
Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

589

A FIVE-FACTOR SOFTWARE ARCHITECTURE ANALYSIS
BASED ON FAR FOR ATM BANKING SYSTEM

1T.K.S. RATHISH BABU, 2DR.N.SANKARRAM
1.Assistant Professor, Department of Computer Science and Engineering, S.K.R. Engineering College,

Chennai, India
2.Professor, Computer Science and Engineering, R.M.K college of Engineering and technology, puduvoyal,

Chennai India

ABSTRACT

Software architecture represents the high level structures of a software system. It can be defined as the set
of structures required to explain about the software system which comprise the software elements, the
relations between them, and the properties of both the elements and relations. A major challenge in the
software architecture design process is the accurate prediction and improvement of the software
performance characteristics like outage frequency and duration. This paper proposes hybrid software
architecture for an ATM banking system to overcome the difficulties of an existing architecture. The
proposed system is based on the Fuzzy Association Rules (FAR). During the extraction of the FAR, a
confidence index and theAprioriGen algorithm is utilized to compute the inverse fuzzy transform. Also,
this paper presents a review of some of the Software Architecture Analysis Methods (SAAM). The
performance of the proposed methodology is analyzed based on the metrics like reliability, flexibility,
adaptability and security. The proposed software architecture is compared with the various existing
software architectures. The implementation results obviously proves that the proposed methodology
performs better than all the other existing software architectures.
Keywords: Adaptability, Apriori Algorithm, Flexibility, Fuzzy Association Rule (FAR), Software

Architecture Analysis Methods (SAAM), and Security.

1. INTRODUCTION

Thesoftware architecture is defined as the
“backbone” of a system at the maximum level of
abstraction. It is a high-level representation that
characterizes the major structure and
communications of the components of a system and
the system’s communication with the external
environments. It describes the components of the
system and their related interconnections. Software
architecture contributes to the development phase of
the software and it has a direct effect on the quality
and cost of the software. The software architects
should develop the software architecture that can be
altered without any risk of degradation. The
software architecture analysis verifies the quality
requirements to be addressed in the software design
and detects the potential risks. The analysis of
software architecture aims to pre-estimate the
quality of a system.

A software architecture for an ATM banking
system is proposed based on Fuzzy Association
Rules (FAR). The recent various software
architecture analysis methods (SAAM) and
implementation of FAR are reviewed. A detailed
performance analysis of the software architecture is
performed in terms of reliability, flexibility,

adaptability, and security. The performance analysis
achieves various goals, depending on the
applicationdevelopment phase [49]. The most
dependent parameters are reliability and
performance. The software architecture reliability
involves subsystem interactions [19], fuzzy logic
model [46], prediction models [39], and quality
requirements [22]. The performance analysis of the
software architecture involves distributed systems
model [38], component-based analysis [45], multi-
core platforms [41], Kieker Tool [37], and service-
oriented architecture [2].

The proposed software architecture is analyzed,
classified using FAR, and it observed that it is
better compared to various existing software
architectures in terms of reliability, flexibility,
adaptability, and security.

2. RELATED WORK

2.1. Software Architecture Analysis for
Enterprise Information Systems
Many software architecture proposals are

accessible to industrial engineers in the
development of enterprise information systems, but
the systematic solutions for the assessment of
software architecture are scarce [5]. Enterprise

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

590

Information Systems (EIS) are the main IT assets
for industrial organizations to plan, control and
schedule their business process. EISs have become
major enablers for the advanced
enterprises to achieve effectiveness and streamline
processes. An important component of the EIS is
software architecture. The software architecture of
EIS comprises a group of system components and
their topological relations. The architecture analysis
depends on the early decisions about the high level
design of software systems.

1) Classification of NFRs:
 During the design and implementation of an
EIS, the software architecture must support the
principle business factor known as quality
attributes or non-functional requirements
(NFRs). During the selection of software
architecture for an EIS, one needs to consider
many and often conflict NFRs. For example, the
real time performance and a system’s flexibility
are conflicting with each other and must be
balanced in software development. In a user-
oriented technique, the key NFRs are estimated
and the quality attribute scenarios are furnished
to compute the degree to which the choices of
the software architecture have influenced the
satisfaction of the NFRs.
 During the development of software
architecture, the functional requirements define
what the system can do and the non-functional
requirements (NFRs) elaborate the adaptability
of the system to satisfy the required functions.
Some of the key NFRs for EISs are enlisted in
TABLE 1., along with their related concepts and
topics.

Table 1: Key Nfrs For Eiss

NFR
Related

Concepts
Topics

Customer
- Oriented

Intelligence
Customization

Flexibility

Aligning an
organization’s
business with

customer’s needs

Performa
nce

Efficiency
Schedulability

Real-time
Memory Usage

Optimization of
system performance

under many
conditions

Agility
Adaptability
Autonomy
Flexibility

Rapid response to
variations and
uncertainties

Reliabilit
y

Robustness
Fault Handling
Accountancy

Control a system to
resist or product

failures

Security Information Free from malicious

NFR
Related

Concepts
Topics

Protection
Safety

threats

The NFRs such as reliability and security are

software-driven, whereas NFRS such as flexibility,
performance and adaptability are business-driven.

2) Classification of Software Architecture:
 An important aspect in the software
architecture development is the patterns
codification which is used as the blueprint of
constraints, components, and their relations.
Patterns develop the general the solutions that
can be used again to fasten the software
development. Some techniques employ the
operational patterns for the EIS design as
follows.

2.1.1. General Purpose Software Packages:
 This technique encapsulates the
algorithms and data structures to implement a
general and customizable solution of the
business requirements. Some of the packages
used are database-centered data sharing, event
driven message invocation and pipeline-based
data processing.
2.1.2. Domain-specific software

architecture:
 It focusses on a specific domain and has
special components. Some of the examples are
Enterprise Java Beans (EJB), business
component factory and Microsoft’s
Component Object Model (COM+).
2.1.3. Distributed Computing involves
many elements interacting and coordinating
to achieve a goal. Some of the architectural
options are client-server, peer-to-peer and
n-tier architecture.
2.1.4. Agent and Multi-agent Systems

(MAS):
 An agent is an independent element in the
environment; whereas MAS consists of a set
of agents. The agents inside the MAS can
coordinate with each other to attain the goals
at the system level.
2.1.5. Service-oriented Architecture

(SoA):
 It is the recent type of software
architecture. It combines heterogeneous
platforms and allows an EIS to enlarge its
capabilities by employing reusable software
modules.

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

591

2.2. A Threat-model Based Security Testing for
Software Architecture

Some of the issues in the cyberspace
community are denial-of-service attacks,
corruption of data and disclosure of confidential
information [7]. Some of the issues affecting the
software security are cross-site scripting (XSS)
or SQL injection. Threat modeling is useful in
both software testing phase and software design
and development phases.

Threat modeling is a systematic way to
detect threats that might bypass the security.
The test case generation from the threat models
has not been studied much, so a threat model-
based security testing is proposed, which
automatically produces test sequences from
threat trees and converts them into executable
tests.

The threat model examines the
application in the view of a potential attacker
and aids them estimate the potential security
risks. The main functions of threat model are
detection of the application’s assets,
determination of the threats to an application,
ranking the threats and palliation of threats.

Threat modeling involves the
identification, specification, evaluation and
counter-measurements against potential security
attacks. The threat modeling can be performed
at different levels of abstraction and granularity.
Some of the notations used in threat modeling
are threat trees, threat nets, and misuse cases.
Threat nets are built upon Petri nets, a
mathematically based principle for modeling
and checking distributed systems. Misuse case
modeling defines misuse cases as threats to use
cases and prefers mitigation use cases.

