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ABSTRACT 
 

A difficult pattern recognition problem is to recognize objects despite distortions in position, orientation 
and scale in cluttered backgrounds. A system capable of detecting target objects despite any kind of 
geometrical distortion has many potential applications since it will be able to detect target objects when the 
orientation and position of the target or camera is unknown. In this work we report the use of fully invariant 
correlation filters for object detection in still images despite any kind of geometrical distortion of the target 
object. A mapping technique is combined with a bandpass difference of gaussian composite correlation 
filter, capable of creating invariance to various types of distortion of the target object. 
 
Keywords: Object Recognition, Random geometrical distortion, fully invariant correlation filters, mapping 

technique, gaussian composite correlation filter 

 
1. INTRODUCTION 
 
Synthetic Discrimination Function (SDF) based 
techniques provide a solution to the problem of 
invariant correlation filter design, expected 
distortions being included in the filter design. A log 
r-theta mapping can be applied to the input image 
to give invariance to in-plane rotation and scale by 
transforming rotation and scale variations of the 
target object into vertical and horizontal shifts[7,8]. 
The SDF filter is then trained using the log-mapped 
image. A Difference of Gaussian band pass filter is 
added in the design of the filter to provide edge 
enhancement of the input images and so obtain 
sharper correlation peaks. Areas producing a strong 
correlation response can then used to determine the 
position, in-plane rotation and scale of the target 
objects in the scene. 
 
Log-polar mapping as a pre-processing operation 
for correlation filters may offer the capability to 
extend the range of distortions over which 
correlation filters can detect and recognise a target 
object, possibly also contained in a highly cluttered 
environment. In this paper we summarise the log-
polar pre-processing operation and discuss methods 
of multiplexing correlation filters to accommodate 
orientation changes of the target object. We show 
that a log-polar pre-processed appropriately 

designed multiplexed correlation filter is able to 
detect and recognise a target object from a highly 
cluttered environment, although the correlation 
response is not ideal due to limitations, in the 
current implementation, of the clutter model 
employed. A set of training images of a Jaguar 
model car were constructed, in which each image 
differed by 5 degrees in orientation angle. Thus a 
total of 72 images were constructed to cover the 
whole range to 360 degrees.  
 
2. LOGMAP PRE-PROCESSING 
 
To detect and recognize[1-3] target objects in a 
scene despite differences in scale or in-plane 
rotation to the target reference images, a log r-θ  
mapping, or logmap, can be employed [4-9]. The 
structure of the sensor is based on a Weiman polar 
exponential grid [10-13] and consists of concentric 
circles of pixels which are exponentially spaced 
and increase in size from the centre to the edge.  
Each sensor pixel on the circular region of the x-y 
Cartesian space is mapped into a rectangular region 
in polar image space r-θ . The sensor’s geometry 
maps concentric circles in the Cartesian space into 
vertical lines in the polar space and radial lines in 
the Cartesian space into horizontal lines in the 
polar space. The log-polar mapping is not shift 
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invariant, so the properties described above hold 
only if they are with respect to the origin of the 
Cartesian image space. The complex logarithmic 
mapping can be described as [10]:   
 

zw log=                                                                              
(1) 
 
By applying the complex form notation: 
 

yixz +=                                                                           
(2) 

 

where   22 yxr += and  ⎟
⎠
⎞

⎜
⎝
⎛=

x
yarctanθ , we 

have 
 

ivuirw +=+= θlog                                                         
(3)                             

                                  
where ru log=  and θ=v . Hence, an image in the 
z-plane with co-ordinates x and y is mapped to the 
w-plane with co-ordinates u and v.  The mapped 
image from the Cartesian space (z-plane) in to the 
Polar space (w-plane) is referred to as the log-polar 
mapping or the logmap.  This process can be 
reversed to produce the inverse mapping from 
Polar space (w-plane) to Cartesian space (z-plane). 
Complex log-polar mapping is shown in figure 1.  
 
2.1 In-Plane Invariance  
 
If an image is rotated by an angle φ  about the 
origin, then [10]:   

 
( )φθ += ierz                                                                        

(4)                                                                                  

 
 

 
Figure 1 Complex log-polar mapping 

 
Thus,  
 

φφθ iviuiirw ++=++= log                           
(5) 

 
In effect, rotating the image by the angle φ  has 
resulted in a vertical shift in the mapped image by 
the rotation angle. 
 
