
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

197

ASWAACC
AUTOMATIC SEMANTIC WEB ANNOTATION BY

APPLYING ASSOCIATIVE CONCEPT CLASSIFIER IN TEXT

1Behnam Hajian, 2Kamran Zamanifar
1Department of Computer Engineering, University of Isfahan, Isfahan-81746

2Assis. Prof., 1Department of Computer Engineering, University of Isfahan, Isfahan -81746

E-mail: be_hajian@yahoo.com, zamanifar@eng.ui.ac.ir

ABSTRACT

After appearance of semantic web, the framework which is machine-readable and machine-understandable,
by Berners Lee, current web should be annotated by W3C standards in order to define semantic domain of
each word by its ontology to alleviate the posed problems in the realm of search and information retrieval.
However annotation is one major problem in the semantic web domain, which is presently performed by a
human agent. But, considering low human precision for this time-consuming and expensive task and the
advent of data mining in recent years, in this article, a system is proposed for automatic semantic web
annotation that is based on machine learning techniques for mining association rules between words in
already annotated texts.

In the present article, ASWAACC annotation system will be introduced. In this system, annotation rules are
produced by analysis of words co-occurrence in a paragraph to eliminate sense ambiguity of words. This
system has two phases: 1-learning by mining association rules in text data which has been already
annotated by human. 2-utilizing mined rules to automatically annotate the new unseen text data in order to
define domain ontology of each word.

Keywords: Ontology, Semantic annotation, Associative classifier, Machine Learning, Text Mining.

1. INTRODUCTION

Today's World Wide Web, as the most ever-
growing source of information attracts many
researches to integration of web and artificial
intelligence [1]. According to Berners Lee, the
inventor of web, there is a gap between intelligent
web and current web that is demonstrated by search
engines' irrelevant results [2]. Semantic web will
bridge this gap and will make the web intelligent
and machine-understandable to solve proposed
problem in this domain. Therefore, by utilizing
semantic web, computers are capable of reasoning
and making other tools like search engines cable of
answering human questions by induction from
semantic web databases [3], [4].

Ontology is a semantic knowledge-base about the
real world that demonstrates relations between
concepts in the real world. Hence, if we consider
computer knowledge as some class hierarchies and
attributes, semantic web will bridge the mentioned
gap by insertion of some metadata in web pages
that connect each word to its proper concept in
ontology [5], [6]. This task, which is currently

performed by human agents, is called semantic web
annotation. In other words, semantic annotation
means ontology population that makes new
instances of ontology classes through this process
[7]-[9], [22], [23].

This labor task is so expensive and time-
consuming that can not be done precisely by
human. As a result, a tool is needed to automate
this task. Such a tool needs some common sense
and artificial intelligence in order to match each
word to its appropriate concept in a correct
ontology because there are some ambiguities in the
meaning of each word that should be resolved by
such intelligent tool.

If we attend to the meaning of each word and
presence of other words in sentences, we can
understand a close relationship between the sense
of each word and co-occurrence of other words
through a sentence [4], [24]. This principle gives us
a clue to reach a method for determining the real
sense of each word in its context. In other words,
there are some patterns existing between words and
their senses which should be extracted to reach the

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

198

meaning of each word in a sentence. Data mining is
a way for exploring and mining these patterns [10],
[11].

Association rules mining is a data mining process
that finds frequent patterns, associations,
correlations, or causal structures among sets of
items or objects in transaction databases, relational
databases, and other information repositories. This
process is usually used for analysis of shopping
baskets in shopping malls, cross-marketing, catalog
designing, loss-leader analysis, clustering,
classification, etc [13],[14].

We utilize an association rules mining algorithm
to explore patterns between words and their proper
concepts in order to implement a machine learning
system that can mine annotation rules by mining
association rules between words from text data in
the first phase (i.e. learning phase) of ASWAACC.
In the second phase, these rules are used to annotate
new text data in order to determine the ontology
and sense of each word in a sentence.

ASWAACC is a machine learning-based
semantic web annotation tool that learns by mining
association rules among words through the text. In
this system we designed an algorithm that can
extract annotation rules from already-annotated text
in the learning phase. For the second phase, we
designed an algorithm for matching mined rules
with new texts to annotate them with proper
ontology. In fact, this system is a kind of
associative classifier which classifies words by
their proper concepts through sentences.

