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ABSTRACT 

We review work on image-based 3D modelling. 3D modelling entails the availability of complete 3D coordinates, and 
yet obtaining the coordinates is one of the most difficult tasks. Resorting to using 2D images appears a promising 
means to achieve this task and has been much reported. Prevalent methods are the shape from shading, photometry, 
stereopsis, photogrammetry and the video approach. Shape from shading takes minimal input (one image) but requires 
huge mathematical complexity. Photometry takes in at least twice as much input but produces more accurate results. 
Stereopsis takes in input of similar order but offers even better accuracy with less mathematical complexity. 
Photogrammetry uses even more input and produces good results in some types of applications. Video approach does 
away with assumptions in the previous methods and produces good results. However, stereopsis, photogrammetry and 
video approaches suffer from the correspondence problem. 

Keywords: Shape from shading, photometry, stereopsis, photogrammetry and shape from video. 

 

1 INTRODUCTION 

 
In 3D applications, geometrical objects such as 

spheres or regular polyhedrons can be easily 
modelled. When irregular objects like those of 
human being and animals need to be incorporated, 
the task becomes more challenging and daunting. 
The main problem lies in determining the 3D 
coordinates. Some techniques have already been 
deployed to address this issue. Horn’s seminal 
work to acquire 3D data from a single image 
(hence termed ‘shape from shading’) was notable 
(Horn, 1970). Decent results were obtained with 
specific assumptions (Bichsel & Pentland, 1992), 
(Dragnea & Angellopoulou, 2005), (Horn, 1970), 
(Horn & Brooks, 1985), (Oliensis, 1991), 
(Worthington, 2005), (Zhang et al., 1999). Other 
creative and innovative approaches to model 3D 
objects have been attempted and developed; 
among which are shape from stereopsis (Akimoto 
et al., 1993), (Shihong et al., 1999), shape from 
video (Brodski et al., 1999), (Strecha et al., 2003), 
photometric (Marlzbender et al., 2006), 
(Rushmeier et al., 1997),  (Woodham, 1980) and 
photogrammetry (Grun et al., 2000). 

 
Since all these works were based on 2D 

images, we now look at some of their basic 
relevant characteristics. A digital image is 

composed of a rectangular array of pixels (picture 
elements). A pixel holds the value of brightness at 
that particular discrete point usually using a 
combination of RGB (red, blue and green) colour 
space. Without loss of generality, a highly 
magnified section of an 8-by-8 pixel grey-scale 
digital image may be represented like the picture 
in Figure 1, where each small square represents a 
pixel.  The light intensity value for each pixel that 
makes up the letter ‘L’, for example, may have a 
very low pixel value, while other pixels (white 
squares) have values one.  

 

 
Figure 1: Letter ‘L’. 

 
We can use these brightness intensities to 

derive the depth (z-coordinates); the x- and y-
coordinates can be arbitrarily determined. 
However, direct use of these pixel values will not 
give good results. The resulting intensities of the 
image are dependent on a few factors, namely, the 
surface colour, geometry, material and orientation 
of the object, and the surrounding light 
environment. The light environment effects may 
come largely from the direction of the source light, 
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the number of light sources and other 
perturbations like shadows and reflection. 

 

2 SHAPE FROM SHADING 

 
As a digital image is two-dimensional, we can 

easily assign the x- and y-coordinates using the 
image width and height, but we need a method to 
get the depth (z-coordinates) to create the 3D 
image. A rudimentary reconstruction of the 3D 
images based on the pixel values alone as the 
depth values will not adequately represent the 
image surface. This is due to the factors mentioned 
earlier. However, this piece of handy information 
(the pixel values) can be used to generate other 
valuable pieces of information.  

