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ABSTRACT 
 

After appearance of semantic web, the framework which is machine-readable and machine-understandable, 
by Berners Lee, current web should be annotated by W3C standards in order to define semantic domain of 
each word by its ontology to alleviate the posed problems in the realm of search and information retrieval. 
However annotation is one major problem in the semantic web domain, which is presently performed by a 
human agent. But, considering low human precision for this time-consuming and expensive task and the 
advent of data mining in recent years, in this article, a system is proposed for automatic semantic web 
annotation that is based on machine learning techniques for mining association rules between words in 
already annotated texts.  

In the present article, ASWAACC annotation system will be introduced. In this system, annotation rules are 
produced by analysis of words co-occurrence in a paragraph to eliminate sense ambiguity of words. This 
system has two phases: 1-learning by mining association rules in text data which has been already 
annotated by human. 2-utilizing mined rules to automatically annotate the new unseen text data in order to 
define domain ontology of each word. 

Keywords: Ontology, Semantic annotation, Associative classifier, Machine Learning, Text Mining. 
 
1. INTRODUCTION  
 

Today's World Wide Web, as the most ever-
growing source of information attracts many 
researches to integration of web and artificial 
intelligence [1]. According to Berners Lee, the 
inventor of web, there is a gap between intelligent 
web and current web that is demonstrated by search 
engines' irrelevant results [2]. Semantic web will 
bridge this gap and will make the web intelligent 
and machine-understandable to solve proposed 
problem in this domain. Therefore, by utilizing 
semantic web, computers are capable of reasoning 
and making other tools like search engines cable of 
answering human questions by induction from 
semantic web databases [3], [4]. 

Ontology is a semantic knowledge-base about the 
real world that demonstrates relations between 
concepts in the real world. Hence, if we consider 
computer knowledge as some class hierarchies and 
attributes, semantic web will bridge the mentioned 
gap by insertion of some metadata in web pages 
that connect each word to its proper concept in 
ontology [5], [6]. This task, which is currently 

performed by human agents, is called semantic web 
annotation. In other words, semantic annotation 
means ontology population that makes new 
instances of ontology classes through this process 
[7]-[9], [22], [23]. 

This labor task is so expensive and time-
consuming that can not be done precisely by 
human. As a result, a tool is needed to automate 
this task. Such a tool needs some common sense 
and artificial intelligence in order to match each 
word to its appropriate concept in a correct 
ontology because there are some ambiguities in the 
meaning of each word that should be resolved by 
such intelligent tool. 

If we attend to the meaning of each word and 
presence of other words in sentences, we can 
understand a close relationship between the sense 
of each word and co-occurrence of other words 
through a sentence [4], [24]. This principle gives us 
a clue to reach a method for determining the real 
sense of each word in its context. In other words, 
there are some patterns existing between words and 
their senses which should be extracted to reach the 
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meaning of each word in a sentence. Data mining is 
a way for exploring and mining these patterns [10], 
[11]. 

Association rules mining is a data mining process 
that finds frequent patterns, associations, 
correlations, or causal structures among sets of 
items or objects in transaction databases, relational 
databases, and other information repositories. This 
process is usually used for analysis of shopping 
baskets in shopping malls, cross-marketing, catalog 
designing, loss-leader analysis, clustering, 
classification, etc [13],[14].  

We utilize an association rules mining algorithm 
to explore patterns between words and their proper 
concepts in order to implement a machine learning 
system that can mine annotation rules by mining 
association rules between words from text data in 
the first phase (i.e. learning phase) of ASWAACC. 
In the second phase, these rules are used to annotate 
new text data in order to determine the ontology 
and sense of each word in a sentence. 

ASWAACC is a machine learning-based 
semantic web annotation tool that learns by mining 
association rules among words through the text. In 
this system we designed an algorithm that can 
extract annotation rules from already-annotated text 
in the learning phase. For the second phase, we 
designed an algorithm for matching mined rules 
with new texts to annotate them with proper 
ontology. In fact, this system is a kind of 
associative classifier which classifies words by 
their proper concepts through sentences. 