The rest of this paper is organized as follows:
section 2 discusses related work. In the next
section, architecture of ASWAACC is presented,
and then the algorithms which are used in
ASWAACC will be illustrated in section 4. Then,
some examples and evaluations are discussed in
section 5 and finally, conclusion and future work
are mentioned in section 6.

2. RELATED WORKS

Regarding posed reasons in the previous section,
semantic annotation is an issue which attracts many
researchers to design automatic semantic annotation
systems. Therefore, there are some related
researches about ontology population, ontology
learning, and automatic semantic annotation related
to this realm of research.

Semantic annotation platforms are classified
based on the type of annotation method used. There
are two primary categories: Pattern-based and
Machine Learning-based, as shown in Figure 1.

Machine learning-based techniques utilize two
methods: probability and induction. The
Probabilistic method uses statistical models to
predict the locations of entities within a text. There
are some other methods, like natural language
processing, which use regular expression or
automata to extract annotation rules and patterns
within texts [15]. After the learning phase, the
system utilizes mined rules for annotation of new
unseen texts; an example of this category is
wrapper induction.

Some kinds of systems perform annotation task
within ontology population by making instances for
classes [7], while some other systems, such as
Magpie, just match the existing instances in the
ontology with words within the text [15]. On the
other hand, co-relation between entities can be
extracted by some of these systems. Amilcare and
SCREAM are examples of such systems which use
machine learning techniques for semantic
annotation. Amilcare that uses LP2 algorithm to
extract annotation rules from text by regular
expression is classified in this category [17].
Amilcare is used by both the Armadillo and Ont-O-
Mat platforms to perform wrapper induction.

Pattern-based methods can perform pattern
discovery or have patterns manually defined. These
kinds of systems can perform pattern discovery,
such as C-PANKOW that starts by making a
hypothesis on an entity, and then the hypothesis is
changed into a fact by gathering click statistics
around that entity from Google. An advantage of
these systems is that there is no need for text
mining and learning. But these systems are not
capable of performing disambiguation between
classes and concepts [7], [18].

Figure.1: Annotation classification

There are a number of platforms which are

implemented for semantic annotation. They utilize
some kinds of systems that were mentioned above.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

199

GATE, KIM, MnM, are such platforms as well as
frameworks which can be used by researchers to
perform implementation of their researches in this
area [15]. Another group of annotation systems are
named 'entity recognition' [25]. These systems are
regularly used for annotating countries, companies
or persons. Jape and Gazeteer are such tools
designed to determine entities like persons,
countries, cities and companies through the text.
These systems are utilized by Gate to annotate
entities within the texts. In Jape, rules can be
identified by java language while Gazeteer utilizes
lists of instances of entities for determining
ontology classes of entities. Gate is a set of open
source libraries and a text engineering framework,
designed in the University of Sheffield for
automatic semantic annotation [19], [20].

SemTag is the semantic annotation component of
a comprehensive platform, called Seeker, for
performing large-scale annotation of web pages.
SemTag/Seeker is an extensible system, so new
annotation implementations can replace the existing
Taxonomy-based Disambiguation algorithm
(TBD). [21].

In addition, platforms can use methods from both
types of categories, called Multi-strategy, in order
to take advantage of the strengths, and to
compensate the weaknesses of the methods in each
category. In ASWAACC we tried to utilize a data
mining technique to perform word sense
disambiguation by learning through extracting
associations among words from already annotated
texts.

3. ASWAACC ARCHITECTURE

In this section, the architecture of ASWAACC is
described. If we pay our attention to the meaning of
words in a sentence, we can understand that the
sense of each word is tied to co-occurrence of other
words in that sentence [10]. For example, if “java”
occurred with “C++” or “object oriented” in a
sentence, we can derive that java is a programming
language. However, if this word comes with
“beverage” or “caffeine”, its meaning changes into
a "kind of coffee". We have used this idea in our
system in order for it to learn by mining association
rules among words. As mentioned before, we have
designed ACC (Associative Concept Classifier)
algorithm for mining annotation rules from
manually-annotated text. The Architecture of
ASWAACC is described in Figure 2. This
architecture has two phases: learning phase and
annotation phase. According to this architecture,
each phase has preprocessing steps including
sentence splitting, text tokenizing, eliminating stop
words and prepositions, and finally indexing
keywords. The first phase has an additional step,
which is extracting annotations from manually-
annotated documents.

