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ABSTRACT 
 

The general consideration in Spatial General Epidemic Model is controlling the  propagation of the disease 
starting from an infected individual.  By a suitable control process,  this epidemic can be rooted out.  Here, 
we suggest the control process using the percolation probability to be attached with the formation of edges 
having the suitable probabilities,  giving the random graphs which will explain the extinction probability of 
the epidemic. 

 
Keywords:  Spatial General Epidemic Model, Extinction of the Epidemic, Random  Graphs, Threshold 

Behaviour of the Epidemic 
 

 
1.   INTRODUCTION 
 
Currently in the period of dynamic indeterminism 
in Science, there is hardly a serious piece of  
research, which, if treated realistically, does not 
involve operations on Stochastic Processes.  
Stochastic Processes concern , themselves with the 
sequences of events governed by the probabilistic 
laws. 
 
Bailey[1] has observed that the total load of human 
misery and suffering from a communicable disease 
in the world today is incalculable, and presents a 
formidable challenge to the  public health 
authorities, epidemiologists, parasitologists, 
entomologists, biomathematicians and any other 
experts whose skills may have some bearing on the 
problems involved.  He has also observed that  the 
fearful tool of human life and happiness exacted 
through ages by the prevalence of  widespread 
diseases and pestilence affords a spectacle that is 
both fascinating and repellent. 
 
The theory of random graphs can be viewed as a 
modest beginning from which we can learn a 
variety of techniques and can find out what kind of  
results we should try to prove with regard to more 
complicated random structures. 
 
Kuulasmaa[4] has explained the use of random 
graphs in epidemic modelling.  A study on 
epidemic models through random graphs is 
focused in this paper. 
 

     
 
2.   BASIC DEFINITIONS AND RESULTS 
 
DEFINITION   2.1        SPATIAL GENERAL 
EPIDEMIC GE ( , , , )dZ Fα μ : 
 
 Let the set of sites be dZ , the d – dimensional 
integer lattice, and let S be a finite subset of dZ .  
We assume that α  is a strictly positive real 
number, μ  is a probability density defined on 

dZ such that (0) 0μ =  and F is a probability 
distribution function concentrated on (0, )∞ .  At 
time zero there is an infectious individual at each 
site of S, and the other  sites are occupied by 
healthy individuals.  The infectives emit germs 
independently in Poisson processes with rates α  
until they are removed, each independently after 
having been infectious for a random length of time 
with distribution F.  After an individual has been 
removed, his or her site remains empty for ever.  
Each emitted germ goes independently to a site 
whose location with respect to the location of the 
parent is chosen, according to the contact 
distribution.  If a healthy  individual gets a germ, 
he or she becomes infected and starts emitting 
germs until he or she is removed after an 
infectious time with distribution F.  If an infected 
individual or an empty site receives a germ 
nothing happens. 
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The most important question about the general 
epidemic is whether it is possible that the infection 
never dies out.  It happens almost surely if and 
only if  infinitely many individuals are ultimately 
infected. 
 
 
DEFINITION   2.2  THE PROBLEM OF 
EXTINCTION OF THE EPIDEMIC AS                        
                                   RANDOM GRAPHS: 
 
  Let ( , )G V E=  be the simple graph,  where 

dV Z=  and for each, v V∈ ,  E contains an 
edge from v to w,  if and only if ( ) 0w vμ − > .  
Corresponding to the general epidemic, 

( , , , )GE V Fα μ , we define a locally dependent 
random graph (G,P) such that,  there is an infective 
at every vertex of V, the edge from v to w is black 
if and only if the infective at v sends a germ to w 
before he or she is removed.  The random graph 
(G,P) determines the ultimate spread of the 
epidemic: the individual at v V∈ , v S∉  will  
sooner or later be infected if and only if in the 
random graph there is a black path from S to V. 
 
DEFINITION   2.3   The percolation probability 

( )P ζ ∑∞ indicates the probability that  infection 
never becomes extinct.                
 