Mutation analysis is a technique which
produces mutants by injecting threats
deliberately and estimates how many of the
injected threats can be revealed by security tests.
There are three types of mutation analysis; they
are implementation-level security mutation,
mutation of access control policies and
specification-level security mutation. In
implementation-level security mutation the
vulnerabilities are injected into the
implementation and the number of
vulnerabilities that can be revealed by the
security tests is evaluated. Specification-level
security mutation introduces errors in the
description of the security-related behaviors so
as to produce threat scenarios. In mutation
analysis of access control policies, there are two
important systems to create access and control

policies. The first system uses role-based access
control (RBAC) or organization-based access
control. The second system uses
eXtensibleAccess Control Markup Language
(XACML) to produce the original
implementation of a security scheme. During
the transformation of the test sequences to the
executable test codes, the feasible input data
must be considered carefully.

2.3. Detection of Software Security Patterns
The use of security patterns improves the

software security in the early software development
stages [51]. The security patterns in the code are
detected by a reverse engineering tool-suite known
as Bauhaus. This approach detects the Single
Access Point security pattern. The recent security
tools support the developers during the
implementation phase depending on the static
analysis.

The software has to be altered frequently due to
the varying constraints, bugs and security defects.
Also, the reconstruction of patterns in developed
systems is tedious. Security patterns should be
acknowledged during the maintenance process to
ensure security objectives. A Resource Flow Graph
(RFG) representation is used by the Bauhaus tool-
suite. This method reconstructs the software
architecture by a hypothetical architecture to the
actual software architecture obtained from the
source code.

2.4. Software Architecture Adaptability Based
on QoS Self-Adaption

The software systems should be able to adapt
themselves to the environment dynamically to meet
both the functional and non-functional requirements
[42]. The functional requirements focus on the
overall implementation logic and the non-functional
requirements focus on the QoS levels to be ensured.

Adaptability has an effect over other software
qualities such as performance, maintainability or
reliability. Also in the worst case, the improvement
of adaptability could lessen other qualities of the
system. So, an efficient trade-off must be
maintained between the system adaptability and
other quality of the system. These adaptability
metrics support a higher degree of quantification
from the basic metric. The metrics are also
quantified besides the tracking.

2.5. Construction and Exploitation of Flexibility
in Software Architecture
Flexibility can be attained by aspect-orientation.

It is a mechanism which focuses on the design-time
separation of the crosscutting system features which

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

592

are embedded into the system [18]. This orientation
permits an additional dimension of decomposition
and strongly localized changes. Software Product
Lines are a mechanism for systematic usage of
commonalities among software products. This is
attained by systematically reusing the common
divisions of the systems. The commonalities and
variations among the products are analyzed.

Software Architecture Analysis Method
(SAAM) and Architecture Trade-off Analysis
Method (ATAM) generally focus on quality
attributes, and Architecture-Level Modifiability
Analysis (ALMA) focus on maintainability. ArchE
design assistant permits the monitoring of
modifiability during the time of designing, but with
particular support on selection of architectural
techniques.

2.6. Software Lifecycle
There are some common stages that can be seen

in every software process, where each stage consists
of a set of well-defined functions [50]. These stages
identify different abstractions of the software under
development.

Requirement Specification concentrates on the
functionalities of the system and on their
operational limitations. Software design and
implementation discusses about the creation of the
software system according to its requirements.
Software verification and validation is a level
which proves that the software system conforms to
the limitations in the specification stage. Software
evolution is a period when the changes in the
software architecture occur. The waterfall process
model organizes and explains the Lifecycle stages
as shown in Fig. 1.

Fig. 1. Waterfall Process Model.

Another software process model is the iterative

process model, which deals with thespecification,
application and validation functions concurrently in

order to rapidly create an initial edition of the
software system, that can be later refined through
iterations as shown in Fig. 2.

Fig. 2. Iterative Process Model.

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

593

3. SOFTWARE ARCHITECTURE ANALYSIS

The proposed ATM banking software

architecture and some of the methods for the
software architecture analysis with respect to
evaluation perspectives are discussed in this section.

3.1 Proposed ATM Banking Software
Architecture Analysis

The software architecture for an ATM banking
system is proposed based on Fuzzy Association
Rules (FAR) and Erlang distribution. The flow of
the proposed model is given in Fig. 3.

Fig. 3. Software Architectural Design Process.

The process model involves an input of schema
file for the construction of the software architecture.
Some of the operations in the ATM banking
software architecture are GetBalance,
UpdateBalance,Deposit, and Withdraw. Some of
the messages in the software system are
BalanceMessage, BalanceChange, and
CustomerMessage. Based on the requirements of

the ATM banking system, the software architecture
is depicted.

The various parameters in the software
architecture analysis are computed based on
disparity rate and CDF (Cumulative Distributive
Function) of the Erlang distribution. The
computation of the parameters for software
architecture analysis are given in TABLE 2.

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

594

Table 2: Computation Of Parameters For Software
Architecture Analysis

Param
eter

CDF of
Erlang

Distribution F
(x, y)

x y

Perfor
mance

x + y/2
Memory

utilization
Execution

time

Flexibil
ity

100 - (x + y)
Dependenc

y of
software

Error
probabilit

y
Reliabil

ity
(x + y)/2

Closed
loops

Execution
time

Adapta
bility

x + y/2
System

requiremen
ts

Easy to
use

Securit
y

x - y
Data

privacy

Dependen
cy of

network

The classification results of the software

architecture analysis are obtained by the use of
Fuzzy Association Rules (FAR) and threshold value
for each parameter.

3.2. Decision-making in Software Architecture
Design

The software architecture of an intensive system
can be defined as the group of relevant design
decisions that has an impact on the qualities of the
system [48]. A general of the software architecture
design process is given in Fig. 4.

Fig. 4. Software Architectural Design Process.

3.3. Reliable Software Architecture
Reliability in Software Architecture has impact

both on the cost of field operation and the
experience of the users [36]. An integrative

software reliability structure is framed to fulfill the
emptiness between predictions, expectations, and
the real behavior of systems. An integrative
algorithm implementing the design for reliability
(DfR) in software architectures is given in Fig. 5.
And the general scheme for the software reliability
prediction is given in Fig. 6.

3.4. Measurement of Software Architecture
Reliability by a Fuzzy Model

Several models have been proposed for
predicting the quality attributes of the software
architecture [44]. This technique involves a Fuzzy
model for the prediction of software reliability.
Some of the parameters considered for the
prediction analysis are Availability, Recoverability
and Failure Probability. The Fuzzy Model aids to
evolve the intermediate levels between the reliable
and unreliable states of the software architecture.

Fig. 5. Integrative Design for Reliability.

3.5. Prediction of Reliability in Fault-Tolerant
Software Architectures
The software fault tolerance schemes improve

the reliability of the software architectures [52]. A
new approach is proposed for the analysis of the
effect of software tolerance scheme for multiple and
differing software architectures. This approach
models the various alternatives of the software
architecture and configurations of the product line
from a shared core property. This mechanism
provides flexibility to various fault tolerant

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

595

schemes. The models are transformed into Markov
chains by a tool and the system (software and
hardware) reliabilities are computed. This provides
a validation process for the software architects
during the early development stages.

Fig. 6. Overview of Software Reliability Prediction.

3.6. Performance Analysis of an Adaptive
Software Architecture for Multi-Core
Platforms
This analysis method focuses on the

performance parameters for an adaptive software
architecture, which has many levels of fault
detection, recovery and masking through
reconfiguration of the architecture [41]. The
architecture is initialized with a formal requirement
model denoting the multiple levels of information
assurance and functional capability. The
architecture encompasses a multi-layer design to
apply the constraints using N-variant techniques.
The architecture also integrates a reconfiguration
scheme that utilizes the lower layer to assess the
higher layers. When a fault is detected the
reconfiguration scheme reconfigures the system to
maintain the required services.

A general reliability model is provided with
cross-surveillance for reconfiguration, based on the
generalized stochastic Petri nets. Then, a
probabilistic automation-based behavioral model is
defined. This model is appropriate for modeling the
problems in securing by value faults. Petri net
permits the reliability modeling and reconfiguration
and the performance analysis is given by the
probabilistic model checking. The goal of this
analysis is to capture the computational power of
the under-utilized cores for enhancing the
survivability and adaptability of critical

applications. The layered architecture provides on-
the-fly reconfiguration.