The preprocessing steps are essential in this
system because text data are not structured for
manipulation. After preprocessing steps, in the first
phase, annotation rules are extracted from
annotated texts by ACC algorithm. This algorithm
mines rules in the form of A→B where A illustrates
a frequent set of words which frequently occurred
in the annotated texts and B is an annotation object
containing target word and the URI of the
referenced class in an ontology. After the mining
stage, these rules are stored in the database.

Figure.2: ASWAACC Architecture.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

200

For the second phase we have designed Associ-
Annotator algorithm that matches extracted rules
with new unseen texts to annotate them with the
proper ontology. In this phase, preprocessing steps
are performed on new texts in order to produce
word sets. In the next step, word sets are taken into
the Associ-Annotator in order to match with mined
rules which were stored in the database during the
previous phase (As shown in Figure 2).

We used Gate framework and its libraries to
implement out system. This tool contains facilities
for text processing, data storing, parallel processing
and information retrieval. In this system learning
data and test data are stored in a Datastore which
are accessible within a bounded corpus to
Datastore. In addition all of processing resources
are declared through a pipeline, in a way that,
parallel processing is obtained. As an example,
while a document is under sentence splitting, at the
same time, tokenizer works on another document
[19],[20].

4. OVERVIEW OF ASWAACC
ALGORITHMS

According to previous section ACC algorithm

and Associ-Annotator are established at the core of
ASWAACC. In this section, after explanation of
preprocessing steps, these algorithms will be
described in details.

4.1. Preprocessing steps

As mentioned before, text is not a structured form
of data for manipulation, so it is essential to convert
text into the structured form of data that can be
analyzed by a data mining algorithm. In
ASWAACC, each text splits into sentences and
then, they are tokenized into word sets. Hence, a
sentence splitter and an English tokenizer, which
are two components of Gate, are defined in a
pipeline as processing resources.

In addition, if stop words and prepositions are not
eliminated from token sets, many vain rules will be
produced by ACC algorithm, since these tokens
frequently occur in every sentence. Figure 3
illustrates some examples of rules which are
prevented from being produced by filtering
prepositions and stop words. Moreover, these rules
decrease the performance of our system.

In the next step, there is a word indexer as
another stage of preprocessing task, which is
responsible for indexing tokens. In this stage, the
position of each token will be determined in the

sentence. This component also determines the index
of each sentence in the text.

Document stemmer is another component that
can be used in our system. But experimental results
show that the stemmer decreases the performance
of our system because it changes the form of tokens
to their roots, while the meaning of words depends
on the form they appear in a sentence. Hence, we
have eliminated token stemmer from the
architecture of this system.

Figure.3. Rules that have been eliminated by
filtering prepositions and stop words.

4.2. Overview of ACC algorithm

In this section, first, Apriori algorithm is
discussed to show the basic concepts of association
rules mining. Then, the changes that have been
done on this algorithm are presented to describe our
c o n c e p t c l a s s i f i e r a l g o r i t h m .

Apriori is an association rules mining algorithm
used to extract relations between sold items in
shopping malls. In other words, this algorithm
extracts rules to show which goods are sold
together in what support and confidence degrees.
These analyses are categorized in two major
groups: mining associations among items, and
sequence analysis. The first category just projects
on mining association rules between items.
However, sequence mining considers time and
sequence order of events. Association rules are in
the form of A→B, in which A and B are two sets of
events or items that usually occur together in
transactions. As an example, if a hammer existed in
a sale transaction, this transaction would contain
some pins with high probability. In this example,
Apriori mines rules in the form of A→B where
A = { h a m m e r } a n d B = { p i n } .

This algorithm was invented by Agrawal et al in
1993 [14]. Apriori is described as follow:

a) I is a collection of one or more items: I = {i1, i2,
…, im} like {Milk, Bread, Diaper}

b) J = P(I) is a set of all subsets of I. in other
words, the elements of J are called item-sets.