2.2 Scale Invariance 
 
If the image in the z-plane is scaled by a factor α , 
then [10]:   
 

θα ierz =                                                                 
(6) 
 
Thus, 
  

viuirw ++=++= αθα logloglog                           
(7) 
 
In effect, scaling the image by the factor α has 
resulted in a horizontal shift in the mapped image 
by the scaling factor. 
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3.  INVERSE MAPPING 
 
The inverse mapping can be shown in the 
following way. Since we know that wez = and 

ivuw += , combining the two equations we get 
[10-13]: 
 

ivuez +=                                                                            
(8) 

 
Expanding the equation (8): 
 

)]sin()[cos( vivez u +=                                                
(9) 

 
As we know from the Eq (2) that iyxz += , the 
equation (9) thus becomes: 
 

iyxviveu +=+ )]sin()[cos(                                     
(10) 
Equation (10) implies that: 
 

)cos(vex u=                                                                 
(11) 
 

)sin(vey u=                                                                  
(12) 
 
We also know that: 
 

22[ yxr +=                                                               
(13) 
 
Putting the values of equation (11) and (12) in 
equation (13) we get 
 

22 )]sin([)]cos([ vever uu +=                               
(14)                                                                 
 
Equation (14) implies that ru log= and 
similarly: 
 

v
ve
ve

u

u

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)cos(
)sin(arctanθ                                        

(15) 
 
 
 

 
4. DIFFERENCE OF GAUSSIAN BAND PASS  
 
The Difference of Gaussian (DOG) function is a 
readily computed circular symmetric wavelet 
which approximates the Maxican hat wavelet. 
DOG bandpass filters an image and performs the 
edge enhancement operation on the objects present 
in the image[19]. The DOG function is defined as 
the difference of two differently scaled Gaussian 
functions, ),( yxgi , where .2,1=i   

)
..2

exp(.
2

1),( 2

22

2
ii

i
yxyxg
σππσ
+

−=                           

(16)  
                                                                     
Therefore the DOG function is given by  
 

),(),(),( 21 yxgyxgyxg −=                                    
(17)                                                                             
 
that is: 
 

]
2

exp[
2

1]
2

exp[
2

1),( 2
2

22

2
1

2
1

22

2
1 πσπσπσπσ

yxyxyxg +
−−

+
−=            

(18) 
                                                
where )( 21σσ represents the standard deviations 
of the two Gaussian functions. The frequency 
domain representation of the DOG function is 
given below as:  
 

)].(..2exp[)].(..2exp[),( 222
2

2222
1

2 vuvuvuG +−−+−= σπσπ
(19) 
                                        

  
Figure 2 Filtered image with standard deviation of  

ratio 1.6 and Bandpass set at 0.35 )( fS     
 
The scaling of the band pass is critical. The value 
of the band pass maximum frequency response 
should be chosen to give the best compromise 
between intra-class distortion tolerance and inter-
class discrimination of the resulting filter.. The low 
frequencies must be reduced to enhance the 
discrimination ability of the filter. The higher 
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frequencies must be reduced enough to give 
adequate target distortion tolerance. The precise 
choice for the band pass location, will thus depend 
on the trade-off desired between these two 
conflicting requirements. The best performance of 
the DOG filter occurs at its closest approximation 
to the Mexican hat wavelet when the ratio of  1σ   

to 2σ is 1.6 [19]. Figure 2 shows a DOG filtered 
jaguar car image at 1.6 ratio of standard deviation 
values and the bandpass set at 0.35 of the 
maximum sampling frequency )( fS . Gray 
background in figure 2 is at zero intensity in order 
to show the negative values in the image as darker 
regions.   
 
5. SYNTHETIC DISCRIMINATION   

FUNCTION 
 
In the SDF [14-16,18] design method, the expected 
object distortions are included in the correlation 
filter by multiplexing the weighted versions of the 
target object into a composite image. The resulting 
correlation outputs at the origin of these cross-
correlations are constrained to be the same and are 
equal to a pre-specified constant. Let h(x,y) denote 
the composite image and ti(x,y) denote the training 
image set where i = 1,2,...,N and N is the number 
of the training images used in the synthesis of the 
SDF. Then the value at the origin of the correlation 
plane between the composite image and each of the 
training images is assumed to be equal to a 
constant c. 
 