 
Two key issues underlying the shape from 

shading (SFS) are determining the surface 
orientation of the object and generating depth once 
the orientation has been approximated. Most work 
in SFS has been based on the Lambertian model of 
shading. In the Lambertian model, a surface is 
assumed to be diffuse, which suggests that each 
surface point appears equally bright from all 
viewing direction. In such an environment, light 
intensity is dependent on the surface orientation 
and the direction of the light source. The surface 
orientation is typically represented by the normal 
vector N, i.e., a vector perpendicular to the 
surface, and the direction of light source, the 
vector L. This can be depicted as in Figure 2. 

 

 
Figure 2: Surface orientation. 

 
Based on the model, the resulting light 

intensity I on a surface (or at a particular pixel), 
for example, can be represented as follows: 

I = L1 · N1 which is mathematically 
equivalent to I = | L1 || N1 | cos θ. 

This essentially means that the light intensity 
depends on the angle between the direction of the 

light source and the direction where the each 
planar surface patch is facing. 

 
The brightness of each pixel in the image is 

related to the orientation of a corresponding patch 
on the surface of the object, other environmental 
factors ignored. This relationship between surface 
orientation and image brightness is fundamental to 
the SFS problem formulation. The shape of the 
object can be approximated once the orientation of 
each surface patch is known. To formulate the SFS 
problem, we assume the z-axis projects directly 
towards the viewpoint and x- and y- axes coincide 
with the axes of the image plane. We will assume 
that projection is orthographic (parallel) and the 
illumination source is at infinity. 

 
The visible surface can be expressed by the 

explicit function z(x,y). Instead of using N, the 
orientation of a surface point can be concisely 
represented by a pair (p,q) where p = ∂z/∂x (partial 
derivative of z with respect to x) and q = ∂z/∂y 
(partial derivative of z with respect to y), i.e., p and 
q are rates of change of the surface height in the x 
and y directions respectively. p and q values form 
the gradient space for the reflectance map. A 
reflectance map gives the pixel brightness as a 
function of the orientation of the scene surface in 
camera coordinates. In known case of a sphere, for 
example, a pixel with brightness 0.9 may be 
obtained possibly from any values of p and q on 
the ellipse in Figure 3. 

 

 

 

  
a)   
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b) 

Figure 3: (a) A sphere and (b) a possible reflectance 
map. 

 
The relationship between the image and the 

surface gradient is given by the image irradiance 
equation, E(x,y) = R(p,q), where E is the original 
image and R is the reflectance function which 
embodies both the effects of the imaging geometry 
and the reflectance properties of the surface. The 
SFS problem is to recover the surface function 
z(x,y) by inverting the image irradiance equation 
or image-forming process. With some suitable 
rescaling, we may write R as a dot product of L 
and N, R = L·N, i.e., the predicted image 
intensities in terms of the surface orientation. 

 
Following our definition of p and q, we can 

identify two vectors lying on an arbitrary tangent 
plane, namely (1, 0, p)T and (0, 1, q)T (where T 
stands for transpose). The cross product of these 
vectors gives us a normal vector (-p, -q, 1)T, which 
can be normalized to (-p, -q, 1)T / √(1 + p2 + q2). 
The light source vector can be written as L = (l1, 
l2, l3)T. For each pixel, if we write the observed 
image intensity as ix,y the equation yields  

ix,y = (- l1p  - l2q + l3) / √(1 +  p2 +  q2). 

If we simplify the condition by assuming the 
light direction as (0, 0, 1)T, i.e., along the z-axis 
(though not always the case), and taking the 
brightest intensity at a particular pixel, for 
example, we get 1 = 1 / √(1 +  p2 +  q2). This 
system of equations is clearly under-constrained. 
Thus, framing the problem mathematically leads 
to having more unknowns than constraints and 
many researchers consider this problem ill-posed 
[3, 27]. To get around the problem of ill-
posedness, the following assumptions are usually 
made: i) the surface is uniform in its reflecting 
properties, ii) the light sources are far away so that 
the irradiance of different parts of the scene will be 

approximately the same and the incident direction 
may be taken as constant, and iii) the viewer is far 
away, so that the direction to the viewer will be 
the same for all points in the scene. The next few 
subsections discuss approaches attempted to solve 
the irradiance equation. 

