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ABSTRACT 
 
This paper describes about the modeling of errors (like ionospheric delays, atmospheric delays, 
Troposphericelays, Multipath effects and dilution of precision etc.,) affecting the GPS signals as they 
travel from satellite to user on Earth. These errors degrade the accuracy of GPS position. An attempt is 
made to improve the accuracy in locating the GPS receiver by filtering the range measurements with the 
datum conversion between Universal Transverse Mercator (UTM) and World Geodetic System (WGS - 
84) using single frequency ML-250 hand held GPS receiver and smoothening of these coordinates using 
Kalman filter. A linear recursive filtering technique, Kalman filter is used for greater accuracy in 
estimating the position of user by considering the initial state of the system, statistics of system noise and 
measurement errors from sensor noise measurements. The results of proposed Kalman filter technique 
give better accuracy with more consistency and are found superior to the standard one  
 

Key words: GPS, Datum conversion, Kalman filter, Recursive algorithm, Error covariance, Measurement 
noise. 

 
1. INTRODUCTION OF GLOBAL 

POSITIONING SYSTEM 
 

A Satellite-based system Global Positioning 
System uses a constellation of 24 satellites to 
give an accurate position of user. GPS receivers 
have been developed to observe signals 
transmitted by the satellites and achieve sub-
meter accuracy in point positioning and a few 
centimeters in relative positioning. GPS can be 
operated in all weather, day and night with out 
any requirement of Inter visibility between 
points. GPS provides a global absolute 
positioning capability with respect to a 
consistent terrestrial reference frame and 
considered as an absolute global geodetic 
positioning system. The GPS satellites are 
positioned in such a way that at least five to 
eight satellites are accessible at any point on 
earth and at any time (Hoffmann-Wellonhaff et 
al, 1998). GPS is based on a system of 
coordinates called the World Geodetic System 
1984 (WGS-84 whose coordinates are the 
latitude, longitude, and height) (Kaplan.E.D, 
1996and Parkinson, 1996). GPS data is observed 
in WGS 84 and Universal Transverse Mercator 
(UTM). The most common map projection and 
grid system used for land navigation is the 
Universal Transverse Mercator (UTM) system. 

A key advantage of the UTM projection is its 
preservation of the shape of the small areas on a 
map and its grid coordinates permit easy 
calculations using plane trigonometry (Langely 
B Richard, 2000). In UTM, the ellipsoid is 
portioned in to 60 zones with a width of six 
degrees longitude each. A scale factor of 0.996 
is applied to the central meridian (Leick, 1995). 
The scale factor is to avoid fairly large 
distortions in the outer areas of zone.  
There are several sources of error that degrade 
the GPS position from few meters to tens of 
meters (Pratap Misra, 2001). These error sources 
are Ionospheric, Atmospheric delays, Satellite 
and Receiver Clock Errors, Multipath, Dilution 
of Precision, Selective Availability (S/A) and 
Anti Spoofing (A-S) as described by Hoffmann - 
Wellenhof et al (1998). The errors could be 
transmitted via VHF/UHF links and the users 
can make use of the corrections to fix their 
positions more accurately. These errors can be 
reduced to arrive at a more accurate estimate of 
coordinates of user by means of a recursive 
algorithm- KALMAN FILTER. The emphasis is 
given on the above errors to analyze the Kalman 
filter (Grewel.M. S et al, 2001). 
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 Beran et al (2001) could try to develop Kalman 
filter based functional model for single 
frequency positioning which is suitable for low 
dynamic platforms. Bisnath and Langely (2002) 

extended their work further and recent precise 
point positioning results show decimeter 
accuracy 