3.7. Security Analysis of Software Architecture
Based on Analytical Hierarchy Process
(AHP)
The evaluation of the software security at an

early stage is important, as it guarantees the
stakeholder’s security objectives [53]. A robust
security evaluation method to estimate the security
support of software architecture in the design phase
is developed and is known as Security Evaluation
Framework (SEF). The SEF also has some
limitations such as the securityevaluation considers
only the architectural level and not the scenarios on
the structural components. A hybrid software
security risk evaluation model based on Analytical
Hierarchy Process (AHP) is proposed. The SEF
consists of six steps [53] as described in Fig. 7.

The initial constituent of the process is the
evaluation of a scenario-based architecture. The
evaluation of the software architecture is a
competent way of guaranteeing design quality. The
architecture’s ability to render a system that
satisfies the stakeholders’ quality requirements to
detect the potential risks. The involvement of the
security patterns increases the quality of the security
constituents in the architecture.

3.8. Software Architecture Adaptability Based
on QoS Self-Adaption

The design of the systems in Software
Engineering must be able to adapt to quick
alterations of their requirements and evolve over
time [42]. The quantification and evaluation of
metrics such as software adaptability are defined.
The quality of service (QoS) must be ensured by the
values of these metrics. These metrics are used by
the software architect to assist the system adaptation
to satisfy the overall quality requirements.

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

596

Fig. 7. Security Evaluation Framework (SEF).

The Analytical Hierarchy Process (AHP) is a
decision making technique used in a multivariable
decision problem. The construction of the hierarchy
is performed so that the elements at similar level are
of the same order of magnitude and must be
associated with some or all elements in the
nextupper level. After the construction of
hierarchies, the prioritization process determines the
relative importance of theconstituents in each level
of the hierarchy. The AHP employs a pairwise
comparison matrix to compute the relative objective
weight of factors. The components in each level are
pairwise compared relative to their importance in
deciding under consideration. A pairwise
comparison matrix is constructed to compute the
relative importance between factors of the decision
elements.
3.8.1. Quantification of the Software

Architecture’s Adaptability:
 The adaptability metrics of the software
architecture are based on the system’s architectural

knowledge; hence, adaptability can be computed
before the software designing process.

A system of n different functionalities, fi | i= {1
... n}, and existence of n sets, SUi are assumed.
Each SUiconsists of software units offering the
functionality. For each fi, an architect can select a
subset (Ei) of the existences, where Eiis the
software units considered. Thus, the system adapts
its behavior in |Ei| ways for each fi. Some of the
adaptability metrics used for the software
architecture is given as follows:
3.8.1.1. Absolute Functionality Adaptability Index
(AFAI) defines the number of software units it uses
for a given functionality.
3.8.1.2. Relative Functionality Adaptability Index
(RFAI) defines the number of software units it uses
with respect to the units actually offering needed
functionality. This adaptability index (Ai)
communicates with the architect about the
adaptability of the functionality. When the RFAI
vector values are near unity means that the system
is using most of the adaptability which can be
offered.
3.8.1.3. Absolute Software Units Index
(ASUI)defines the total number of software units
used by the system. This adaptability index
provides a global view of the system size and an
overview on the attempt needed to manage the
whole software architecture.
3.8.1.4. Mean Functionality Adaptability Index
(MFAI)defines the mean number of software units
utilized per functionality. This metric gives an
overview of the mean size and the steps to manage
the functionalities.
3.8.1.5. Mean of Relative Functionality
Adaptability Index (MRSAI) defines the mean of
the number of software units utilized for the
functionalities relative to the number of units that
could be used. It also explains how the
functionalities concentrate their adaptability
choices in average. This index communicates with
the architects about the mean extent of utilization
of the potential units for the functionalities. A
value close to unity denotes that the present
architecture uses almost all the software units
available. And a value close to zero denotes that
the system can be more adaptable and different
architecture alternatives of the same adaptability
metric could be created.
3.8.1.6. Absolute System Adaptability Index (ASAI)
defines the number of software units utilized by the
system relative to the number of available software
units for the construction of the system. A value
close to unity denotes that there are only a few

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

597

choices available to increase the system
adaptability. With respect to MRSAI, this
adaptability metric encompasses a global view of
the system size relative to its maximum attainable
size, but does not forecast the amount of different
architectural options the system could attain.

3.8.1.7. Adaptability and Quality Requirement:The
requirements are for the software architecture are
focused and classified as presented in TABLE 3.

Table 2: Adaptability’s Behavior Relative To A Quality
Requirement

As adaptability
increases

Requirement
formulated as

Higher
than

Lower
than

Increase of quality
value

Helps Hurts

Decrease of quality
value

Hurts Helps

Quality value not
affected

No effect

The first dimension of TABLE 3, distinguishes

the software qualities into three categories:
• Qualities that increase their value when

adaptability is increased.
• Qualities that decrease their value

when adaptability is increased.
• Qualities that do not rely on

adaptability variations.
The second dimension in TABLE III defines

how the requirement is computed in terms of the
variations in intensity as higher or lower. The labels
Helps and Hurts are given in TABLE III to obtain
the effect of adaptability on quality requirements.

Fig. 8and Fig. 9, gives a general graph for
quality requirements that belongs the first Helps,
i.e. the quality value which increases when there is
an increase in adaptability and are computed as
higher than. X-axis denotes increasing values of the
applicable adaptability metric (Ai). Y-axis denotes
the values for the target quality; AdaptMax is the
maximum adaptability value which can be
considered by the architect. When the adaptability
metric is not explicitly given, then a combination of
all the adaptability metrics is considered. The upper
bound (VAiU) and the lower bound (VAiL) on the
quality the architecture with adaptability Ai can be
reached is estimated.

Fig. 8. Quality in Helps wherethe requirement is

higher than.

Fig. 9. Quality in Hurts where the requirement is

lower than.

In Fig. 7, the requirement to satisfy is called

Quality Requirement value. Adapt- is the lowest Ai
which can fulfill the requirement, and Adapt+
denotes the lowest Ai whose lower bound also
fulfills the requirement, which indeed is fulfilled
until AdaptMax. These values satisfy the
requirements: the system should have at least
adaptability Adapt-, and, any selected architecture
with at least Adapt+ adaptability value will also
satisfy it. For intermediate adaptabilities, there will
be architectural choices that will fulfill the
requirement and others that will not fulfill the
requirements.

Fig. 8 shows the graph for requirements
belonging to Hurts whose quality value increases
with adaptability and are computed as lower than.
Adapt- refers to the maximum Ai for whatever
architectural option, with such value, for sure
fulfills the constraint, and Adapt+ refers to the
maximum Ai for which options that fulfill the
requirement.

The evaluation of a given constraint or, more
generally, the (adaptability vs. property) trade-off
study implies to produce the graph of the system
under observation. Starting with Ai = A0, VA0U, VA0L
are computed. Next, the adaptability value is

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

598

increased and considered the next lowest value Ai =
A1 and its VA1U and VA1L are computed. The process
goes until Ai reaches AdaptMax. These results
produce the actual upper and lower bound curves.
Depending on where the target quality belongs, the
variable Adapt- is considered as the lowest Ai that
can fulfill the requirement or the highest Ai where
both VAiU and VAiL fulfill the requirement.
Similarly, to compute Adapt+, quality is checked
whether it belongs to Helps the lowest Ai where
both VAiU and VAiL bounds fulfill the constraints, or
belonging to Hurts the highest Ai that can fulfill the
requirement.

The practical calculation of the bounds for a
given Ai (i.e., VAiU and VAiL), avoid taking into
consideration the non-suitable architectural options.
This refers that a software unit offering
functionality fj should not be considered in
architecture unless another software unit requiring fj
had already been considered.