THEOREM   2.1    Let (G,P) and (G,Q) be two 
locally dependent random graphs, defined on the 
same directed graph G, with avoidance functions 
{ }vp and { }vq  respectively.  If v vp q≥  for 

every v V∈ , we have ( ) ( )P Qξ ξ∑ ∑≤  for any 

set ∑ of paths and ( ) ( )P Q∑ ∑ℑ ≤ ℑ ,  if  ∑  is a 
countable set of paths. 
 
This theorem is very useful for comparison of 
percolation probabilities on random graphs with 
different probability measures. 
 
As an application of the above theorem,  we get 
immediately the result of Hammersley[3] that the 
percolation probability in a bond percolation 
process is higher than in the corresponding site 
process. 
 
  
3.     LEMMA:       A THRESHOLD 
THEOREM FOR THE GENERAL    
                                EPIDEMIC  PROCESS 

 
“If  in the general epidemic ( , , , )dGE Z Fα μ , 
d≥ 2 and μ  is properly at least two dimensional, 

then there exists a critical infection rate cα  such 

that cα α<  the infection becomes extinct almost 

surely,  whereas for cα α> ,   the probability of 
extinction is less than one.  It is interesting to note 
that if μ   is one dimensional and has finite mean 
and if also F has finite mean,  then the probability 
of extinction is always one”. 
 
 
4.         INVESTIGATION OF THE 
THRESHOLD BEHAVIOUR      
            OF THE EPIDEMIC MODEL IN AN 
EFFICIENT MANNER 
 
PROOF:     Let ( , , , )dGE Z Fα μ   be an 
arbitrary epidemic with (G,P) as the corresponding 
random graph.  We can define two constant 
lifetime epidemics such that in the random graph, 

*( , )G P  say, of one of them,  the marginal 
probability for any edge to be black is the same as 
in (G,P), and in the other , which has constant 
distributionμ ,  the probability that an infective 
emits no germs is the same as 
in '( , , , )dGE Z Fα μ .  Let  0( , )G P     be the 
random graph of the latter constant lifetime 
process.  We can use Theorem 2.1 to find out these 
constant lifetime epidemics provide both an upper 
bound and a lower bound for the probability of no 
extinction of  
 
 ( , , , )dGE Z Fα μ :   

0 *( ) ( ) ( )P P Pζ ζ ζ∞ ∞ ∞∑ ∑ ∑≤ ≤ .                                    
: 
 
Also we note that not all but many random graphs 
corresponding to general epidemics have product 
representations.  Let :[0, ) Rψ ∞ →    be the 
function defined by 
                                      

0

( ) log ( )xtx e dF tψ
∞

−= − ∫ . 

 
The random graph (G,P) of   ( , , , )dGE Z Fα μ      
has a product representation if                                                                     
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1 ( )( 1) ( ) 0i iψ α−− ≥    in the interval 0 x α≤ ≤      
for every i = 1,2,3,…m  if   

{ }: ( ) 0dm v Z vμ= ∈ > < ∞  or for every  i = 

1,2,3,… if m= ∞ .  In particular, the condition is 
true if F is infinitely divisible. 
 
 
5.    CONCLUSION 
 
We are interested in the incidence, propagation 
and control of  many infectious diseases.  We 
could identify the incidence and local propagation 
from the observations we could undertake on any 
particular disease.  From the data,  we identify the 
probability density function which could be fitted 
for propagation.  This leads to the application of 
the above result and we conclude that the 
application of random graph theoretical results are 
more suitable to discuss this real time situation. 
 
Earlier models are based on the assumptions 
pertaining to the Birth and Death process.  The 
parameters involved in Birth and Death rates may 
be viewed as functions of both number of 
individuals present at any level and at any time.  
There are also models involving assumptions on 
isolation of infected individuals.  In these models,  
finding the probability generating function using 
the difference differential equation of the model 
and thereby getting the extinction probability is 
found to be a difficult.  In our approach,  we do not 
confront with any such difficult situation. 
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