Journal of Theoretical and Applied Information Technology
31* January 2014. Vol. 59 No.3 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISSN17-3195

A FIVE-FACTOR SOFTWARE ARCHITECTURE ANALYSIS
BASED ON FAR FOR ATM BANKING SYSTEM

T K.S. RATHISH BABU, DR.N.SANKARRAM

L Assistant Professor, Department of Computer SciandeEngineering, S.K.R. Engineering College,
Chennai, India
“Professor, Computer Science and Engineering, Rddlkge of Engineering and technology, puduvoyal,
Chennai India

ABSTRACT

Software architecture represents the high levectires of a software system. It can be definethaset
of structures required to explain about the soféwsystem which comprise the software elements, the
relations between them, and the properties of tlmthelements and relations. A major challenge @ th
software architecture design process is the aazupaediction and improvement of the software
performance characteristics like outage frequenog duration. This paper proposes hybrid software
architecture for an ATM banking system to overcotne difficulties of an existing architecture. The
proposed system is based on the Fuzzy AssociatidesRFAR). During the extraction of the FAR, a
confidence index and theAprioriGen algorithm idizgid to compute the inverse fuzzy transform. Also,
this paper presents a review of some of the Sofwarchitecture Analysis Methods (SAAM). The
performance of the proposed methodology is analyzskd on the metrics like reliability, flexibiljity
adaptability and security. The proposed softwarehitgcture is compared with the various existing
software architectures. The implementation resoltsiously proves that the proposed methodology
performs better than all the other existing sofenarchitectures.
Keywords: Adaptability, Apriori Algorithm, Flexibility, FuzzyAssociation Rule (FAR), Software
Architecture Analysis Methods (SAAM), and Security.

1. INTRODUCTION adaptability, aqd security. The performance analysi
)]) achieves various goals, depending on the
Thesoftware architecture is defmed as theapplicationdevelopment phase [49]. The most
“backbone” of a system at the maximum level of yependent parameters are reliability and
abstraction. It is a high-level representation thalyerformance. The software architecture reliability
characterizes ~ the — major structure andjnyolves subsystem interactions [19], fuzzy logic
communications of the components of a system ang,qel [46], prediction models [39], and quality
the system's communication with the externaliequirements [22]. The performance analysis of the
environments. It describes the components of thgyfiyware architecture involves distributed systems
system and their related interconnections. Softwarg,oqe| [38], component-based analysis [45], multi-
architecture contributes to the development phése Q.o platforms [41], Kieker Tool [37], and service-
the software and it has a direct effect on theitjual iented architecture 2].

and cost of the software. The software architeCts The proposed software architecture is analyzed,
should develop the software architecture that @&n b|5gsified using FAR, and it observed that it is

altered without any risk of degradation. Thepeyter compared to various existing software

software architecture analysis verifies the quality,chitectures in terms of reliability, flexibility,

requirements to be addressed in the software deSi%aptability, and security.

and detects the potential risks. The analysis of

software architecture aims to pre-estimate the. RELATED WORK

quality of a system. . .
A software architecture for an ATM banking 2.1.§oftwar_e Alrcfhltectu_re ASnaIyS|s for

system is proposed based on Fuzzy Association nterprise Information Systems

Rules (FAR). The recent various software Many software architecture proposals are

architecture analysis methods (SAAM) andaccessible to industrial engineers in the

implementation of FAR are reviewed. A detailed development of enterprise information systems, but

performance analysis of the software architectsire ithe systematic solutions for the assessment of
performed in terms of reliability, flexibility, Software architecture are scarce [5]. Enterprise

e —
589

Journal of Theoretical and Applied Information Technology

31% January 2014. Vol. 59 No.3 N
© 2005 - 2014 JATIT & LLS. All rights reserved- T
ISSN:1992-8645 www.jatit.org E-ISS1$17-3195
Information Systems (EIS) are the main IT assets NER Related Tobics
for industrial organizations to plan, control and Concepts b
schedule their business process. EISs have becoime Protection threats
major enablers for the advanced T Safety

enterprises to achieve effectiveness and streamline

processes. An important component of the EIS is The NFRs such as reliability and security are
software architectureThe software architecture of software-driven, whereas NFRS such as flexibility,
EIS comprises a group of system components angerformance and adaptability are business-driven.

their topological relations. The architecture ans@ly

depends on the early decisions about the high level

design of software systems.

1) Classification of NFRs:
During the design and implementation of an

EIS, the software architecture must support the

principle business factor known as quality
attributes or non-functional requirements
(NFRs). During the selection of software

architecture for an EIS, one needs to consider

many and often conflict NFRs. For example, the
real time performance and a system’s flexibility
are conflicting with each other and must be

balanced in software development. In a user-
oriented technique, the key NFRs are estimated
and the quality attribute scenarios are furnished
to compute the degree to which the choices of

the software architecture have influenced the

satisfaction of the NFRs.
During the development of software
architecture, the functional requirements define

what the system can do and the non-functional
requirements (NFRs) elaborate the adaptability

of the system to satisfy the required functions.
Some of the key NFRs for EISs are enlisted in
TABLE 1., along with their related concepts and
topics.