3.9. Construction and Exploitation of Flexibility
in Software Architecture
Flexibility in the software architecture is

considered during system evolution [18]. An
automated flexibility analysis is designed with real-
time feedback. A flexibility exploitation analysis is
implemented for the purpose of software evolution.
This constructs the design time analysis and results
in effective utilization of the given flexibility by
forming flexibility-aware function-plans. Flexibility
is the main attribute that defines the easiness, cost
and speed in which the required changes to the
software systems could be conducted. A modeling
and analysis approach is proposed for the
construction and applicationof flexibility
throughout the life-cycle in order to increase
systematic support for flexibility.

Flexibility is about the response to the future
variations of the software. Flexibility is a group of
expected potential variations, similar to
modifiability. Flexibility scenarios are conditions
which define the constraints about the potential
changes to the system. The realization of the
flexibility scenarios prepares the system for the
changes at a later point in time with less effort.

The software architecture estimates with its key
design conclusions how many changes are required
at the implementation level. The architect has the
responsibility to lead design decisions, thereby
providing flexibility. The system is modularized in
a manner that a specific modification depicted in a
flexibility scenario can be performed with minimal
local impact alone.

One way to build flexibility is by introduction of
metadata, which means that specific alterations can
be performed in configuration files. Thus, the
recompilation in the source code is not required and
modifications do not involve programming
knowledge.
3.9.1. Overview of Flexibility Enhancement:
 During the construction of a software
system, flexibility is built into the system. There
can be variations in the system during evolution,
which increases the present flexibility. Fig. 10
shows the construction and exploitation of
flexibility. For the construction of flexibility, the
scenarios act as the input to the design of
architecture. While designing the architecture, an
automated feedback is provided about the present
degree of flexibility in an architecture modeling
tool.

Fig. 10. Construction and Exploitation of Flexibility.

A tool-based support for derivation of work

plans and analysis of change impacts is provided.
Exploiting the flexibility is a development process,
which is activated by a strong change request. The
exploitation process can be used for rapid
identification of the areas of a system which are
affected by the saving effort for flexibility
exploitation and change request.

3.9.2. Construction of Flexibility:
 Generally there are two approaches for the
optimization of flexibility. First, the architect can
be guided to choose more appropriate decisions.
Second, the architect can be supported in
recognition of sufficient or insufficient
architectural decisions, by the measurement of the
attained level of characteristics. Practically,
architecture design deals with large-scale systems,
which makes the impact change analysis manually,
a tedious process. Also, additional complexity is
established for the architecture model.

The automated analysis of a modeled software
architecture relative flexibility and its scenario is
not easy. So, a new architectural view known as
Change Impact View is introduced. Here, the
flexibility scenarios are the initial-class modeling
entities. Also, an explicit Impacts-relationship is
introduced between flexibility scenarios and

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

599

architectural entities. The architect models the
impact of each scenario on every impacted entity
by adding these details as numbers. During the
initial phase of the system design, the architects
can come up only with rough estimates of element
sizes. A link of the architecture model with the size
metrics of the implementation is possible when an
implementation already exists.

For the automated flexibility analysis, the
metric should be comparable and computable. The
impact analysis for every change on an element is
estimated. Also, the architecture element’s code
size is estimated roughly. The flexibility metric is
defined according to the function shown in Fig. 11,
where ‘LoC’ refers to the Lines of Code executed.
The flexibility of software architecture is defined in
the time period [0, 1], where ‘1’ refers for high
flexibility and ‘0’ refers low flexibility. The
flexibility is unity when the change due to a
scenario impacts less than 10 lines of codes. This
limit refers a minimal change impact to the present
system. Similarly, the flexibility is zero when the
change impacts more than 10 lines of code. This
limit refers a considerable division of the system
which has to be modified to account for the change
requirements. The intermediate values of the
function are linear. The boundary limits are
estimated from the practical experiences and can
also be altered by the architect.

Fig. 11. Flexibility Metric.

The automated analysis algorithm can execute

the architecture model in near real-time and provide
direct feedback to the architect, based on the
flexibility-specific enhancements of the architecture
model. This flexibility metric can aggregate the
flexibility values for multiple scenarios and system
parts. The computation of the aggregated flexibility
scenarios can be performed by weighing the
scenarios so that it does not strongly impact the
flexibility results. Accurate flexibility analysis
results can be obtained by regarding the persistent
and explicit considerations in the architecture
model. When a change request was received similar

to an already regarded flexibility scenario, the
change impact view is utilized to identify how the
variation is accounted and it can yield a rough
computation of the effort to be spent.
3.9.3. Realization of Changes:
 The flexibility is established by
incorporation of flexibility mechanisms and
consideration of flexibility scenarios. During the
software evolution, major change requests are
needed. Now the provided flexibility has to be
exploited. The original modifications of the system
relative to the change request have to be organized
and planned in a manner that the present flexibility
schemes are employed during the implementation.

Flexibility Exploitation Analysis is a semi-
automated analysis based on the results in work
plans which address the present flexibility
explicitly during the architecture construction. The
architects apply the change requests to the model
of the software architecture and derive the work
functions from the modifications of the model, i.e.
the architecture model is altered to denote the
target system state for a change request, differences
in the earlier software architecture are computed
and it is translated into work activities.

The design time approach involves the
modeling of flexibility scenario at least for the
explicit flexibility schemes in a change impact
view. When a change request similar to a modeled
flexibility scenario occurs in the change impact
view, the architects can alter the software
architecture model as

suggested by the change impact view. The derived
work functions can be denoted in terms of
flexibility scheme roles that are affected. The
implementation of the changes often leads to work
functions from various fields of functions. So,
besides the implementation functions other fields
of functions during the work planning are also
considered.
3.9.1.1. Preparation of Input Software Architecture
Model:
 The software architecture model acts as
the primary input for the analysis. For this input,
the architects can reuse the architecture model from
the design phase. The model of the architecture is
enriched in following steps. First, the architects
should guarantee that all known flexibility schemes
are documented explicitly. This is done by
annotating the components with role names of
flexibility patterns or styles. Second, the architects
utilize the following model annotations to show
other fields of activities.

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

600

• All the components are specified by the
physical representation of the
configuration (meta-data) files and source
files.

• All the components are annotated with the
number of test cases.

• All the components are specified with the
number of deployment nodes and the
multiplicities in the deployment model.

This information is furnished only once and
then it can be applied to any number of change
request analysis.
3.9.3.2. Extension of Change Requests:
 A copy is created for every change
request. The architects apply the changes to the
architecture model so that it contemplates the
desired system state after the implementation of the
change request. Changes which do not alter the
structure of the component structure but only the
internal components are highlighted in the
architecture model with internal alteration
annotations.

The manner in which the change request should
be applied in the architecture should be decided.
The creative decisions involve decisions which
cannot be entirely automated by the tool-support.
3.9.3.3. Computation of Difference and Derivation
of Work Plans:
 The analysis tool calculates the variations
between the base edition and target editions of the
software architecture model and converts them into
workplan activities.

Some of the alterations mapped to the activities
with respect to specific features are:

• Component repository: Add, Remove,
Modify Component; Add, Remove,
Modify Interface Port

• System structure: Add, Remove,
Update Component Instance

• Component deployment: Increase,
Decrease the count of Deployment
Nodes for all Component Instances

• Flexibility Roles: Add, Delete a Role to
or from Component

The following work activities are derived from
the additional model information:

• When a component is added or altered and
there is an annotation of the source code
representation, results in coding activity.

• The alterations to the parts with a meta-
data representation will result in
configuration activity.

• Coding activity will end up in
accumulative build activity.

• Coding and Configuration activities will
result in accumulative deployment
activities.

• Test case annotations to various parts will
lead to accumulative test execution
activities.

4. FUZZY ASSOCIATION RULE

Various methods to implement the fuzzy
association rule have been proposed. FAR is usually
applied in databases and statistics. Some of the
applications of FAR are in a pattern deduction on
Geo-referenced crime [13], EC (Electronic
Commerce) environments [33], and stock markets
[3]. The FAR is implemented in various
mechanisms involving, Multilevel FAR based on
Cumulative Distributive Function [25], a
quantitative algorithm for generic extraction of
FAR [14], multi-level FAR for membership
functions [26], and multi-class fuzzy classifiers
[32].