Thus:     
 

∫ ∫= dxdyyxhyxtyxtyxh ii ),(),(),().,( *                  

(20) 
The composite image is assumed to be a linear 
combination of the N training images: 

),(........),(),(),( 2211 yxtayxtayxtayxh NN+++=
 

=∑
=

N

i
ii yxta

1
),(                                                            

(21) 
 
where the coefficients ),...,2,1( Niai = are 
determined to satisfy the constraint c. By 
substituting equation (21) into (20) we have:  
 

∑
=

=
N

i
iji cRa

1

*                                                                   

(22) 
 
Where 
 

∫ ∫= dxdyyxtyxtR jiij ),(),( *                                      

(23) 
 

 
Figure 3 Examples of training images 

 
Figure 3 shows some of the training images used in 
the developed system. The composite image is 
constructed by using the images of the Jaguar car 
rotated at 0,10,15,20,25 and 30 degrees. The 
resulting composite image is shown in Figure 4. 

 
Figure 4 (a) Composite Image (b) Logmap of 

Composite 
 
6. PERFORMANCE METRICS  
 
To measure the performance of the correlation 
filters some basic measures have to be calculated. 
The basic performance measure is correlation 
output peak intensity (COPI). It signifies  the 
maximum intensity value of the correlation output 
plane. It is defined as [20]:  
 

}|),({|max 2

,
yxCCOPI

yx
=                                  

(24) 
where C(x,y) is the output correlation amplitude 
value at (x,y). A filter with high COPI shows good 
performance and a high detection ability. Another 
important performance measure is Peak-to-
correlation energy measure (PCE). The basis of the 
PCE is that the COPI should be as high as possible 
while at the same time the over all correlation 
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plane energy should be as low as possible. It is 
defined as [20]:  
 

cEnergy
COPIPCE =                                                               

(25) 
 
Where cEnergy is the total correlation plane 
energy and is defined as:  
 

∑= 2),( yxCEnergyc                                              
(26) 
 
7. DEPENDENCE OF FREQUENCIES ON 

STANDARD DEVIATION 
 
The filtering operation performed by the DOG 
filter can be controlled by the standard deviations. 
The pass band of frequencies can be altered by 
changing the standard deviation in the DOG 
construction whilst keeping ratio of 1.6. This in 
tern translates to different peak widths in the 
correlation plane. In the results that follow, 
composite image remains the same, target image is 
the car image out-of-plane rotated at 30 degrees. 

 
Figure 5 Correlation plane for standard deviation 
ratio of 1.6 , bandpass set at 0.35Sf and COPI = 

1.12*10-5, PCE = 0.22 
 

 
 

 
Figure 6 Correlation plane for standard deviation 
ratio of 1.6, bandpass set at 0.46Sf  and COPI = 

6.5*10-6, PCE = 0.30 
 

 
Figure 7 Correlation plane for standard deviation 
ratio of  1.6,  bandpass set at 0.58Sf  and COPI = 

1.64*10-6, PCE = 0.36 
 
 
8. IN-PLANE ROTATIONAL INVARIANCE 

OF THE BANDPASS SDF  
 
In this section we discuss the results of the in-plane 
rotational invariance of the SDF filter. Composite 
image remains the same. The in-plane rotated 
images employed are shown in Figure 8. All the 
simulation results are obtained using the standard 
deviation ratio of 1.6 with bandpass set at 0.35Sf .      
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Figure 8 (a) 10 degrees in-plane rotation (b) 70 
degrees in-plane rotation (c) 100 degrees in-plane 
rotation (d) 150 degrees in-plane rotation (e) -70 

degrees in-plane rotation 
 
The correlation planes generated by the rotated 
images are shown in figure 9 to figure 13.  
 

 
Figure 9 Correlation plane for 10 degrees in-plane 

rotation, COPI = 1.2*10-5, PCE = 0.24 

 
Figure 10 Correlation plane for 70 degrees in-
plane rotation, COPI = 4.9*10-6, PCE = 0.27 

     

 
Figure 11 Correlation plane for 100 degrees in-
plane rotation, COPI = 6.48*10-6, PCE = 0.23 

 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
238 

 

 
 

Figure 12 Correlation plane for 150 degrees in-
plane rotation, COPI = 5.34*10-5, PCE =0.28 

 

 
 

Figure 13 Correlation plane for -70 degrees in-
plane rotation, COPI = 1.039*10-5, PCE = 0.223 

 
In the results shown in figures 9-13 it is apparent 
that the correlation peaks move across the 
correlation plane as the rotational angle is changed, 
in linear proportion. Thus by combining the in-

plane rotation invariance of the logmap and the 
distortion invariance of a band pass SDF filter, a 
rotation and distortion invariant SDF filter can be 
realised for object recognition.   
 