The rest of this paper is organized as follows: 
section 2 discusses related work. In the next 
section, architecture of ASWAACC is presented, 
and then the algorithms which are used in 
ASWAACC will be illustrated in section 4. Then, 
some examples and evaluations are discussed in 
section 5 and finally, conclusion and future work 
are mentioned in section 6.  

2. RELATED WORKS 
 

Regarding posed reasons in the previous section, 
semantic annotation is an issue which attracts many 
researchers to design automatic semantic annotation 
systems. Therefore, there are some related 
researches about ontology population, ontology 
learning, and automatic semantic annotation related 
to this realm of research. 

Semantic annotation platforms are classified 
based on the type of annotation method used. There 
are two primary categories: Pattern-based and 
Machine Learning-based, as shown in Figure 1. 

Machine learning-based techniques utilize two 
methods: probability and induction. The 
Probabilistic method uses statistical models to 
predict the locations of entities within a text. There 
are some other methods, like natural language 
processing, which use regular expression or 
automata to extract annotation rules and patterns 
within texts [15]. After the learning phase, the 
system utilizes mined rules for annotation of new 
unseen texts; an example of this category is 
wrapper induction. 

Some kinds of systems perform annotation task 
within ontology population by making instances for 
classes [7], while some other systems, such as 
Magpie, just match the existing instances in the 
ontology with words within the text [15]. On the 
other hand, co-relation between entities can be 
extracted by some of these systems. Amilcare and 
SCREAM are examples of such systems which use 
machine learning techniques for semantic 
annotation. Amilcare that uses LP2 algorithm to 
extract annotation rules from text by regular 
expression is classified in this category [17]. 
Amilcare is used by both the Armadillo and Ont-O-
Mat platforms to perform wrapper induction. 

Pattern-based methods can perform pattern 
discovery or have patterns manually defined. These 
kinds of systems can perform pattern discovery, 
such as C-PANKOW that starts by making a 
hypothesis on an entity, and then the hypothesis is 
changed into a fact by gathering click statistics 
around that entity from Google. An advantage of 
these systems is that there is no need for text 
mining and learning. But these systems are not 
capable of performing disambiguation between 
classes and concepts [7], [18]. 

 
Figure.1: Annotation classification 

 
There are a number of platforms which are 

implemented for semantic annotation. They utilize 
some kinds of systems that were mentioned above. 
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GATE, KIM, MnM, are such platforms as well as 
frameworks which can be used by researchers to 
perform implementation of their researches in this 
area [15]. Another group of annotation systems are 
named 'entity recognition' [25]. These systems are 
regularly used for annotating countries, companies 
or persons. Jape and Gazeteer are such tools 
designed to determine entities like persons, 
countries, cities and companies through the text. 
These systems are utilized by Gate to annotate 
entities within the texts. In Jape, rules can be 
identified by java language while Gazeteer utilizes 
lists of instances of entities for determining 
ontology classes of entities. Gate is a set of open 
source libraries and a text engineering framework, 
designed in the University of Sheffield for 
automatic semantic annotation [19], [20]. 

SemTag is the semantic annotation component of 
a comprehensive platform, called Seeker, for 
performing large-scale annotation of web pages. 
SemTag/Seeker is an extensible system, so new 
annotation implementations can replace the existing 
Taxonomy-based Disambiguation algorithm 
(TBD). [21]. 

In addition, platforms can use methods from both 
types of categories, called Multi-strategy, in order 
to take advantage of the strengths, and to 
compensate the weaknesses of the methods in each 
category. In ASWAACC we tried to utilize a data 
mining technique to perform word sense 
disambiguation by learning through extracting 
associations among words from already annotated 
texts.  

3. ASWAACC ARCHITECTURE  
 

In this section, the architecture of ASWAACC is 
described. If we pay our attention to the meaning of 
words in a sentence, we can understand that the 
sense of each word is tied to co-occurrence of other 
words in that sentence [10]. For example, if “java” 
occurred with “C++” or “object oriented” in a 
sentence, we can derive that java is a programming 
language. However, if this word comes with 
“beverage” or “caffeine”, its meaning changes into 
a "kind of coffee". We have used this idea in our 
system in order for it to learn by mining association 
rules among words. As mentioned before, we have 
designed ACC (Associative Concept Classifier) 
algorithm for mining annotation rules from 
manually-annotated text. The Architecture of 
ASWAACC is described in Figure 2. This 
architecture has two phases: learning phase and 
annotation phase. According to this architecture, 
each phase has preprocessing steps including 
sentence splitting, text tokenizing, eliminating stop 
words and prepositions, and finally indexing 
keywords. The first phase has an additional step, 
which is extracting annotations from manually-
annotated documents.  