4.1. Fuzzy Transforms To Detect TheFuzzy
Association Rules

Fuzzy transforms are used for the detection of
coarse-grained fuzzy association rules (FAR) in the
datasets [31]. The FAR are denoted in the means of
linguistic expressions. A pre-processing phase
evaluates the optimal fuzzy division of the domains
of the quantitative features. During the extraction of
the FAR, a confidence index (con) and the
AprioriGen algorithm is utilized to compute the
inverse fuzzy transform. This technique is also used
in the data mining process, where a detailed
analysis of the FAR is not necessary.

The extraction process of the fuzzy association
rules is shown in Fig. 12. The extraction process
involves two sub-processes. The AprioriGen
algorithm is used for the selection of user FAR and
for selecting the predecessors with maximum
dimension and support greater than or equal to the
threshold sup

ε
. The AprioriGen algorithm involves

two steps: Join step and Pruning step. The join step
involves the production and formation of an itemset
by ‘k’ attributes. This is performed by combining
two (k-1) attribute having similar first (k-2)
attributes. The pruning step involves the removal of
all the entities that do not contain all the first (k-1)
subsets. The second sub-process involves the
extraction of the FAR if the grade of confidence
(con) is greater than or equal to the threshold con

ε
.

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

601

Fig. 12. Extraction of Fuzzy Association Rules.

In Fig. 12, X1 … Xk is the group of data sets

collected. X1 is denoted as A1, h1 and Xk is denoted
as Ak, hk. Xz = H (X1 …Xk), where H is a function
estimated through a suitable fuzzy partition of the
individual attribute domains. The average of Xz is
denoted as א.

4.2. Enhanced Fuzzy Association Rule
A fuzzy Associative Rule Mining (ARM)

algorithm known as FFI_Stream is proposed to deal
with statistical values in data streams [15]. Real
datasets and synthetic datasets are used for the
performance analysis of the system. When
compared to discrete methods, this technique
establishes a trade-off between the numbers of
fuzzy association rules and the efficiency of the
system. A time based sliding window model is used
for the estimation of the fuzzy association rules in
the given input and the clustering technique is used
to compute the fuzzy sets.

4.3. Fuzzy Association Rule in Financial Data
Association
The investment profitability is enhanced by the

fuzzy association rules and a decision support
system [27]. The investors could cognize the

association among the different parameters. After
the extraction of the associations, the investors can
implement the rules in their decision support
systems.

4.4. Temporal Fuzzy Association Rule With 2-
tuple Linguistic Expression
Fuzzy association rules that have temporal

patterns are dealt with the 2-tuple linguistic
expression [20]. This method identifies the FAR in
a temporal manner while conserving the
interpretability of linguistic variables. Iterative Rule
Learning (IRL) combined with a Genetic Algorithm
(GA) implements the rules and shapes the
membership functions. The rules found are
differentiated with those from a classical method of
finding the FAR.

4.5. Unsigned Fuzzy Association Rules with
Minimum Supports
Classical algorithms for mining the association

rules are constructed on the binary factors of the
databases. This has three demerits. First, the
algorithm can focus on quantitative attributes.
Second, only positive FAR are found in the data
mining. Third, the algorithm treats every item with

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

602

similar frequency although various items may have
various frequencies [10]. A discovery algorithm is
proposed for mining unsigned fuzzy association
rules.

4.6. Fuzzy Association Rules Using Genetic
Algorithm and 2-tuple Linguistic
Expressions
A multi-objective genetic algorithm is proposed

for detecting the FAR without any specifications of
the minimum confidence and support [28]. This
technique involves the extraction of both
membership functions and FAR in a single step.
Iterative Rule Learning (IRL) is used to cover the
uncovered instances.

4.7. Fuzzy Association Rules in Low-Quality
Data
A data-mining algorithm is proposed to obtain

the useful information from the databases with
imprecise data [17]. This technique combines the
fuzzy apriori algorithm and imprecise data concepts
to deduce the useful fuzzy association rules in the
given databases.

4.8. Axiomatic Fuzzy Set Association Rules
Fuzzy Set Association Rules are proposed for

classification issues such as, AFS (Axiomatic Fuzzy
Set) theory and AFSRC (AFS association rules for
classification) [12]. It is a simple and efficient
mechanism which retains the significant rules for
classes which are imbalanced. This is performed by
fuzzifying class support of a rule. A new model
creates the membership functions automatically by
executing the available data.

4.9. Follow-upMamdani Fuzzy Modeling
Fuzzy logic has exploited for the interpretation

of human derived control rules [29]. The linguistic
fuzzy rules are used to represent the data in
classification and association rule mining. Fuzzy
Rules Based Systems (FRBS) are applied in data
mining for classification of datasets which are
imbalanced.

4.10. Fuzzy Association Rules for Discovering
Threats to Privacy
This technique focuses on the preservation of

privacy in databases through fuzzy rules. The fuzzy
rules are based on a decision tree [40]. The
predecessor of each created by these systems
comprise the details about the released variables
(quasi-identifier), whereas the accompanying
comprises the data only about the protected
variable.

4.11. Multilevel Association Rules for
Quantitative Data
Data-mining involves the translation of data into

useful and organized information [23]. A multi-
level fuzzy association rule model is proposed for
the extraction of general information stored as
quantitative values during transfers. This method
uses the various support value at each level and
various membership functions for every item. The
derivation of large itemsets involves a top-down
progressively deepening scheme. Also fuzzy
boundaries are utilized instead of the conventional
sharp boundary intervals.

4.12. Fuzzy Association Rules Based on
Equivalence Redundancy of Items
The computational time of the mining process is

improved and the extracted repetitive rules are
pruned in this method [11]. The equivalence
redundancy of the fuzzy itemsets and related
theorems are defined. A basic algorithm based on
Apriori algorithm is proposed for the extraction of
the rules using the equivalence redundancy of fuzzy
itemsets.

4.13. Fuzzy Association Rule Based Extraction of
Frequent Patterns

Frequent itemset is usually located in large
transactional databases [16]. A new method for the
estimation of the frequent patterns is proposed for
the uncertain data. The fuzzy concept is utilized the
detection of the recurring patterns. This method can
produce large frequent itemsets and then estimate
the FAR from the uncertain dataset. The advantage
of this technique is that the dataset scanning is
performed only once.

5. BACKGROUND WORK

5.1. Software Architecture for Online Services
The web-services are increasing drastically,

with their functions and memory consumption. An
efficient software architecture is proposed for web-
services like social networking, search and geo-
location services [4]. Social networks like Twitter
have risen as an efficient open social network
among all communities. A spatial and semantic
analysis of the social network data is analyzed. A
functional diversity approach is proposed to
enhance the fault tolerance for the data collection,
where its performance is evaluated. This software
architecture enables the spatial patterns inside the
geo-locations and can give the user with resourceful
unpredictable elements.

The software system is able to collect a huge
amount of geo-located Twitter data online and

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

603

provide different search functionalities on the
database. The architecture is constructed on the
assumption that the real time condition is reduced
which allows more advanced semantic analysis.
The software architecture is built on Python-based
web framework Django. The software system is
combined with Apache Lucene / Solr system. The
architecture comprises a highly efficient inverted
index representation. The semantic aspect of the
search needs to be considered carefully by the
following strategy. First, an adaptable Slang
database is combined into the original system which
permits the system to replace correct English
phrases to the detected slangs in tweets. Second, a
semantic similarity based short path and a wordnet
lexical database is used to expand the actual query
to synonyms, hypernyms and hyponyms of every
query word. Finally, by employing advanced
Lucene’s query handling, phrase and word based
queries with different logical conditions are enabled
efficiently. A fault tolerant system is implemented
by using individual machines simultaneously for
collection and then merging the databases.

5.2. Software Architecture Evolution
Software evolvability is the software system’s

capability for change to future events [35].This
results in better economic value of the software. For
long-term systems, evolvability is required
explicitly during the whole software lifecycle to
have a good productive lifetime of software
systems.