{java , an, by } → <java,
http://gate.ac.uk/owlim#programming_languages>
{java , the, oriented } → <java,
http://gate.ac.uk/owlim #programming_languages>
{java , the } → <java,
http://gate.ac.uk/owlim#cofee_class>
{java , and, by } → <java,
http://gate.ac.uk/oawlim#cofee_class>

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

201

c) t is a set of items which appear in one event,
like purchasing some goods from market.
(transaction) t⊆I.

d) T = {t1, t2,…, tm} is a transaction set.
e) An association rule is an implication of the

form: X→Y, where X, Y are disjoint subsets of
I (i.e. elements of J) [12-14]. In other words X
→ Y is an association rule, where X, Y ⊂ I, and
X ∩ Y = ∅ [1 4] .

Apriori: Apriori finds all rules having support
and confidence greater than minimum support and
minimum confidence thresholds which are
specified by user. That means this algorithm
extracts any rule in a way that, if X appears in a
transaction, Y will occur in that transaction by the
c o n f i d e n c e p r o b a b i l i t y r a t i o .

Support: Support is a fraction of transactions that
contain both X and Y.

(1) P(AUB)
 tuplesofnumber total

 B)&(Aboth containing tuplesofnumber
==Support

Confidence: Confidence measures how often

items in Y appear in transactions which contain X.

(2)P(A)
P(AUB) A)|P(B ==Confidence

(3)A containing tuplesofnumber
 B)&(Aboth containing tuplesofnumber

=Confidence

Frequent Item set: An item set whose support is
greater than or equal to a minsup threshold.
Apriori has two-steps:

1. Frequent Itemset Generation (i.e. Fig 4):

Generating all itemsets whose support ≥ minsup

2. Rule Generation (i.e. Fig 5):
Generating high confidence rules from each
frequent itemset, where each rule is a binary
partitioning of a frequent itemset.

Fig.4: Frequent Itemset Generation in Apriori [12].

Fig.5: Rule Generation in ACC algorithm.

It is obvious that this algorithm mines rules

which have a set of items on both sides. This
algorithm was changed for our system in a way that
the left hand side of each rule is a set of words, but
the right hand side is an ordered pair including
target word and a referenced class from an
ontology. This algorithm is described by the
f o l l o w i n g d e f i n i t i o n s :

a) } w, , w,{w W m21 …= is a word set.
b) c ∈ Ontology class.
c) } w,,w,,w,w,{wA Lk2j1jj ……= ++

 A⊆W is a
frequent word set.

d) B= <Wk,c> is an annotation object.
e) Wk is target word
f) Tk: a transaction set that contains all paragraphs

which include Wk.
g) Nk : cardinality of Tk.
h) P(A) is the probability which A occurs in a text.
i) P(A&B) is frequency of all situations which A

occurred within the paragraph while Wk has been
annotated to class c of ontology.

for (each frequent itemset X)
 for (each non-empty subset A of X)
 for (each B ∈annotation set , annotates Wk)
 if(Confidence(A→B) ≥ minconf)
 A → B will be extracted

Confidence(A→B)=
 probability(A&B)/probability(A)

 Algorithm Generate-frequent-set(T)
C1 ← init-pass(T);
 F1 ← {f | f ∈ C1, f.count/n ≥ minsup};
 // n: no. of transactions in T
 for (k = 2; Fk-1 ≠ ∅; k++) {
 Ck ← candidate-gen(Fk-1);
 for (each transaction t ∈ T) {
 for (each candidate c ∈ Ck) {
 if (c is contained in t)
 c.count++;
 }
 }
 Fk ← {c ∈ Ck | c.count/n ≥ minsup};
 }
return F ← Υk Fk;

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

202

j) In this system each paragraph is considered as
a transaction.

k) Support and confidence are defined as follow:

(4)
kk N

P(A)
 containing textsofnumber
A containing textsofnumber)(==
w

ASupport

(5)P(A)
B)&P(A)|()A(==→ ABPBconfidence

ACC algorithm mines rules in form of A→B
from learning data, in a way that A is a frequent
words set, and B is an annotation object which
annotates the word kw to the class c of an ontology.
Hence, >→<= ++ cwk , }w,..,w,..,w,w, w{A mk2l1ll
is an annotation rule, which is stored in the
d a t a b a s e .