with the use of dual frequency geodetic-quality 
receiver. Kevin Milton et al (2006) have also 
adapted a technique, which utilizes semi-
codeless technique to with the use of dual 
frequency geodetic quality receiver. Kevin 
Milton et al (2006) have adopted a technique 
which utilizes a semi-codeless technique to 
provide high accuracy GPS measurements and 
L1-L2 carrier phase measurement for wide-lane 
applications. The delay of the P code is varied 
and the signals are cross correlated until a 
maximum value is reached. When the cross 
correlation of the L1 and L2 signals is at a peak 
value, the relative delay between the L1 and L2 
signals is proportional to the ionospheric delay. 
The derived ionospheric delay may be accounted 
for in measurement analysis of the L1 signal to 
provide for a high precision position solution. 
(http:// www.google.com /patents? 
hl=en&lr=&vid=USPAT5903654&id=TkcXAA
AAEBAJ&oi=fnd&dq=ionospheric+delays; 
29TH DEC 2006).  
The GPS receiver is giving both WGS-84 data 
observed in latitude, longitude & altitude and 
UTM data observed in Northing & Easting 
(Langely.R.B, 2000). In the conversion process 
of UTM to WGS 84, accuracy must be obtained 
without distortions .In the work attempted by 
Ravindhra .et al (Feb, 2002), only the datum 
conversion from WGS- 84 to UTM and 
inaccuracy were discussed. The role of the noise 
in GPS is only at satellite and receiver segments. 
The modeling of the noise in satellites and 
receiver segments are discussed by Langely 
(March 1997). 
Y. Yuan and J. Ou (2001) developed one robust 
recurrence technique, based on the efficient 
combination of single-frequency GPS 
observations by users and the high-precision 
differential ionospheric delay corrections from 
WAAS. For the commonly used GPS wide-area 
augmentation systems (WAAS) with a grid 
ionospheric model, the efficient modeling of 
ionospheric delays in real time, for single-
frequency GPS users, is still a crucial issue 
which needs further research. This is particularly 
necessary when differential ionospheric delay 
corrections cannot be broadcast, when users 
cannot receive them or when there are 
ionospheric anomalies. Ionospheric delays have 
a severe effect on navigation performance of 
single-frequency receivers. A new scheme is 

proposed which can efficiently address the 
above problems. 
 
2. THE KALMAN FILTER  
 
A significant mathematical toolbox used for 
stochastic estimation from noisy sensor 
measurements is Kalman filter. Kalman filtering 
is based on linear mean square error filtering 
(estimation) and it is essentially a set of 
mathematical equations that implement a 
Predictor-corrector type estimator which is 
optimal. It minimizes the estimated error 
covariance —when some presumed conditions 
are met. For the given spectral characteristics of 
an additive combination of signal and noise, the 
linear operation on this input combination yields 
the best (meaning minimum square error) 
separation of the signal from the noise is to be 
known.  
The distinctive feature of Kalman filter is about 
the description of its mathematical formulation 
in terms of state space analysis as per (Bozic, 
1999) and its solution is computed recursively. 
As each update estimate is computed from the 
previous estimate and the input data, only 
previous estimate requires storage. The filter is a 
computational algorithm that processes 
measurements to deduce a minimum error 
estimate of the system by utilizing knowledge of 
the system, measurement dynamics, and 
statistics of the system, noises measurement 
errors and initial condition information. It is to 
improve the quality of datum conversion using 
this smoothening technique. It also reduces the 
error while converting from UTM to WGS-84 
GPS data. Here by employing this smoothening 
technique, Kalman filter puts up better UTM to 
WGS-84 conversion efficiency. The effects of 
ionospheric delays have already been discussed 
by Klobuchar (May 1987). Smoothening of 
WGS- 84 with the help of Kalman filter has 
been discussed by Malleswari et al (2005). But 
in this proposed technique, the Kalman filter is 
used to smoothen the UTM coordinates. Since 
the time of its introduction, the Kalman filter has 
been the subject of extensive research and 
application, particularly in the area of 
autonomous or assisted navigation.  This is 
likely due in large part to advances in digital 
computing, relative simplicity and robust nature 
of the filter itself. Rarely do the conditions 
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necessary for optimality actually exist, and yet 
the filter apparently works well for many 
applications in spite of this situation as 
emphasized by (Peter S Maybeck, 2001). 
Langely (October, 2000) discussed about the 
GPS receivers tracking 8 or more satellites 
simultaneously and determining the positions 
using all of the available observations with a 
least – squared – error algorithm. 
 