The software lifecycle studies can be based on
five sub-categories:

5.2.1. Quality Considerations during Design:
 The approaches for the assessment of the
software lifecycle can be based on conditions like
quality attribute focused on the requirement,
influencing factors and scenario.
5.2.2. Evaluation of Architectural Quality:
 The approaches for the evaluation of the
architectural quality can be experience-based,
metric-based and scenario-based.
5.2.3. Economic Valuation:
 These approaches enlarge the information
on the architectural conclusions’ business
consequences, and aid development teams in
selecting among architectural options.
5.2.4. Architecture Knowledge Management:
 These approaches enhance the architectural
integrity by improving architecture documentation
by the extraction of architectural knowledge from
different information sources.
5.2.5. Models for Software Evolution:

 These techniques function as modeling
software artifacts providing traceability and
visualization of the impact of software architecture
artifacts’ evolution.

5.3. Software Architecture Analysis for Large-
Scale Distributed Systems
Large-scale distributed systems involve

substantial investment and high risk [1]. Some of
the former architectural decisions describe how the
system is organized in terms of permanent data
communication, coarse-grained modularization,
data management, data I/O and allocation. Such an
organization’s mainframe is known as System
Organization Pattern. Analysis of the software
architecture early in the development cycle
identifies the significant technical risks and avoids
them at minimal cost. But, architecture analysis
methods such as the Architecture Trade-off
Analysis Method (ATAM) cannot be applied very
early in conceptually designed architecture, as the
influence of System Organization Pattern on the
minute details of the final system cannot be
accurately defined. So, the Early Architecture
Evaluation Method (EAEM) is developed to
estimate the System Organization Pattern before an
ATAM-based estimation would be feasible. The
architecture evaluation works upon the Goal-
Question-Metric scheme. It recognizes the
substantial risks faced by the architectural decisions
involving the System Organization Pattern. The
EAEM depends on the existing quality scenario-
directed architecture analysis methods.

5.4. Concern-based Software Architecture for
Groupware Systems
This software architecture analysis involves

collaboration and interaction analysis, which
permits the study and characterization of the
collaborative functions by the groupware system
users [30]. The automation of the collaboration and
interaction analysis endows the assessment of the
users’ work and improvement of groupware system
behavior and support. A concern-based architecture
is proposed for the groupware development as a
model for the integration of analysis subsystems
into groupware systems. The whole groupware
system can be represented by a group of subsystems
(Meta-information, Analysis, Identification,
Application and Awareness). The subsystems
communicate with each other to substantiate the
basic functions and analyze the collaborative work
of the users. The basic functions are user
management and support for collaborative functions
within the shared workspaces. This architecture is
designed for the COLLECE groupware system,

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

604

which sustains the collaborative programming
principles.

5.5. Combining Software Architecture with
Team Structure in Open Source Software
Development
The integration of the developer team structure

and open source software (OSS) architecture
monitors the socio-technical interactions in a
system development [6]. A high level of structural
interdependency combined with larger teams result
in better project performance.

5.6. Session Reliability Analysis of Web Systems
Under Heavy-tailed Workloads
A framework for modeling the session

reliability has been proposed by integration of user
view and system view [8]. The user view is defined
by the session layer, whereas the system view is
defined by the service layer. The session layer can
handle heavy tailed workloads which exist in real
Web systems. The service layer concentrates on the
observed request reliability from the service
provider’s view. Multi-web server architecture and
the manner in which the components interact to
service the requests are considered. The reliability
of the requests is estimated by cognizing the
individual component reliabilities. The manner in
which the components interact with each other is
defined by the software architecture.

5.7. Enhancing Software Adaptability through
Reflection Programming
The development of software is analyzed from

the programming aspect and it is deemed that it is
the period of adaptive programming at present [9].
Reflex technology for enhancing the software
adaptability. The self-reflection and meditation a
principle for encoding the execution state as code
known as reification. The reflection programming
enables the automatic execution of the software
through self-reflection.

5.8. Variability Analysis in Software
Architecture
Variability is an important parameter in the

context of software architecture [47]. Besides the
idea of product lines, the issue of variability in the
software domain is examined. In this survey, a
study is conducted among various subjects in terms
of variability. It is observed that there is no
common apprehension of “variability” in the view
of software architecture. It is also noted that some
challenges in the variability of the software
architecture also exist in the product line domain.
Some of the challenges with variability in the

software architecture are complexity, formality and
management.

5.9. Improving the Deployment Architecture of
Software in Distributed Systems
The allocation of the software components of

the respective hardware nodes has a significant
impact on the QoS of distributed software systems
(DSS) [21]. For a specified system, the deployment
architectureprovides the same functionalities but
different QoS levels. The parameters which
influence the deployment architecture’s quality are
often not cognized before the system’s initial
deployment and may alter at runtime. This
necessitates the redeployment of the software to
enhance the QoS of the system. A framework is
evaluated in determining the most suitable
deployment architecture for a DSS relative to
multiple confusing QoS dimensions. The
framework bolsters a formal modeling and a group
of adaptive algorithms for enhancing the system’s
deployment.

A Deployment Improvement Framework (DIF)
is proposed to enhance the software-intensive
system’s QoS by determining the appropriate
deployment of the system’s software parts onto its
hardware hosts. DIF permits quick, quantitative
exploration of a system’s deployment space. The
framework model’s design and the algorithms
permit the random specification of new QoS
dimensions and their enhancements. The data about
the system parameters are either obtained at design-
time or at run-time and an enhanced deployment
architecture is computed and applied.

5.10. Reliability Oriented Software Evolution
Based on Contribution Degree of
Component
The reliability of the software architecture is

enhanced by the analysis contribution degree of
component [24]. The various components of the
system serve various roles in the reliability-oriented
software architecture evolution. The reliability-
oriented evolution technique upon the contribution
degree of component is employed in an ATM
system.

5.11. Fuzzy Rules for Time-Series Data
Time series analysis is used frequently in

various applications [34]. Several data mining
techniques have concentrated only on binary-valued
data, but time series data are quantitative values. A
fuzzy mining scheme is proposed to estimate the
linguistic association rules. This method uses a
sliding window to produce continuous
subsequences from a specified time series. The

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

605

fuzzy itemsets are analyzed from the subsequences
and relevant post-processing is performed to
exclude the repetitive patterns.

6. DISCUSSION AND RESULTS

6.1. Software Architecture Analysis for an ATM
Banking System Based on Fuzzy
Association Rules

The software architecture for an ATM banking
system is implemented in NetBeans IDE, working
upon the principle of Fuzzy Association Rules
(FAR). The software architecture is analyzed in
terms of reliability, performance, security,
flexibility, and adaptability. The analysis result is
shown in Fig. 13.

Fig. 13. Software Architecture Analysis Results of

Proposed ATM Banking System.

The threshold values for the individual

parameters are initiated using FAR as ReliabilitiyTH
= 90%, FlexibilityTH = 80%, PerformanceTH = 95%,
SecurityTH = 95%, and AdaptabilityTH= 98%. The
architectural analysis with respect to the threshold
values classifies the ATM banking system software
architecture with the following results:

• High reliability
• High security
• Low adaptability
• High flexibility
• High performance

6.2. Security Analysis of Software Architecture
Based on Analytical Hierarchy Process
(AHP)
The security analysis is done for a flower shop

system. Security vulnerabilities such as Cross Site
Scripting (XSS) and SQL injection were
deliberately implemented in the less secure version
of the system. A MySql server and an Apache
HTTP server were configured as a database server
and web server respectively. The security analysis
is performed by estimating the security risk. The
risk values for various scenarios of different
Eigenvectors and Eigen scores are given in Fig. 14.

Fig. 14. Comparison of Risk Values of Flower Shop

Software Architecture.

6.3. Construction and Exploitation of Flexibility
in Software Architecture
An Airline Reservation System is taken as the

example software architecture for the flexibility
analysis [18]. Four scenarios are considered and the
overall flexibility metric for these scenarios is 0.4.