Fig 6 demonstrates example of some rules which
were extracted by the above algorithm.

Fig. 6: Example of extracted rules

4.3. Overview of Associ-Annotator algorithm

This system learns by mining and storing the
rules which ACC extracts from manually-annotated
texts. The system utilizes these extracted rules for
annotating new texts by Associ-Annotator
algorithm. This algorithm tries to match the left
hand side set of each rule with the words that have
b e e n u s e d i n t h e t e x t s .

This phase contains preprocessing steps which
have been illustrated before. After preprocessing
steps, token sets are given to the Associ-Annotator
algorithm in order to match with extracted rules. In
this algorithm, a rule is fired whenever all words in
its left hand side set, appear in the text. When a rule
is fired, the target word in the text will be annotated
to the concept class which exists at the right hand
side of the fired rule. In other words, this algorithm
classifies each word into the proper concept class of
o n t o l o g y . I n t h i s a l g o r i t h m :

a) Y is a set of words that have appeared in the
text.

b) X is the left hand side set of a rule.
 In order to find rules that match with a text, it is

sufficient to check whether X is a subset of Y. This
algorithm is presented in fig 7 in more details.

Fig.7: Associ-Annotator algorithm.

In order to decrease the redundant matching and
to increase the speed of annotation process, some
excess rules should not be matched; hence, the rules
which contain the target word on their right hand
side are selected and are added to the target rule set.
Then Associ-Annotator verifies if the left hand side
of any of them is the subset of the paragraph that
should be annotated in the text.

5. EXPERIMENTAL RESULT, DISCUSSION
AND ASWAACC EVALUATION

This section discusses about evaluation of

ASWAACC and experimental results. For this aim,
ASWAACC learned by using 200 manual
annotated documents which have already been
annotated by human agents. In the next phase,
ASWAACC was tested on 1000 news text
documents; then the results were compared with
Onto-Gazeteer system which is a Gate component
that annotates documents with lists of instances
bound to ontology classes. In addition, this
component is not capable of performing word sense
disambiguation because it just performs annotation
by matching words and instances in the lists. So,
this component usually produces more than one
annotation for one word.

In order to make a precise evaluation for this
system, 200 documents which were already
annotated by hand, were annotated by ASWAACC
and the results were compared with each other. We

{java , programming, language} → <java,
http://gate.ac.uk/owlim#programming_languages>
{java , c++, c#, object, oriented} → <java,
http://gate.ac.uk/owlim#programming_languages>
{java , cofee } → <java, http://gate.ac.uk/owlim#
Coffee_Class >
{java , tee } → <java,
http://gate.ac.uk/owlim# Coffee_Class >
{java , caffeine } →<java,
http://gate.ac.uk/owlim#Coffee_Class >

Algorithm AssociAnnotator(Text T){
 Tokset ← Preprocess(T);
 Y← Tokset;
 For each (rule in ruleset) {
 If(kw is on right hand side of rule)
 Add rule to targetruleset;
 }
 For each (Rule in targetruleset){
 X ← left hand side set of Rule
 If(X ⊆ Y){
 Rule is fired;
 Return;
 }
 }
}

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

203

consider two criteria for evaluation of this system:
recall and precision, which are defined as follows
[10].

(6)
ext within tanswers accurate all

systemby produced results accurate =recall

(7)
resultsinaccurate results accurate

 results accurate
+

=precision

ASWAACC has two input parameters that affect
its performance in the two mentioned criteria.
These parameters are minimum support and
minimum confidence thresholds for ACC algorithm
in the learning phase.

With attention to experimental results achieved
from this system, we realize that minimum support
value should be determined according to the size of
the input text because candidate sets are produced
by considering support value of each set and
minimum support threshold. However, in large
texts, we have larger state space of words, so
coherence among words would decrease. In this
situation high minimum support value may prevent
production of many important rules which causes
reduction in recall value because in equation (4) N
grows and support value of all sets would decrease,
and as a result, many candidate sets would be
eliminated. On the other hand, confidence value of
each rule involved the accuracy of system. In
addition, high minimum confidence threshold
causes production of precise rules, but it decreases
recall value. Similarly, very low minimum support
value leads to production of many irrelevant rules
and it results in decrease in precision but increase in
recall. These relations are demonstrated in Fig 8.
On the other hand, low minimum support threshold
increases learning time due to increase in
production of many candidate sets by ACC
algorithm.