9. OUT-OF-PLANE INVARIANCE OF THE 

BANDPASS SDF 
 
In this section the out-of-plane invariance of the 
SDF filter is tested. The composite image remains 
the same. We introduce a number of test images 
without background noise which are rotated and 
scaled for the detection of the car. The test images 
are shown in figure 14.  The correlation planes for 
the above test images are shown below in figures 
15-17. All the simulation results are obtained using 
the standard deviation ratio of 1.6 and bandpass set 
at 0.35 Sf.     
 

 
Figure 14 (a) Test Image car rotated at 355 

degrees (b) Test Image car rotated at 195 degrees 
(c) Test image car rotated 30 degrees and scaled at 

90% 
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Figure 15 Correlation plane for 30 degrees out-of-

plane rotated and 90% scaled car, COPI = 
1.3822*10-5,  PCE = 0.21 

 
 

 

 
 

Figure 16 Correlation plane for 195 degrees out-
of-plane rotated car, COPI = 1.19*10-5, PCE 

=0.22 

 

 
 

Figure 17 Correlation plane for 355 degrees out-
of-plane rotated car, COPI = 1.853*10-5, PCE = 

0.26 
 
It can be seen from figures 15 to 17 that as the out-
of-plane rotational angle increases, the peak height 
decreases. Since there is no background noise the 
correlation output plane shows minimal disruption. 
The correlation peaks are localised due to the 
inclusion of the difference of Gaussian band pass 
in the filter design. The composite reference image 
accomodates the out-of-plane rotation of the car 
allowing maintenance of the correlation peak 
height over the swathe of angles covered within the 
composite image. 
 
The correlation plane corresponding to figure 16 is 
shown in figure 17.  
 
 Let us combine all the three distortions and test the 
full invariance of the bandpass SDF filter. Suppose 
that the image of a car with an out-of-plane rotation 
of 30 degrees , resized at 85% of the original image 
and finally in-plane rotated at 30 degrees. The 
correlation plane for the above simulation is shown 
in figure 18. 
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Figure 18 Correlation plane for car image with 30 
degrees out-of-plane rotation, 85% seized and 30 
degrees in-plane rotated, bandpass set at 0.35 Sf  

and COPI = 1.113*10-5, PCE = 0.225 
 

It can be seen that the performance of the filter 
decreased as all the distortions were combined. 
However, the bandpass SDF filter was still able to 
detect the car. 
 
10. BACKGROUND CLUTTER TOLERANCE 
 
In this section the background clutter tolerance of 
the DOG-SDF filter is assessed.  Figure 19 shows a 
scene where a 35 degrees out-of-plane rotated car 
is super imposed. This car is resized to 85% of the 
original size and 5 degrees in-plane rotated.  
 

 
 

Figure 19 Target car  35 degrees out-of-plane 
rotated, 5 degrees in-plane and 85% resized 

superimposed on an image scene 

 
 

 
Figure 20 Correlation plane for car image with 35 
degrees out-of-plane rotation, 5degrees in-plane 
and  85% resized , bandpass set at 0.35 Sf  and 

COPI = 2.013*10-5,  PCE = 0.2  
 
Although the car was detected in the presence of 
the clutter,  significant degradation of the 
correlation plane background is clear.  
 
11. CONCLUSION 
 
The results presented indicate that the DOG band 
pass SDF filter was able to detect the rotated and 
scaled car, when used in conjunction with a logmap 
pre-processing operation. The disruption present in 
the log-mapped images increased significantly 
when scaling and in-plane rotating the reference 
image due to finite sampling. In order to reduce the 
disruption, interpolation was adopted for smooth 
rendering of the images which reduced the 
disruption but did not eliminate it. Methods to 
further reduce the effects of finite sampling will be 
investigated in future work in order to reduce its 
impact.  
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