The preprocessing steps are essential in this 
system because text data are not structured for 
manipulation. After preprocessing steps, in the first 
phase, annotation rules are extracted from 
annotated texts by ACC algorithm. This algorithm 
mines rules in the form of A→B where A illustrates 
a frequent set of words which frequently occurred 
in the annotated texts and B is an annotation object 
containing target word and the URI of the 
referenced class in an ontology. After the mining 
stage, these rules are stored in the database. 

 
Figure.2: ASWAACC Architecture. 
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For the second phase we have designed Associ-
Annotator algorithm that matches extracted rules 
with new unseen texts to annotate them with the 
proper ontology. In this phase, preprocessing steps 
are performed on new texts in order to produce 
word sets. In the next step, word sets are taken into 
the Associ-Annotator in order to match with mined 
rules which were stored in the database during the 
previous phase (As shown in Figure 2).  

We used Gate framework and its libraries to 
implement out system. This tool contains facilities 
for text processing, data storing, parallel processing 
and information retrieval. In this system learning 
data and test data are stored in a Datastore which 
are accessible within a bounded corpus to 
Datastore. In addition all of processing resources 
are declared through a pipeline, in a way that, 
parallel processing is obtained. As an example, 
while a document is under sentence splitting, at the 
same time, tokenizer works on another document 
[19],[20]. 

4. OVERVIEW OF ASWAACC 
ALGORITHMS 

 
According to previous section ACC algorithm 

and Associ-Annotator are established at the core of 
ASWAACC. In this section, after explanation of 
preprocessing steps, these algorithms will be 
described in details. 

4.1. Preprocessing steps 
 

As mentioned before, text is not a structured form 
of data for manipulation, so it is essential to convert 
text into the structured form of data that can be 
analyzed by a data mining algorithm. In 
ASWAACC, each text splits into sentences and 
then, they are tokenized into word sets. Hence, a 
sentence splitter and an English tokenizer, which 
are two components of Gate, are defined in a 
pipeline as processing resources. 

In addition, if stop words and prepositions are not 
eliminated from token sets, many vain rules will be 
produced by ACC algorithm, since these tokens 
frequently occur in every sentence. Figure 3 
illustrates some examples of rules which are 
prevented from being produced by filtering 
prepositions and stop words. Moreover, these rules 
decrease the performance of our system. 

In the next step, there is a word indexer as 
another stage of preprocessing task, which is 
responsible for indexing tokens. In this stage, the 
position of each token will be determined in the 

sentence. This component also determines the index 
of each sentence in the text.  

Document stemmer is another component that 
can be used in our system. But experimental results 
show that the stemmer decreases the performance 
of our system because it changes the form of tokens 
to their roots, while the meaning of words depends 
on the form they appear in a sentence. Hence, we 
have eliminated token stemmer from the 
architecture of this system.  

 
 
 
 
 
 
 
 
 

Figure.3. Rules that have been eliminated by 
filtering prepositions and stop words. 

4.2. Overview  of ACC algorithm 
 

In this section, first, Apriori algorithm is 
discussed to show the basic concepts of association 
rules mining. Then, the changes that have been 
done on this algorithm are presented to describe our 
c o n c e p t  c l a s s i f i e r  a l g o r i t h m . 

Apriori is an association rules mining algorithm 
used to extract relations between sold items in 
shopping malls. In other words, this algorithm 
extracts rules to show which goods are sold 
together in what support and confidence degrees. 
These analyses are categorized in two major 
groups: mining associations among items, and 
sequence analysis. The first category just projects 
on mining association rules between items. 
However, sequence mining considers time and 
sequence order of events. Association rules are in 
the form of A→B, in which A and B are two sets of 
events or items that usually occur together in 
transactions. As an example, if a hammer existed in 
a sale transaction, this transaction would contain 
some pins with high probability. In this example, 
Apriori mines rules in the form of A→B where 
A = { h a m m e r }  a n d  B = { p i n } . 