6.4. Improving the Deployment Architecture of
Software in Distributed Systems
Several algorithms like Mixed-Integer

Nonlinear Programing (MINLP) algorithm, Mixed
Integer linear Programming (MIP), Genetic
algorithm and Greedy algorithm are considered in
the security analysis in the distributed systems’
software architecture with 12 components, 8 users,
8 services, and 5 hosts [21]. The comparison of the
average security analysis among eight various
services for these algorithms is shown in Fig. 15.

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

606

Fig. 15. Comparison of Communication Security for
Various Algorithms in a Distributed System.

6.5. Reliability Oriented Software Evolution
Based on Contribution Degree of
Component
The reliability analysis is performed for an ATM

Banking System. Several scenarios such as Account
Manager (R6), Helper (R7), Transactor (R9),
Verifier (R10) and Messenger (R8) are used[24].
The reliability of two scenarios R6 and R7 is
analyzed and shown in Fig.16. The improved
software architecture model provided a reliability of
54.51%. After software evolution the reliability of
the system increased to 85.12%, which is a 56%
increase.

Fig. 16. Comparison of Architecture Reliability for Two

Scenarios Provided With Component Reliability.

6.6. Reliability Evaluation of Software
Architecture under Uncertainty
A Monte Carlo (MC) simulation process has

been considered in the analysis of reliability in the
software architecture under uncertainty [43]. The
analysis is based on 3000 MC trails. The histogram
of the reliability samples is computed and is shown
in Fig. 17.

Fig. 17. Histogram of Reliability Samples.

6.7. Overall Comparison of Proposed Software
Architecture With Other Software
Architectures
The proposed ATM banking software system

architecture is analyzed with various existing

software architectures [18], [21], [24], [54], [55] in
terms of reliability, flexibility, performance,
security, and adaptability. The comparison result is
given in Fig. 18.

Fig. 18. Software Architecture Comparative Analysis.

7. 7. CONCLUSION

The performance characteristics of the
software architecture have been analyzed in terms
of reliability, flexibility, adaptability and security. A
software architecture is proposed for an ATM
banking system based on Fuzzy Association Rule
(FAR). Various techniques concentrating on
individual performance parameters can be
integrated for the efficient analysis and design of
the software architecture. The various techniques to
implement the fuzzy association rule have been
discussed. The results of the software architecture
analysis with respect to security, component
reliability, architecture reliability, adaptability and
risk value has been presented.The proposed
software architecture is efficient compared to the
existing software architectures in terms of
reliability, flexibility, performance, security, and
adaptability. The future of software architecture
analysis involveshybrid Architecture Trade-off
Analysis Method (ATAM), hybrid Architecture-
Level Modifiability Analysis (ALMA), and
software evolution which is an advancement to
SAAM.

REFERENCES:

[1] A. Zalewski and S. Kijas, "Beyond ATAM:

Early architecture evaluation method for
large-scale distributed systems," Journal of
Systems and Software, vol. 86, pp. 683-697,
2013.

[2] P. Potena, "Optimization of adaptation plans
for a service-oriented architecture with cost,
reliability, availability and performance
tradeoff," Journal of Systems and Software,
vol. 86, pp. 624-648, 2013.

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

607

[3] P. Paranjape-Voditel and U. Deshpande, "A
stock market portfolio recommender system
based on association rule mining," Applied
Soft Computing, vol. 13, pp. 1055-1063,
2013.

[4] M. Oussalah, et al., "A software architecture
for Twitter collection, search and geolocation
services," Knowledge-Based Systems, vol.
37, pp. 105-120, 2013.

[5] N. Niu, et al., "Enterprise Information
Systems Architecture - Analysis and
Evaluation," Industrial Informatics, IEEE
Transactions on, vol. PP, pp. 1-1, 2013.

[6] N. Nan and S. Kumar, "Joint Effect of Team
Structure and Software Architecture in Open
Source Software Development," Engineering
Management, IEEE Transactions on, vol.
PP, pp. 1-12, 2013.

[7] A. Marback, et al., "A threat model-based
approach to security testing," Software:
Practice and Experience, vol. 43, pp. 241-
258, 2013.

[8] N. Janevski and K. Goseva-Popstojanova,

"Session Reliability of Web Systems Under
Heavy-Tailed Workloads: An Approach
based on Design and Analysis of
Experiments," Software Engineering, IEEE
Transactions on, vol. PP, pp. 1-1, 2013.

[9] W. Yudong and X. Xinjun, "The Analysis
and Reflection of Software Adaptability and
Its Supported Technical," in Computer
Science and Electronics Engineering
(ICCSEE), 2012 International Conference
on, 2012, pp. 635-638.

[10] O. Weimin, "Mining positive and negative
fuzzy association rules with multiple
minimum supports," in Systems and
Informatics (ICSAI), 2012 International
Conference on, 2012, pp. 2242-2246.

[11] T. Watanabe and R. Fujioka, "Fuzzy
association rules mining algorithm based on
equivalence redundancy of items," in
Systems, Man, and Cybernetics (SMC), 2012
IEEE International Conference on, 2012, pp.
1960-1965.

[12] X. Wang, et al., "Mining axiomatic fuzzy set
association rules for classification problems,"
European Journal of Operational Research,
vol. 218, pp. 202-210, 2012.

[13] R. Sridhar, et al., "Analysis and Pattern
Deduction on Linguistic, Numeric Based
Mean and Fuzzy Association Rule Algorithm
on Any Geo-referenced Crime Point Data
Integrated with Google Map," in

Proceedings of the International Conference
on Soft Computing for Problem Solving
(SocProS 2011) December 20-22, 2011. vol.
131, K. Deep, et al., Eds., ed: Springer India,
2012, pp. 15-27.

[14] I. B. A. Sougui, et al., "A quantitative
algorithm for extracting generic basis of
fuzzy association rules," in Fuzzy Systems
and Knowledge Discovery (FSKD), 2012 9th
International Conference on, 2012, pp. 23-
27.

[15] L. Shen and S. Liu, "A New Fuzzy
Association Rules Mining in Data Streams,"
in Advanced Technology in Teaching -
Proceedings of the 2009 3rd International
Conference on Teaching and Computational
Science (WTCS 2009). vol. 117, Y. Wu, Ed.,
ed: Springer Berlin Heidelberg, 2012, pp.
163-172.

[16] D. S. Rajput, et al., "Fuzzy association rule
mining based frequent pattern extraction
from uncertain data," in Information and
Communication Technologies (WICT), 2012
World Congress on, 2012, pp. 709-714.

[17] A. M. Palacios, et al., "Mining fuzzy
association rules from low-quality data," Soft
Computing, vol. 16, pp. 883-901, 2012/05/01
2012.

[18] M. Naab and J. Stammel, "Architectural
flexibility in a software-system's life-cycle:
systematic construction and exploitation of
flexibility," presented at the Proceedings of
the 8th international ACM SIGSOFT
conference on Quality of Software
Architectures, Bertinoro, Italy, 2012.

[19] M. Meitner and F. Saglietti, "Software
Reliability Testing Covering Subsystem
Interactions," in Measurement, Modelling,
and Evaluation of Computing Systems and
Dependability and Fault Tolerance. vol.
7201, J. Schmitt, Ed., ed: Springer Berlin
Heidelberg, 2012, pp. 46-60.

[20] S. G. Matthews, et al., "Temporal fuzzy
association rule mining with 2-tuple
linguistic representation," in Fuzzy Systems
(FUZZ-IEEE), 2012 IEEE International
Conference on, 2012, pp. 1-8.

[21] S. Malek, et al., "An Extensible Framework
for Improving a Distributed Software
System's Deployment Architecture,"
Software Engineering, IEEE Transactions
on, vol. 38, pp. 73-100, 2012.