 

2.1 Variational Method 

 
To find a surface that satisfies the image 

irradiance equation as well as possible, many 
algorithms minimize the brightness error between 
the predicted image of the surface R(p,q)) and the 
observed image E(x,y): 

 Q = ∑ [E(x,y) - R(p,q)]2 

i.e., instead of looking for an exact solution to 
the problem, we allow some deviations between 
the image brightness and the reflectance map. This 
problem is commonly transformed into a partial 
differential equation problem, with an additional 
smoothness constraint to control and stabilize the 
smoothness of the solution: 

∫∫Ω (E(x,y) – R(f(x,y),g(x,y)))2 + λ (fx
2 + fy

2  + 
gx

2 + gy
2 )dxdy       [14]. 

It is then solved by looking for a function that 
minimizes the functionals, in this case using the 
calculus of variation. Critics usually point out that 
algorithms that use a smoothness constraint 
typically give unrealistically smooth results 
(surface) (Gultekin & Gokmen, 1998). In addition, 
convergence of solution tends to be very slow; 
some might take a thousand iterations (Dragnea & 
Angelopoulou, 2005). 

 

2.2 Propagation Method 

 
In this method, the surface is developed by 

starting from points of known orientation or height 
values (Bichsel & Pentland, 1992), (Kimmel et al., 
1995). The process is performed iteratively along a 
certain path in the image. For example, if the 
height value Z0 at the point (x0,y0) is known in 
advance, all Z values can be determined along the 
path by calculating a line integral such as 

∫+=
t

dt
dt
dZZ)t(Z

00 . The drawback of this 

method is that the locality of calculations causes a 
high dependency on data accuracy and the 
propagation of height increments along paths also 
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means the propagation of errors (Klette et al., 
1998). 

 
2.3 Local Method 
 

This is a method where the shape at an image 
point calculated by using the image irradiances 
only in a small neighbourhood of that image point 
(Lee & Rosenfeld, 1985), (Pentland, 1984). The 
advantage is time efficiency because the 
determination of the shape is locally constrained. 
Furthermore, the approach is non-iterative. The 
idea is to approximate surface orientation as a 
sphere to resolve ambiguities associated with an 
image irradiance local to a point. It can only 
determine surface orientation; other methods, such 
as integration, have to be used to arrive at the 
height map.  

Apparently the application of the partial 
differential equations theory to the SFS problem 
has been hampered by several difficulties. The 
first type arises from the simplification introduced 
in the modelling: orthographic cameras looking at 
Lambertian objects with a single point light source 
at infinity is the set of usual assumptions (Horn & 
Brooks, 1985), (Zhang et al., 1999). The second 
type is mathematical: characterizing the solutions 
of the corresponding partial differential equations 
has turned out to be a very difficult problem 
(Prados et al., 2002). The third type is algorithmic: 
assuming that the existence of a solution has been 
proved, coming up with provably convergent 
numerical schemes has turned out to be quite 
involved (Durou & Mitre, 1996). 

 

3 PHOTOMETRIC STEREO 
 

Photometric stereo was pioneered by 
(Woodham, 1980). In the photometric stereo 
method, multiple non-collinear light sources are 
used to obtain different images of the surface, with 
the same position in each image relating to the 
same surface point. The orientation of each surface 
patch is calculated directly from the intensities of 
the corresponding points in the image. Technically 
two light sources should be adequate, but having 
more than three can compensate for problematic 
samples such as shadows and specular regions. 
This is done by removing the unwanted sets of 
samples at the image location (Marlzbender et al., 
2006).  

 

A set-up similar to the one used by (Rushmeier 
et al., 1984), for example, is shown in Figure 4. 
Once the orientation of every surface patch has 
been found, a depth map that explains these 
orientations is computed using, for example, the 
calculus of variations and an iterative technique.  

 

 
Figure 4: A lighting set-up for photometry. 