3 MATHEMATICAL FORMULATION OF 
KALMAN FILTER 

 
     The Kalman filter addresses the general 
problem of trying to estimate the state 

nx   ∈ ℜ of a discrete-time controlled process 
that is governed by the linear stochastic 
difference equation as in equation 1. 
XK = A X K -1 + B U K + W K -1 ------------- (1) 
With a measurement 

mx   ∈ ℜ    that is (as 
stated in equation 2).   

ZK   = HX K +V K ----------------------------- (2) 

The random variables WK and VK represent the 
process and measurement noise (respectively). 
They are assumed to be independent (of each 
other), white, and with normal probability 
distributions 

P (W) – N (0, Q) --------------------- (3) 

P (V) – N (0, R) -------------------- (4) 
The process noise covariance Q and 
measurement noise covariance R matrices as in 
equations 3 & 4 might change with each time 
step or measurement, however here we assume 
they are constant (Peter S Maybeck (2001). 
The n×n matrix A in the difference equation (1) 
relates the state at the previous time step K-1 to 
the state at the current step K, in the absence of 
either a driving function or process noise. Note 
that in practice A might change with each time 
step, but here we assume it is constant. The n×l 
matrix B relates the optional control input 

lu   ∈ ℜ to the state x. The m×n matrix H in 
the measurement equation (2) relates the state to 
the measurement ZK. In practice H might change 
with each time step or measurement, but here we 
assume it is constant. The Kalman filter 
estimates a process by using a form of feedback 
control: the filter estimates the process state at 
some time and then obtains feedback in the form 
of (noisy) measurements. As such, the equations 
for the Kalman filter fall into two groups: time 
update equations and measurement update 

equations as shown in figure 1. Discrete Kalman 
filter time update equations (5 & 6) are given as 

-
1

1

ˆ ˆk k k
T

k k

x Ax Bu

P AP A Q
−

−
−

= +

= +
    ---------- 5 & 6 

Time update equations project the state and 
covariance estimates forward from time step k-1 
to step k. A and B are from equation (1), while 
Q is from is from equation (.3). Initial conditions 
for the filter are discussed in the earlier 
references. Discrete Kalman filter measurement 
update equations (7, 8 & 9) are given below. 
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  -------7, 8 & 9 

The time update equations are responsible for 
projecting forward (in time) the current state and 
error covariance estimates to obtain the a priori 
estimates for the next time step. The 
measurement update equations are responsible 
for the feedback--i.e. for incorporating a new 
measurement into the a priori estimate to obtain 
an improved a posteriori estimate. The time 
update equations can also be thought of as 
predictor equations, while the measurement 
update equations can be thought of as corrector 
equations. Indeed the final estimation algorithm 
resembles that of a predictor-corrector algorithm 
for solving numerical problems. 
The first task during the measurement update is 
to compute the Kalman gain, Kk. The next step 
is to actually measure the process to obtain Zk, 
and then to generate an a posteriori state 
estimate by incorporating the measurement as in 
equation (8). The final step is to obtain an a 
posteriori error covariance estimate via equation 
(9). After each time and measurement update 
pair, the process is repeated with the previous a 
posteriori estimates used to project or predict 
the new a priori estimates. This recursive nature 
is one of the very appealing features of the 
Kalman filter—it makes practical 
implementations much more feasible than (for 
example) an implementation of a Wiener filter 
(Brown and Hwang 1992) which is designed to 
operate on all of the data directly for each 
estimate. The Kalman filter instead recursively 
conditions the current estimate on all of the past 
measurements. Figure 1 below offers a complete 
picture of the operation of the filter, combining 
the high-level equations 5 & 6. 
 
