that (13) is satisfied. 
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From (i), the detectability of ),( 2 CA , implies that 
LCA +2  is stable for some L. Noting that 
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C

FCBA ),( 22
 )is detectable 

as well. Since P is symmetric and nonnegative-
definite, we conclude (Wonham, 1985, Lemma 
12.2) [14] from (13) that FCBA 22 +  is stable.  
Algorithm:  
The problem is how to calculate a stabilizing 
feedback gain F; many algorithms that provide an 
output stabilizing gain F use different principles. 
We use in this section, the following algorithm 
(proposed by Kucera) [7] with iterates the 
algebraic Riccati equation (12) up until a 
weighting matrix G is found that satisfies the 
constraint (11). 
Step 1.set i=0 and Gi=0. 
Step 2. Solve the equation 

02222 =++−+ i
T

i
TT

iii
T GGCCBBPAPPA  

For iP  symmetric and nonnegative-definite. 
Step3. Set  

      ,)( 1
1 i

TTT
i

T
i PBCCCCPBG += −
+  

Increase i by 1 and go to step 2. 
 
If the sequence P0, P1, P2 …converges, say to 

P, both (11) and (12) will be satisfied for 

,)( 1−= TTT CCPCBF  
Thus yielding one particular output stabilizing 
gain. The convergence remains to be proved, 
however.  
The closed loop system is: 

( )txFxKBAtx 0022 )()( =−=&                                    
(14)                                   
The eigenvalues of the matrix F0, λi (λi ≠λj pour 
i ≠ j) are such as Re (λi)<0. Hence the system that 
models the satellite attitude movement is stable.  
The following result enables us to give the 
stability conditions of the nonlinear system. 
 

 
  APPLICATION TO THE NON LINEAR 
SYSTEM STABILIZATION  
 
 Consider the non linear system (1) that 
models the satellite: 
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It’s easy to see that the non linear system can be 
written in the following form: 
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(15)                           
Where, according to the previous calculation, F0 
is asymptotically stable. 
The matrix F0 is asymptotically stable, then from 
the Hille-Yoshida theorem, there exists M>0 and 
ω<0 such as: 

wttF eMet   :0 0 ≤≥∀                                                    

(16)                                           

Theorem 3.2:  
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For Rx ≤0 , the system (15) controlled by the 

linear state feed back: ( ) Fytu −=  
And then is asymptotically stable. 
Where: iδ  is a matrix that depends on the control 
choice. 
Proof: 
From (1), (9) and (15), we can write: 
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With: ii FCKKK )()( 1
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The studied system is: 
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The solution of the system (19) is : 
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Application of Hille-Yoshida theorem leads to: 
The matrix F0 is asymptotically stable, if there 
exists M>0 and ω<0 such as: 
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From the Bellman – Gronwall lemma [9]: 
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4  ROBUSTNESS RELATIVE TO THE 

UNCERTAINTIES OF THE 
PARAMETERS: 
 

Consider the non linear system (1): 
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We showed in first section that: 
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And K1 and K2 are the gains matrixes chosen at 
the pole placement; 
The system (20) can be written under the 
form:
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We suppose that the uncertainties are bounded in 
module, i.e.: there exist, some constants a, b, g ,c 
and e such as: 
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One has the following result that shows that the 
system (21) controlled by  
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can tolerate variations of the parameters of the 
model. 
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Theorem 4: 
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Proof: 
The system (20) controlled by  
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Therefore the previous inequality can be written 
under the following form: 
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Let us apply generalization of the Gronwall-
Bellman lemma [5, 9]; for that, let us notice 
initially that the hypothesis (H) is verified. i.e.: 
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Consequently, this generalization makes it 
possible to have: 
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This result shows well that the control law 
elaborate continues to stabilize the system in spite 
of the variations of its parameters. What ensures 
its robustness relative to uncertainties. 
 
 
5  ROBUSTNESS RELATIVE TO INPUT 

NOISE: 
 
We consider the non linear perturbed system 

representing the 
satellite:

)(.))()()(()( )()(
3

1
022

.
tpDtxEdssutuBtxAtx

t

ii +++= ∑ ∫
  (24) 
Where:   

0
)0( xx =  

And : 

1
22

1
1

22A
−

−

−=

−=

GKBB
KGKA

 
ntx ℜ∈)(  denotes the state vector ;  

( ))(),(),()( 321 tutututu =  the control. 
)(tp  is the input noise. DandGECBA i ,,,,  are 

constant known matrices of appropriate 
dimensions. 
Consider again the control by static output 
feedback 

Fytu −=)( . 
Thus, the system (24) can be written under the 
form: 

)(.)(.))(()()(
3

1
0

.
tpDtxEtxtxFtx ii ++= ∑ δ             

(25) 
Where:   

)( 220 FCBAF −=  
and : 

 ii FCKKK )( 1
21

1
2

−− +−=δ  
Theorem 5: 
For the input noise such that: 

)1()(
0

0∫
∞

+−≤
w
xM

DM
wdttp

τ                             
(26) 
The system (25) controlled by  

)()( tFytu −=   
satisfies for all t ≥0 

∫ ∫
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⎥
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⎤
⎢
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⎡
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⎝
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w
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And then is stable. 

Where:  ∑
=

=
p

i
ii EM

1

δτ  

And  ii FCKKK )( 1
21

1
2

−− +−=δ  
Ln: denotes the Neperian logarithm. 
Proof: 
The solution of system (25) is given by: 
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Using the Bellman-Gronwall’s lemma [5, 9], we 
obtain: 
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Integrating from 0 to t: 
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g(t) Decreases from g(0)=1 to 

∫
+∞

−=
0

;)(1 dssle sωδβ
 

Show that hypothesis (26) implies β >0.then: 
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 Using the theorem of Fubini, one obtains [9]: 
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It follows that hypothesis (20) that: β > 0. 

And as: ∫−=
t sdsesltg
0

.).(1)( ωτ is an 

increasing function. From g(0)=1 to β>0, then : 
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Therefore: 
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Using (30), one 
obtains:

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ −−=

−
≤

⎥⎦
⎤

⎢⎣
⎡≤

∫
∫

∫
t s

t s

t

tt

dssle
dt
d

dssle

etltx

dssxetlsx

0

0

0

)(1ln1

)(1

).()(

)(.exp)()(

ω

ω

ω

ω

τ
ττ

τ

 
(30) Implies: 
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So the static output feedback law Fytu −=)(  is a 
robust control for the perturbed system (24). 
 
 
6 CONCLUSION 

 
   We have obtained the necessary and 
sufficient condition for output feedback 
stabilizability for a micro satellite and an iterative 
algorithm has been presented to compute the 
stabilizing gain. 
In the first part, we simplified the system by 
treating only its linear part; then we proposed a 
control law by static output feedback. 
We generalized this control (SOF) to the non 
linear model of the micro satellite, and we studied 
the robustness of the control related to 
uncertainties of the parameters and to external 
variation of the disturbance. 
The synthesis of the control suggested is based on 
the solution of the state space equation and on the 
Bellman-Gronwall lemma. 
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