 
Conceptually, the method is similar to shape 

from shading, following the Lambertian model, 
except that the gradients are more accurately 
determined. Based on E(x,y) = R(p,q),  but writing 
the surface orientation in terms of the normal 
vectors rather than gradients, for each point p, we 
obtain 

 
ρ = reflectance (albedo) of surface 
α = constant to incorporate light source 

brightness, camera sensitivity, etc., 
li,j = light source vector components using light 

source i = 1, 2 or 3 at j = x, y,               or z-
coordinate 

np,j = jth normal vector components at point p, 
with j = x, y, or z-coordinate, and 

Ep,j = image intensity at point p corresponding 
to light source j = 1, 2 or 3. 

 
Good results have been reported by this method 
(Bertesaghi et al., 2005), (Georghiades, 2003), 
(Marlzbender et al., 2006). 
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4 STEREOPSIS 
 

The depth can also be approximated using the 
ideas in stereo vision. By taking photographs from 
two different locations (left and right), the "lines 
of sight" can be developed from each camera to 
points on the object. These lines of sight are 
intersected to calculate the 3D coordinates of the 
points of interest, using triangulation. 

 
However, when the same scene is taken from 

two different views, the orientations of the images 
are different (Figure 5). This can be dealt with by 
using epipolar geometry. The left and right images 
are projected on the scanline plane in such a way 
that the epipolar lines become parallel to the 
scanline. The results of this projection are slightly 
warped (distorted) images (Figure 6). 
Corresponding points (objects) in both images 
have to be identified along each epipolar line. This 
is often difficult and commonly termed the 
correspondence problem in the computer vision 
circle.  Having identified the corresponding points, 
depth can be calculated by triangulation, i.e., using 
similar triangles.   

 

 
Figure 5: Epipolar geometry. 

 
The main procedures can be sketched as 

follows: 
 
Calibrate camera (camera resection) 
Rectify images 

for each epipolar line 
for each pixel in the left image 
compare with every pixel on same epipolar 

line in right image 
pick pixel most matching in the right (use 

windows) 
Estimate depth using similar triangles, x – x’ / 
baseline =  f / z, i.e., z = f · baseline / (x – x’) . 

Algorithms have been developed to handle the 
correspondence problem. Some use feature-based 
approach by matching edges and producing sparse 
depth maps while others adopt correlation 
technique by matching all pixels in the entire 
images and producing dense depth maps. 
Although good results can be achieved with stereo 
techniques, the excessively long computation time 
needed to match stereo images is still the main 
obstacle on the way to their practical applications. 
General purpose computers are not fast enough to 
meet real-time requirements because of the 
algorithmic complexity of stereo vision 
techniques.  

 

 
Figure 6: Images after resection. 

 
5 PHOTOGRAMMETRY 
 

As its name suggests, photogrammetry is a 3D 
coordinate measuring technique using photogram, 
although photographs are more commonly used 
now as the fundamental medium for measurement. 
The technique has been used traditionally in 
surveying and mapping for the reconstruction of 
terrain, natural targets and buildings in 
stereovision. The advances in electronics 
technology have made it applied in various areas; 
archaeology, computer vision and computer 
graphics (Debevec et al., 1996), (Grun et al., 
2004), (Remondino, 2006), (Xia & Zhu, 2005). 
Depth can be calculated by applying triangulation 
on usually two photographs. Using a digital 
camera with known characteristic (e.g., lens focal 
length, imager size and number of pixels), a 
minimum of two pictures of an object are needed. 
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If we can indicate the same three object points in 
the two images and we can indicate a known 
dimension we can determine other 3D points in the 
images.  

 
These techniques mostly require very precise 

calibration and there is almost no automation. The 
detailed acquisition of models is therefore very 
time consuming. The recent decade saw 
researchers trying to both reduce the requirements 
for calibration with the goal to automatically 
extract a realistic 3D model by freely moving a 
camera around an object. An early approach was 
proposed by (Tomasi and Kanade, 1992). They 
used an affine factorization method to extract 3D 
data from image sequences, assuming 
orthographic projection. Another type of system 
starts from an approximate 3D model and camera 
poses and refines the model based on images, e.g., 
Facade proposed by (Debevec et al., 1996). The 
advantage is that fewer images are required. On 
the other hand a preliminary model must be 
available and the geometry should not be too 
complex.  