 



 Journal of Theoretical and Applied Information Technology 

© 2005 - 2009 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
98 

 

4. FILTER PARAMETERS AND TUNING    
 
In the actual implementation of the filter, the 
measurement noise covariance R is usually 
measured prior to operation of the filter. 
Measuring the measurement error covariance R 
is generally practical (possible) because we need 
to be able to measure the process anyway (while 
operating the filter) so we should generally be 
able to take some off-line sample measurements 
in order to determine the covariance of the 
measurement noise The determination of the 
process noise covariance Q is generally more 
difficult as we typically do not have the ability 
to directly observe the process we are 
estimating. Sometimes a relatively simple (poor) 

process model can produce acceptable results if 
one "injects" enough uncertainty into the process 
via the selection of Q. 
Certainly in this case one would hope that the 
process measurements are reliable. In either 
case, whether or not we have a rational basis for 
choosing the parameters, often times superior 
filter performance (statistically speaking) can be 
obtained by tuning the filter parameters Q and 
R. The tuning is usually performed off-line, 
frequently with the help of another (distinct) 
Kalman filter in a process generally referred to 
as system identification, which is clearly stated 
in (Bozic, 1999). 
 

 
Figure1. A complete picture of the operation of the Kalman filter 

In closing we note that under conditions where 
Q and R are in fact constant, both the estimation 
error covariance PK and the Kalman gain KK will 
stabilize quickly and then remain constant. If 
this is the case, these parameters can be pre-
computed by either running the filter off-line, or 
for example by determining the steady-state 
value of PK 
It is frequently the case however that the 
measurement error (in particular) does not 
remain constant. For example, when sighting 
beacons in our optoelectronic tracker ceiling 
panels, the noise in measurements of nearby 
beacons will be smaller than that in far-away 
beacons. Also, the process noise Q is sometimes 

changed dynamically during filter operation – 
becoming Qk - in order to adjust to different 
dynamics. For example, in the case of tracking 
the head of a user of a 3D virtual environment 
we might reduce the magnitude of Qk if the user 
seems to be moving slowly, and increase the 
magnitude if the dynamics start changing 
rapidly. In such cases Qk might be chosen to 
account for both uncertainties about the user's 
intentions and uncertainty in the model. 
 
5. RESULTS AND DISCUSSIONS 
 
Using single frequency ML 250 GPS hand held 
receiver, the field data is collected at different 
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locations in around Hussain Sagar and Gandipet, 
Hyderabad. The receiver is giving WGS – 84 
data (Ørx and λrx) and UTM data (Nrx & Erx). 
The variance for WGS 84 of Gandipet is: λrx- 
Longitude of Receiver is 27.0337204 in degrees and 
Φrx– Latitude of Receiver is 6.89938593 in degrees. 
The variance for WGS 84 of Hussain Sagar is: 
λrx- Longitude of Receiver is 13.39910013 in degrees 
and Φrx– Latitude of Receiver is 0.020659696 in 
degrees. Now the UTM coordinates are 
converted into WGS- 84 coordinates. It is quite 
evident that the converted values of latitude and 
longitude (Øprg and λprg) with out applying 
Kalman filter are giving poor resolution as 
shown in tables 1and 2. And they are more 
inconsistent as the variance is more for the 
converted data, i.e., Φprg - Latitude in degrees 
before applying kalman filter: 7.3488 (Gandipet) 
and 0.001264126 (Hussain Sagar)   Hence the 
UTM data to WGS 84 converted data now 
smoothened by Kalman filtering algorithm to 
test the accuracy and consistency (Økf and λkf) 
which is giving a very small variance. It is 
shown from the tables 1 and 2 that, Φkf – the 
Latitude in degrees after applying kalman filter 
is 0.004221766 for Gandipet and 
0.00003667424 for Hussain Sagar.. Similarly, 
λkf - Longitude in degrees after applying kalman 