This algorithm was invented by Agrawal et al in 
1993 [14]. Apriori is described as follow: 

a) I is a collection of one or more items: I = {i1, i2, 
…, im} like {Milk, Bread, Diaper} 

b)  J = P(I) is a set of all subsets of I. in other 
words, the elements of J are called item-sets. 

{java , an, by } → <java, 
http://gate.ac.uk/owlim#programming_languages> 
{java , the, oriented } → <java, 
http://gate.ac.uk/owlim #programming_languages> 
{java , the } → <java, 
http://gate.ac.uk/owlim#cofee_class> 
{java , and, by } → <java, 
http://gate.ac.uk/oawlim#cofee_class> 
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c)  t is a set of items which appear in one event, 
like purchasing some goods from market. 
(transaction) t⊆I. 

d)  T = {t1, t2,…, tm} is a transaction set. 
e) An association rule is an implication of the 

form: X→Y, where X, Y are disjoint subsets of 
I (i.e. elements of J) [12-14]. In other words X 
→ Y is an association rule, where X, Y ⊂ I, and 
X  ∩ Y  = ∅ [ 1 4 ] . 

Apriori: Apriori finds all rules having support 
and confidence greater than minimum support and 
minimum confidence thresholds which are 
specified by user. That means this algorithm 
extracts any rule in a way that, if X appears in a 
transaction, Y will occur in that transaction by the 
c o n f i d e n c e  p r o b a b i l i t y  r a t i o . 

Support: Support is a fraction of transactions that 
contain both X and Y. 
 

(1) P(AUB) 
   tuplesofnumber    total

 B)&(Aboth   containing    tuplesofnumber  
==Support

 
 
Confidence: Confidence measures how often 

items in Y appear in transactions which contain X. 

(2)P(A)
P(AUB)  A)|P(B ==Confidence  

(3)A  containing  tuplesofnumber 
 B)&(Aboth  containing  tuplesofnumber 

=Confidence

Frequent Item set: An item set whose support is 
greater than or equal to a minsup threshold. 
Apriori has two-steps:  
 
1. Frequent Itemset Generation (i.e. Fig 4): 

Generating all itemsets whose support ≥ minsup 
 

2. Rule Generation (i.e. Fig 5): 
Generating high confidence rules from each 
frequent itemset, where each rule is a binary 
partitioning of a frequent itemset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4: Frequent Itemset Generation in Apriori [12]. 

 
 
 
 
 
 
 
 
 

 
 
Fig.5: Rule Generation in ACC algorithm. 
 
It is obvious that this algorithm mines rules 

which have a set of items on both sides. This 
algorithm was changed for our system in a way that 
the left hand side of each rule is a set of words, but 
the right hand side is an ordered pair including 
target word and a referenced class from an 
ontology. This algorithm is described by the 
f o l l o w i n g  d e f i n i t i o n s : 

a)  } w, , w,{w W m21 …=  is a word set. 
b)  c ∈ Ontology class. 
c) } w,,w,,w,w,{wA Lk2j1jj ……= ++

 A⊆W is a 
frequent word set. 

d)  B= <Wk,c> is an annotation object. 
e) Wk is target word  
f)  Tk: a transaction set that contains all paragraphs 

which include Wk.  
g)  Nk : cardinality of Tk. 
h)  P(A) is the probability which A occurs in a text.  
i)  P(A&B) is frequency of all situations which A 

occurred within the paragraph while Wk has been 
annotated to class c of ontology.  

for (each frequent itemset X)  
    for (each non-empty subset A of X) 
        for (each B ∈annotation set , annotates Wk) 
             if(Confidence(A→B) ≥ minconf ) 
                   A → B will be extracted 
 
Confidence(A→B)=   
   probability(A&B)/probability(A) 

 Algorithm Generate-frequent-set(T)  
C1 ← init-pass(T);   
          F1 ← {f | f ∈ C1, f.count/n ≥ minsup};    
                          // n: no. of transactions in T 
          for (k = 2; Fk-1 ≠ ∅; k++) {  
              Ck ← candidate-gen(Fk-1); 
              for (each transaction t ∈ T) { 
                  for (each candidate c ∈ Ck) {   
                        if (c is contained in t)  
   c.count++;  
                  }  
              } 
              Fk ← {c ∈ Ck | c.count/n ≥ minsup}; 
          } 
return F ← Υk Fk; 
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j) In this system each paragraph is considered as 
a transaction.  