Therefore, it is significant to determine the
minimum support value regarding text size, number
of annotated words in the text, and the number of
learning data. The experimental results show the
best performance of this system is achieved by
setting support value to 10-15% and confidence
threshold to 65-70%. Regarding these parameter
values and our test data repository, the system
accuracy is measured as 91% and 88% for precision
and recall value, respectively. This result can be
changed by tuning mentioned parameters in the
system.

Support 0

20

40

60

80

100

120

6 8 10 12 14 16 18 20 22 30

Recall
Precision

Confidence0

10

20

30

40

50

60

70

80

90

100

55 60 65 70 75 80 85 90 95

Recall

Precision

Fig. 8: Relation between minimum confidence and
minimum support regarding recall and precision of

ASWAACC.

Another matter to concentrate about is that in
some cases, fired rules conflict with each other. In
these cases, the system should decide and select the
appropriate rule for annotation of the target word.
This situation occurs when more than one rule are
fired for annotating a word in the text and the right
hand sides of fired rules contain the same word
with different ontology references. In these
situations, ASWAACC selects the rule with a
higher confidence value. But in a case of equality
of confidence values of conflicted rules, support
value is the next priority for selecting the proper
annotation rule.

Quality and performance of every machine
learning system depend on the quality of learning
data. Minimum support and minimum confidence
are other important parameters for the performance
of this system. Therefore, we can achieve better
results by higher quality learning data and tuning
values for minimum confidence and minimum
support thresholds. The following picture
demonstrates the schema of ASWAACC annotation
system with Gate platform.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

204

Fig. 9: Schema of ASWAACC and Gate.

6. CONCLUSION AND FUTURE WORK

This article discussed the system that performs
word sense disambiguation by applying association
rules mining technique in the text. The idea which
has been used in this system is mining the relation
of words' meaning and co-occurrences of other
words in the sentences by a machine learning
concept classifier. A key point for this system is
that co-occurrence of words is less affected by the
style of writer than other NLP systems.

This system eliminates ambiguities in words'
meaning by utilizing extracted rules. Precision and
speed are important properties of ASWAACC that
is dependent on the values of minimum confidence
and minimum support which are determined by the
user.

This system can be installed as a plug-in on Gate
platform in order to perform word sense
disambiguation task in annotation. Consistency
with non-English languages is another important
property of ASWAACC because semantic relation
among words is not only specific for one language,
but also is an important issue in any language. In
addition, this system can utilize crawler or search
APIs facilities from Gate plug-ins in order to crawl
the internet and annotate crawled web pages.

This system can be utilized in semantic search
engine in order to annotate crawled web pages and
index them semantically with appropriate ontology.
Such a system can eliminate irrelevant pages from
search engine results by classifying each word by
its ontology semantically. Utilizing this system in
information retrieval or a semantic search engine
can form part of our future work.

REFRENCES

[1] Lotfi A. Zadeh, 2004. “A note on web

intelligence, world knowledge and fuzzy
logic”, Data & Knowledge Engineering,
Vol.50, pp. 291–304.

[2] Berners-Lee, T., Hendler, J. and Lassilo, 2001.
“The Semantic Web”, Scientific American,
pp.34-43.

[3] Jacob Ko¨ hler, Stephan Philippi, Michael
Specht, Alexander Ru¨egg, 2006. “Ontology
based text indexing and querying for the
semantic web”, Knowledge-Based Systems
vol.19, pp.744–754.

[4] Mingxia Gao, Chunnian Liu, Furong Chen,
2005. “An Ontology Search Engine Based on
Semantic Analysis”, at Proceedings of the
Third International Conference on Information
Technology and Applications (ICITA’05)
IEEE.

[5] Quan Thanh Tho, Siu Cheung Hui, Fong, Tru
Hoang Cao, 2006. “Automatic Fuzzy Ontology
Generation for Semantic Web”, IEEE
transactions on knowledge and data
engineering, vol. 18, No. 6.