filter is 0.03084715 for Gandipet and 
0.0006331302 for Hussain Sagar. So, lesser the 
variance more will be the consistency. Again, 
the same GPS receiver’s UTM data (Nrx & Erx) 
is fed to Web Software “Coordinate. Transform” 
to validate WGS 84 data, i.e., (Øs/w & λs/w). 
This converted data is also again analyzed as 
Φs/w- Latitude in degrees after applying websoft is 
0.011725697 for Gandipet and0.000198005 for 
Hussain Sagar. After comparing all the variances, 
that is ( Øs/w, Ørx, Økf & Øprg and λs/w, λprg, 
λkf & λrx), it is found that the smoothened 
converted data, which is developed from 
Kalman filtering technique (λkf & Økf), is having 
better consistency. A comparative analysis is 
emphasized in the figures 2, 3, 4 and 5. The 
accuracy of results obtained from program 
conversions has been validated. Table 1a and 1b 
indicate the comparison of all latitudes and 
longitudes of Gandipet with respect to source 
data (receiver), before and after applying 
Kalman filter and after applying web soft. Table 
2a and 2b indicate the comparison of all 
latitudes and longitudes of Hussain Sagar with 
respect to source data (receiver), before and after 
applying Kalman filter and after applying web 
soft.  

Table1a: Comparison of variance for 
different longitudes of Gandipet 
 

Longitude variance 
λrx- Longitude in 
degrees (Receiver) 27.0337204 
λprg - Longitude in 

degrees before applying 
kalman filter 27.0337194 

λkf - Longitude in 
degrees after applying 

Kalman filter 0.03084715 
λs/w- Longitude in 

degrees after applying 
web soft 6.904284042 

Table1b: Comparison of variance for 
different  latitudes  of Gandipet 
Latitude variance 

Φrx– Latitude in degrees 
(Receiver) 6.89938593 

Φprg - Latitude in degrees 
before applying kalman 

filter 

 
7.3488 

Φkf - Latitude in degrees 
after applying Kalman 

filter 0.004221766 
Φs/w- Latitude in degrees 

after applying web soft 0.011725697 

Table2a: Comparison of variance for different 
longitudes of Hussain Sagar 

 
Longitude variance 

λrx- Longitude in degrees 
(Receiver) 13.39910013 

λprg - Longitude in 
degrees before applying 

kalman filter 0.001264126 
λkf - Longitude in 

degrees after applying 
Kalman filter 0.0006331302 

λs/w- Longitude in 
degrees after applying web 

soft 0.00355667 
Table2b: Comparison of variance for 
different Latitudes of Hussain Sagar 

Latitude variance 
Φrx– Latitude in degrees 

(Receiver) 0.020659696 
Φprg - Latitude in degrees 

before applying kalman 
filter 0.000292464 

Φkf - Latitude in degrees 
after applying Kalman 

filter 0.00003667424 
Φs/w- Latitude in degrees 

after applying web soft 0.000198005 
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Figure2. Plot of Latitudes for the field data of 

Gandipet 
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Figure 5. Plot of Longititudes for the field data of 

Hussain Sagar
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6. CONCLUSIONS 
 
A comparison of accuracy is suggesting, 
accuracy through Kalman filter application is 
certainly yielding better results. The present 
study & data analysis methodology showed that 
the variations in the signal related to WGS- 84 
data can be smoothened using Kalman filter 
with in the range of studies made and the 
analysis is found to yield better accuracies as, it 
is shown from the tables 1 and 2 that, Φkf – the 
Latitude in degrees after applying 
kalman filter is 0.004221766 for Gandipet 
and 0.00003667424 for Hussain Sagar. 
Similarly, λkf - Longitude in degrees after 
applying kalman filter is 0.03084715 for 
Gandipet and 0.0006331302 for Hussain 
Sagar. So, lesser the variance more will be the 
consistency. However the extensive application 
of the methodology for the data in bringing out 
the limitations of the smoothening of the signal, 
a statistical evaluation  
atleast in robust domain could throw some light 
on actual information content & loss of the 
information through Kalman filtering. 
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