 
The basic idea is simple: when a picture is 

taken, the 3D world is projected in perspective 
onto a flat 2D image plane. As a result, a feature 
(for example, the top of a flagpole) seen at a 
particular location in an image can actually lie 
anywhere along a particular ray beginning at the 
camera centre and extending out to infinity. This 
ambiguity can be resolved if the same feature is 
seen in two different photographs, which 
constrains the feature to lie on the intersection of 
the two ‘corresponding rays’. This process is 
known as triangulation. Using triangulation, any 
feature seen in at least two photographs taken from 
known locations can be localized in 3D. In fact, 
with a sufficient number of corresponding points, 
it is mathematically possible to solve for unknown 
camera positions as well.  

 
The application of (close-range) 

photogrammetry in computer graphics for 3D 
surface reconstruction often involves a sequence 
of images taken with off-the-shelf consumer 
cameras. The user acquires the images by freely 
moving the camera around the object. Neither the 
camera motion nor the camera settings have to be 
known, in contrast to the requirements in many 
other computer vision algorithms. This approach 
has been developed over the last few years. The 
stereopsis method is still applied here, minus the 
so-called ‘calibrations’. The performance analysis 

showed that very dense depth maps with fill rates 
of over 90 % and a relative depth error of 0.1% 
can be measured with off-the-shelf cameras even 
in unrestricted outdoor environments such as an 
archaeological site (Pollefeys et al., 1999). 

6 SHAPE FROM VIDEO 
Obtaining 3D structure from video is a 

problem with a long tradition in computer vision, 
e.g., depth from stereo and depth from motion. 
Although it would seem video-based 
reconstruction could benefit from stereopsis, one 
of the most successful approaches has been by the 
factorization method, first proposed by Tomasi 
and Kanade for rigid shape (Tomasi & Kanade, 
1992). With two images of reasonable disparity, 
stereopsis is well-posed; on the other hand, a video 
sequence consists of many frames, implying over-
constrainedness. The factorization method handles 
over-constrainedness by means of least-squares. 
The underlying concept is frequently termed 
structure from motion. First it applies the rank 
constraint to factorize a set of feature locations 
tracked across the entire sequence. Then it uses the 
orthonormality constraints on the rotation matrices 
to recover the scene structure and camera 
rotations. Proven fast and stable, this approach 
works under the orthographic projection model. 

 
Figure 7: Frames and a feature point. 

 
The factorization method is elegantly 

formulated in terms of matrices. Given an image 
stream, and assuming that we have tracked P 
feature points over F frames, we denote the 
trajectories of image coordinates by (ufp, vfp) such 
that f = 1, … , F,  and p = 1, …, P (Figure 7).  We 
write W~ , the registered measurement matrix, as 

an augmented matrix of U~  and V~ , i.e., 

⎥
⎦

⎤
⎢
⎣

⎡
=

V
UW ~
~~

, storing all the relevant coordinates 

from the frames. Then, the entries of U~  and V~  
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will be 
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∑
=

−=
P

p
fpfpfp u

P
uu

1

1~  and 

∑
=

−=
P

p
fpfpfp v

P
vv

1

1~ .  