[22] A. Koziolek, "Research Preview: Prioritizing
Quality Requirements Based on Software
Architecture Evaluation Feedback," in

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

608

Requirements Engineering: Foundation for
Software Quality. vol. 7195, B. Regnell and
D. Damian, Eds., ed: Springer Berlin
Heidelberg, 2012, pp. 52-58.

[23] A. M. N. Kousari, et al., "Improvement of
Mining Fuzzy Multiple-Level Association
Rules from Quantitative Data," Journal of
Software Engineering and Applications, vol.
5, pp. 190-199, 2012.

[24] W. Jun and C. WeiRu, "A Reliability-
oriented Evolution Method of Software
Architecture Based on Contribution Degree
of Component," Journal of Software
(1796217X), vol. 7, pp. 1744-1750, 2012.

[25] C. Jr-Shian, et al., "Enhance the Multi-level
Fuzzy Association Rules Based on
Cumulative Probability Distribution
Approach," in Software Engineering,
Artificial Intelligence, Networking and
Parallel & Distributed Computing (SNPD),
2012 13th ACIS International Conference
on, 2012, pp. 89-94.

[26] T.-P. Hong, et al., "A multi-level ant-colony
mining algorithm for membership functions,"
Information Sciences, vol. 182, pp. 3-14,
2012.

[27] G. T. S. Ho, et al., "Using a fuzzy
association rule mining approach to identify
the financial data association," Expert
Systems with Applications, vol. 39, pp. 9054-
9063, 2012.

[28] H. L. Ghazi and M. S. Abadeh, "Mining
fuzzy association rules with 2-tuple linguistic
terms in stock market data by using genetic
algorithm," in Artificial Intelligence and
Signal Processing (AISP), 2012 16th CSI
International Symposium on, 2012, pp. 354-
359.

[29] A. Fernández and F. Herrera, "Linguistic
Fuzzy Rules in Data Mining: Follow-Up
Mamdani Fuzzy Modeling Principle," in
Combining Experimentation and Theory.
vol. 271, E. Trillas, et al., Eds., ed: Springer
Berlin Heidelberg, 2012, pp. 103-122.

[30] R. Duque, et al., "Integration of
collaboration and interaction analysis
mechanisms in a concern-based architecture
for groupware systems," Science of
Computer Programming, vol. 77, pp. 29-45,
2012.

[31] F. Di Martino and S. Sessa, "Detection of
Fuzzy Association Rules by Fuzzy
Transforms," Advances in Fuzzy Systems,
vol. 2012, p. 12, 2012.

[32] E. D’Andrea and B. Lazzerini, "A
hierarchical approach to multi-class fuzzy
classifiers," Expert Systems with
Applications, 2012.

[33] H.-P. Chiu, et al., "Applying cluster-based
fuzzy association rules mining framework
into EC environment," Applied Soft
Computing, vol. 12, pp. 2114-2122, 2012.

[34] C.-H. Chen, et al., "Fuzzy data mining for
time-series data," Applied Soft Computing,
vol. 12, pp. 536-542, 2012.

[35] H. P. Breivold, et al., "A systematic review
of software architecture evolution research,"
Information and Software Technology, vol.
54, pp. 16-40, 2012.

[36] A. Asthana and K. Okumoto, "Integrative
Software Design for Reliability: Beyond
Models and Defect Prediction," Bell Labs
Technical Journal, vol. 17, pp. 37-59, 2012.

[37] Andr, et al., "Kieker: a framework for
application performance monitoring and
dynamic software analysis," presented at the
Proceedings of the third joint WOSP/SIPEW
international conference on Performance
Engineering, Boston, Massachusetts, USA,
2012.

[38] B. A. Akinnuwesi, et al., "A framework for
user-centric model for evaluating the
performance of distributed software system
architecture," Expert Systems with
Applications, vol. 39, pp. 9323-9339, 2012.

[39] F. Zeshan and R. Mohamad, "Software
architecture reliability prediction models: An
overview," in Software Engineering
(MySEC), 2011 5th Malaysian Conference
in, 2011, pp. 119-123.

[40] L. Troiano, et al., "Interpretability of fuzzy
association rules as means of discovering
threats to privacy," International Journal of
Computer Mathematics, vol. 89, pp. 325-
333, 2012/02/01 2011.

[41] L. Tan and A. Krings, "An Adaptive N-
Variant Software Architecture for Multi-
Core Platforms: Models and Performance
Analysis," in Computational Science and Its
Applications - ICCSA 2011. vol. 6783, B.
Murgante, et al., Eds., ed: Springer Berlin
Heidelberg, 2011, pp. 490-505.

[42] D. Perez-Palacin, et al., "Software
architecture adaptability metrics for QoS-
based self-adaptation," presented at the
Proceedings of the joint ACM SIGSOFT
conference -- QoSA and ACM SIGSOFT
symposium -- ISARCS on Quality of
software architectures -- QoSA and

Journal of Theoretical and Applied Information Technology
 31st January 2014. Vol. 59 No.3

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

609

architecting critical systems -- ISARCS,
Boulder, Colorado, USA, 2011.

[43] I. Meedeniya, et al., "Architecture-based
reliability evaluation under uncertainty,"
presented at the Proceedings of the joint
ACM SIGSOFT conference -- QoSA and
ACM SIGSOFT symposium -- ISARCS on
Quality of software architectures -- QoSA
and architecting critical systems -- ISARCS,
Boulder, Colorado, USA, 2011.

[44] R. Kumar, et al., "Measuring software
reliability: a fuzzy model," SIGSOFT Softw.
Eng. Notes, vol. 36, pp. 1-6, 2011.

[45] S. S. Jalali, et al., "A New Approach to
Evaluate Performance of Component-Based
Software Architecture," in Computer
Modeling and Simulation (EMS), 2011 Fifth
UKSim European Symposium on, 2011, pp.
451-456.

[46] O. Georgieva and A. Dimov, "Software
reliability assessment via fuzzy logic model,"
presented at the Proceedings of the 12th
International Conference on Computer
Systems and Technologies, Vienna, Austria,
2011.

[47] M. Galster and P. Avgeriou, "The notion of
variability in software architecture: results
from a preliminary exploratory study,"
presented at the Proceedings of the 5th
Workshop on Variability Modeling of
Software-Intensive Systems, Namur,
Belgium, 2011.

[48] D. Falessi, et al., "Decision-making
techniques for software architecture design:
A comparative survey," ACM Comput. Surv.,
vol. 43, pp. 1-28, 2011.

[49] V. Cortellessa, et al., "What Is Software
Performance?," in Model-Based Software
Performance Analysis, ed: Springer Berlin
Heidelberg, 2011, pp. 1-7.

[50] V. Cortellessa, et al., "Software Lifecycle
and Performance Analysis," in Model-Based
Software Performance Analysis, ed: Springer
Berlin Heidelberg, 2011, pp. 65-77.

[51] M. Bunke and K. Sohr, "An Architecture-
Centric Approach to Detecting Security
Patterns in Software," in Engineering Secure
Software and Systems. vol. 6542, Ú.
Erlingsson, et al., Eds., ed: Springer Berlin
Heidelberg, 2011, pp. 156-166.

[52] F. Brosch, et al., "Reliability prediction for
fault-tolerant software architectures,"
presented at the Proceedings of the joint
ACM SIGSOFT conference -- QoSA and
ACM SIGSOFT symposium -- ISARCS on

Quality of software architectures -- QoSA
and architecting critical systems -- ISARCS,
Boulder, Colorado, USA, 2011.

[53] A. Alkussayer and W. H. Allen, "Security
risk analysis of software architecture based
on AHP," in Networked Computing (INC),
2011 The 7th International Conference on,
2011, pp. 60-67.

[54] N. Subramanian and L. Chung, "Metrics for
software adaptability," Proc. Software
Quality Management (SQM 2001), April,
2001.

[55] M. Frigo and S. G. Johnson, "FFTW: an
adaptive software architecture for the FFT,"
in Acoustics, Speech and Signal Processing,
1998. Proceedings of the 1998 IEEE
International Conference on, 1998, pp. 1381-
1384 vol.3.