k) Support and confidence are defined as follow: 
 

(4)
kk N

P(A) 
 containing  textsofnumber 
A  containing  textsofnumber )( ==
w

ASupport

(5)P(A)
B)&P(A )|()A( ==→ ABPBconfidence  

ACC algorithm mines rules in form of A→B 
from learning data, in a way that A is a frequent 
words set, and B is an annotation object which 
annotates the word kw  to the class c of an ontology. 
Hence, >→<= ++ cwk , }w,..,w,..,w,w, w{A mk2l1ll  
is an annotation rule, which is stored in the 
d a t a b a s e .  

Fig 6 demonstrates example of some rules which 
were extracted by the above algorithm. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Example of extracted rules  

4.3. Overview of Associ-Annotator algorithm 
 

This system learns by mining and storing the 
rules which ACC extracts from manually-annotated 
texts. The system utilizes these extracted rules for 
annotating new texts by Associ-Annotator 
algorithm. This algorithm tries to match the left 
hand side set of each rule with the words that have 
b e e n  u s e d  i n  t h e  t e x t s .  

This phase contains preprocessing steps which 
have been illustrated before. After preprocessing 
steps, token sets are given to the Associ-Annotator 
algorithm in order to match with extracted rules. In 
this algorithm, a rule is fired whenever all words in 
its left hand side set, appear in the text. When a rule 
is fired, the target word in the text will be annotated 
to the concept class which exists at the right hand 
side of the fired rule. In other words, this algorithm 
classifies each word into the proper concept class of 
o n t o l o g y .  I n  t h i s  a l g o r i t h m :  

a) Y is a set of words that have appeared in the 
text. 

b)  X is the left hand side set of a rule. 
 In order to find rules that match with a text, it is 

sufficient to check whether X is a subset of Y. This 
algorithm is presented in fig 7 in more details. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7: Associ-Annotator algorithm. 
 

In order to decrease the redundant matching and 
to increase the speed of annotation process, some 
excess rules should not be matched; hence, the rules 
which contain the target word on their right hand 
side are selected and are added to the target rule set. 
Then Associ-Annotator verifies if the left hand side 
of any of them is the subset of the paragraph that 
should be annotated in the text.  

5. EXPERIMENTAL RESULT, DISCUSSION 
AND ASWAACC EVALUATION 

 
This section discusses about evaluation of 

ASWAACC and experimental results. For this aim, 
ASWAACC learned by using 200 manual 
annotated documents which have already been 
annotated by human agents. In the next phase, 
ASWAACC was tested on 1000 news text 
documents; then the results were compared with 
Onto-Gazeteer system which is a Gate component 
that annotates documents with lists of instances 
bound to ontology classes. In addition, this 
component is not capable of performing word sense 
disambiguation because it just performs annotation 
by matching words and instances in the lists. So, 
this component usually produces more than one 
annotation for one word. 

In order to make a precise evaluation for this 
system, 200 documents which were already 
annotated by hand, were annotated by ASWAACC 
and the results were compared with each other. We 

{java , programming, language} → <java, 
http://gate.ac.uk/owlim#programming_languages> 
{java , c++, c#, object, oriented} → <java, 
http://gate.ac.uk/owlim#programming_languages> 
{java , cofee } →  <java, http://gate.ac.uk/owlim# 
Coffee_Class > 
{java , tee } → <java,  
http://gate.ac.uk/owlim# Coffee_Class > 
{java , caffeine } →<java,  
http://gate.ac.uk/owlim#Coffee_Class > 

Algorithm AssociAnnotator(Text T){ 
      Tokset ← Preprocess(T); 
      Y← Tokset; 
      For each (rule in ruleset) { 
            If( kw is on right hand side of rule) 
                  Add rule to targetruleset; 
      } 
      For each (Rule in targetruleset){ 
            X ← left hand side set of Rule 
            If(X ⊆ Y){ 
                Rule is fired; 
                Return; 
           }     
     } 
}  
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consider two criteria for evaluation of this system: 
recall and precision, which are defined as follows 
[10].  