Assuming orthographic projection, we can 
decompose W~  as the product of two matrices R 

and S, W~  = RS; the rows of R represent the 
orientations of the horizontal and vertical camera 
reference axes throughout the stream, while the 
columns of S are the coordinates of the P feature 
points with respect to their centroid. The 
decomposition of W~  into R and S is carried out 
by the singular value decomposition 
into 21

~ OOW Σ= . Further, by partitioning, this 

can be written as [ ] [ ] '
2

2/12/1'
1

~ OOW ΣΣ=  

where [ ] 2/1'
1 ΣO  can be written as R̂  and 

[ ] '
2

2/1 OΣ  as Ŝ  (i.e., [ ] 2/1'
1

ˆ Σ= OR  and 

[ ] '
2

2/1ˆ OS Σ= ). In the absence of noise, R̂  is in 
fact a linear transformation of the true rotation 
matrix R and Ŝ  is a linear transformation of the 
true shape matrix S. Then, R and S can be written 
as QRR ˆ=  and SQS ˆ1−=  as there exists such 
a 3 by 3 matrix Q and thus, the shape can be 
recovered from the matrix S. 

 
Poelman and Kanade extended it to work 

under the weak perspective and para-perspective 
projection models (Poelman & Kanade, 1997). 
Triggs generalized the factorization method to the 
recovery of scene geometry and camera motion 
under the perspective projection model (Triggs, 
1996). These methods work for static scenes. 
However, given a long video sequence it is often 
not practical to work with all video frames. In 
addition, to allow for effective outlier rejection 
and motion estimation it is necessary to have a 
baseline between frames. For this purpose, Repco 
and Pollefeys proposed a key-frame selection 

procedure based on a robust model selection 
criterion (Repco & Pollefeys, 2005). Their 
approach guarantees that the camera motion can be 
estimated reliably by analyzing the feature 
correspondences between three consecutive views.  

 
There are a number of approaches that try to 

get a 3D model of the scene from uncalibrated 
images automatically. The fully automated 
procedure widely reported in the vision 
community starts with a sequence of images taken 
with an uncalibrated camera (Mayer, 2003), 
(Nister, 2001), (Pollefeys et al., 1999). The system 
then extract interest points, sequentially match 
them across the view-pairs and compute the 
camera parameters as well as the 3D coordinates 
of the matched points using robust techniques. 
This is done in a projective geometry framework 
and is usually followed by a bundle adjustment. A 
self-calibration, to compute the interior camera 
parameters, is afterwards performed in order to 
obtain a metric reconstruction, up to a scale, from 
the projective one. The 3D surface model is then 
automatically generated by means of dense depth 
maps on image pairs. The key to the success of 
these automated approaches is the very short 
interval between consecutive images. Some 
approaches have been presented for the 
registration of widely separated views but their 
reliability and applicability for automated image-
based modelling of complex objects are still not 
satisfactory, as they yield mainly a sparse set of 
matched feature points. Dense matching results 
under wide baseline conditions were instead 
reported in (Strecha et al., 2003). Photogrammetry 
started more than 150 years ago. As its name 
implies, it is a 3D coordinate measuring technique 
using photogram, although photographs are more 
commonly used now as the fundamental medium 
for measurement. The technique has been used 
traditionally in surveying and mapping for the 
reconstruction of terrain, natural targets and 
buildings 
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7 CONCLUDING REMARKS 
 

We have reviewed prevalent approaches to 
image-based 3D modelling. We can now 
summarise that shape from shading approach is 
the least on equipment requirements but at the 
price of accuracy and mathematical complexity, 
and in many cases the resulting surfaces are 
unreasonably smooth. Photometry is an 
improvement to SFS only in terms of achieving 
better accuracy on the gradients; but both 
eventually need to estimate the 3D surfaces from 
the gradients. 

 
Stereopsis provides better accuracy but only 

with the availability of some values of 
environment and equipment parameters, e.g., the 
focal length of the camera lens and the distance 
between the cameras. Close-range 
photogrammetry essentially makes use of the 
stereopsis concepts of calculation but with more 
images. It has been successfully applied to 
modelling archaeological and architectural objects, 
but there are no proven results from irregular 
surfaces like human faces. In both methods, the 
problems lie in the correspondence of feature 
points in the images and making essential 
equipment calibrations. 

 
The video approach renders the assumptions in 

all previous methods irrelevant but it still has to 
address the correspondence problem. 
Nevertheless, good results have been shown when 
the correspondence problem was correctly 
addressed. 
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