[6] Chang-Shing Lee , Yuan-Fang Kao , Yau-
Hwang Kuo , Mei-Hui Wang, 2007.
“Automated ontology construction for
unstructured text documents”, Data &
Knowledge Engineering, vol.60, pp.547–566.

[7] Philipp Cimiano, 2006. “Ontology Learning
and Population from TextAlgorithms,
Evaluation and Applications”, Springer,
pp.238-271.

[8] Hend S. Al-Khalifa, 2007. “Automatic
Document-level Semantic Metadata
Annotation using Folksonomies and Domain
Ontologies”, PHD thesis, University of
Southampton.

[9] Jelena Jovanovich, Dragan Gaševic, Vladan
Deved, 2006. “Ontology-Based Automatic
Annotation of Learning Content”, Int’l Journal
on Semantic Web & Information Systems 2,
pp.91-119.

[10] Michael W. Berry, 2004. “Survey of Text
Mining Clustering, Classification, and
Retrieval”, Springer-Verlag New York, Inc,
Scanned by Velocity, pp.173-181.

[11] Hany Mahgoub, Dietmar Rösner, Nabil Ismail
and Fawzy Torkey, 2007. “A Text Mining
Technique Using Association Rules
Extraction”, international journal of
computational intelligence volume.4 No.1.

Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

205

[12] Rakesh.Agrawal, Ramakrishnan.Srikant,
1997. “Fast Algorithm for Mining Association
Rules”, IBM Almaden Research.

[13] Rakesh Agrawal, Ramakrishnan Srikant,
1997. "Mining generalized association rules",
IBM Almaden Research, Future Generation
Computer Systems Volume 13, Issues 2-3, pp.
161-180

[14] Rakesh Agrawal, Tomasz Imielinski, Arun
Swami, 1993. “Mining Association Rules
between Sets of Items in Massive Databases”,
Int'l Conf. on Management of Data Center,
USA.

[15] Lawrence Reeve, Hyoil Han, 2005. “Survey
of Semantic Annotation Platforms”,
Proceedings of the 2005 ACM symposium
on applied computing.

[16] J. Domingue, M. Dzbor, E. Motta, 2004.
“Magpieie: Supporting Browsing and
Navigationon Semantic Web” In Proceedings
of ACM Conference on Intelligent
UserInterfaces (IUI), pp: 191-197.

[17] Fabio Ciravegna, 2001. "(LP)2, an Adaptive
Algorithm for Information Extraction from
Web-related Texts”, 17th International
Conference on Artificial Intelligence (IJCAI-
01), Seattle.

[18] Philipp Cimiano, Gunter Ladwig, Steffen
Staab, 2005. “Gimme’ the Context:
Contextdriven Automatic Semantic Annotation
with CPANKOW”, International World Wide
Web Conference Committee (IW3C2).

[19] Hamish Cunningham,Diana Maynard,Kalina
Bontcheva, 2007. “Developing Language
Processing Components with GATE Version.4
(a User Guide)”, The University of Sheffield.

[20] Diana Maynard, Valentin Tablan, Hamish
Cunningham, Cristian Ursu, Horacio Saggion,
Kalina Bontcheva, Yorick Wilks, 2002.
“Architectural elements of language
engineering robustness”, Journal of Natural
Language Engineering Data.

[21] Stephen Dill, Nadav Eiron, David Gibson,
Daniel Gruhl, R.Guha, Anant Jhingran, Tapas
Kanungo, Kevin S.McCurley, Sridhar
Rajagopalan, Andrew Tomkins, John A.
Tomlin, Jason Y. Zien, 2003. “A case for
automated large-scale semantic annotation”,
Web Semantics: Science, Services and Agents
on the World Wide Web, vol.1, pp.115–132.

[22] Atanas Kiryakov, Borislav Popov, Ivan
Terziev, 2004. “Semantic annotation, indexing,
and retrieval”, Web Semantics: Science,
Services and Agents on the World Wide Web
vol.2, pp.49–79.

[23] Alireza Mansouri, Lilly Suriani Affendey, Ali
Mamat, 2008. “Named Entity Recognition
Using a New Fuzzy Support Vector Machine”,
IJCSNS International Journal of Computer
Science and Network Security, VOL.8 No.2.