(6)
ext  within tanswers  accurate all

systemby    produced  results  accurate =recall  

(7)
resultsinaccurate  results accurate

 results accurate 
+

=precision

ASWAACC has two input parameters that affect 
its performance in the two mentioned criteria. 
These parameters are minimum support and 
minimum confidence thresholds for ACC algorithm 
in the learning phase. 

With attention to experimental results achieved 
from this system, we realize that minimum support 
value should be determined according to the size of 
the input text because candidate sets are produced 
by considering support value of each set and 
minimum support threshold. However, in large 
texts, we have larger state space of words, so 
coherence among words would decrease. In this 
situation high minimum support value may prevent 
production of many important rules which causes 
reduction in recall value because in equation (4) N 
grows and support value of all sets would decrease, 
and as a result, many candidate sets would be 
eliminated. On the other hand, confidence value of 
each rule involved the accuracy of system. In 
addition, high minimum confidence threshold 
causes production of precise rules, but it decreases 
recall value. Similarly, very low minimum support 
value leads to production of many irrelevant rules 
and it results in decrease in precision but increase in 
recall. These relations are demonstrated in Fig 8. 
On the other hand, low minimum support threshold 
increases learning time due to increase in 
production of many candidate sets by ACC 
algorithm. 

Therefore, it is significant to determine the 
minimum support value regarding text size, number 
of annotated words in the text, and the number of 
learning data. The experimental results show the 
best performance of this system is achieved by 
setting support value to 10-15% and confidence 
threshold to 65-70%. Regarding these parameter 
values and our test data repository, the system 
accuracy is measured as 91% and 88% for precision 
and recall value, respectively. This result can be 
changed by tuning mentioned parameters in the 
system. 
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Fig. 8: Relation between minimum confidence and 
minimum support regarding recall and precision of 

ASWAACC. 

Another matter to concentrate about is that in 
some cases, fired rules conflict with each other. In 
these cases, the system should decide and select the 
appropriate rule for annotation of the target word. 
This situation occurs when more than one rule are 
fired for annotating a word in the text and the right 
hand sides of fired rules contain the same word 
with different ontology references. In these 
situations, ASWAACC selects the rule with a 
higher confidence value. But in a case of equality 
of confidence values of conflicted rules, support 
value is the next priority for selecting the proper 
annotation rule. 

Quality and performance of every machine 
learning system depend on the quality of learning 
data. Minimum support and minimum confidence 
are other important parameters for the performance 
of this system. Therefore, we can achieve better 
results by higher quality learning data and tuning 
values for minimum confidence and minimum 
support thresholds. The following picture 
demonstrates the schema of ASWAACC annotation 
system with Gate platform.  



Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
204 

 

 
Fig. 9: Schema of ASWAACC and Gate. 

6. CONCLUSION AND FUTURE WORK 
 

This article discussed the system that performs 
word sense disambiguation by applying association 
rules mining technique in the text. The idea which 
has been used in this system is mining the relation 
of words' meaning and co-occurrences of other 
words in the sentences by a machine learning 
concept classifier. A key point for this system is 
that co-occurrence of words is less affected by the 
style of writer than other NLP systems. 

This system eliminates ambiguities in words' 
meaning by utilizing extracted rules. Precision and 
speed are important properties of ASWAACC that 
is dependent on the values of minimum confidence 
and minimum support which are determined by the 
user. 

This system can be installed as a plug-in on Gate 
platform in order to perform word sense 
disambiguation task in annotation. Consistency 
with non-English languages is another important 
property of ASWAACC because semantic relation 
among words is not only specific for one language, 
but also is an important issue in any language. In 
addition, this system can utilize crawler or search 
APIs facilities from Gate plug-ins in order to crawl 
the internet and annotate crawled web pages. 

This system can be utilized in semantic search 
engine in order to annotate crawled web pages and 
index them semantically with appropriate ontology. 
Such a system can eliminate irrelevant pages from 
search engine results by classifying each word by 
its ontology semantically. Utilizing this system in 
information retrieval or a semantic search engine 
can form part of our future work. 
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