Table 1: Key Nfrs For Eiss

NFR Related Topics
Concepts
Intelligence Allgnllng.an,
Customer N organization’s
. Customization . .
- Oriented - business with
Flexibility)
customer’s needs
Efficiency Optimization of
Performa | Schedulability | system performance
nce Real-time under many
Memory Usage conditions
Adaptability Rapid response to
Agility Autonomy variations and
Flexibility uncertainties
- Robustness Control a system to
Reliabilit ;)
Fault Handling resist or product
y Accountancy failures
Security Information Free from malicious

2) Classification of Software Architecture:

An important aspect in the software
architecture development is the patterns
codification which is used as the blueprint of
constraints, components, and their relations.
Patterns develop the general the solutions that
can be used again to fasten the software
development. Some techniques employ the
operational patterns for the EIS design as
follows.

2.1.1. General Purpose Software Packages:

This technique encapsulates the
algorithms and data structures to implement a
general and customizable solution of the
business requirements. Some of the packages
used are database-centered data sharing, event
driven message invocation and pipeline-based
data processing.

2.1.2. Domain-specific
architecture:

It focusses on a specific domain and has
special components. Some of the examples are
Enterprise Java Beans (EJB), business
component factory and Microsoft's
Component Object Model (COM+).

2.1.3. Distributed Computing involves

many elements interacting and coordinating

to achieve a goal. Some of the architectural

options are client-server, peer-to-peer and

n-tier architecture.

2.14. Agent and Multi-agent
(MAS):

An agent is an independent element in the
environment; whereas MAS consists of a set
of agents. The agents inside the MAS can
coordinate with each other to attain the goals
at the system level.

software

Systems

2.1.5. Service-oriented Architecture
(SoA):
It is the recent type of software
architecture. It combines heterogeneous

platforms and allows an EIS to enlarge its
capabilities by employing reusable software
modules.

590

Journal of Theoretical and Applied Information Technology
31* January 2014. Vol. 59 No.3 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISS1$17-3195
2.2. A Threat-model Based Security Testing for policies. The first system uses role-based access
Software Architecture control (RBAC) or organization-based access
Some of the issues in the cyberspace control. — The second system uses

community are denial-of-service attacks, €XtensibleAccess Control Markup Language
corruption of data and disclosure of confidential ~ (XACML) ~ to produce the original
information [7]. Some of the issues affecting the ~ implementation of a security scheme. During
software security are cross-site scripting (XSS) the transformation of the test sequences to the
or SQL injection. Threat modeling is useful in ~ €xecutable test codes, the feasible input data
both software testing phase and software design Must be considered carefully.

and development phases. 2.3. Detection of Software Security Patterns

Threat modeling is a systematic way to Th f . . h
detect threats that might bypass the security e use of security patterns improves the
software security in the early software development

The test case generation from the threat modelsta es [51]. The security patterns in the code are
has not been studied much, so a threat model 29 ‘ y P

based security testing is proposed, Whichdetected by a reverse engineering tool-suite known

. as Bauhaus This approach detects th8ingle
automatically produces test sequences from

threat trees and converts them into executabl(?ccess Poinssecurity pattern. The recent_ security
tests ools support the developers during the

implementation phase depending on the static
analysis.
The software has to be altered frequently due to
varying constraints, bugs and security defects.
Also, the reconstruction of patterns in developed
systems is tedious. Security patterns should be
acknowledged during the maintenance process to
Threat modeling involves the ensure security objecti_ves. A Resource Flow Graph
identification, specification, evaluation and (R.F ©) representation Is used by the Bauhaus tool-
’ ! suite. This method reconstructs the software

;(t)tl;gfsr-mrﬁgst%rreergf rr]r:f) dagiar:nsé;ﬁtsgt'aérigf#lg%rchitecture by a hypothetical architecture to the
oo g P . ctual software architecture obtained from the
at different levels of abstraction and granularity. source code

Some of the notations used in threat modeling
are threat trees, threat nets, and misuse casex4.Software Architecture Adaptability Based
Threat nets are built upon Petri nets, a on QoS Self-Adaption

mathematically based principle for modeling The software systems should be able to adapt
and checking distributed systems. Misuse casghemselves to the environment dynamically to meet
modeling defines misuse cases as threats to U§gth the functional and non-functional requirements
cases and prefers mitigation use cases. ~ [42]. The functional requirements focus on the
Mutation analysis is a technique which gyerall implementation logic and the non-functional
produces mutants by injecting threats requirements focus on the QoS levels to be ensured.
deliberately and estimates how many of the adaptability has an effect over other software
injected threats can be revealed by security testg;ajities such as performance, maintainability or
There are three types of mutation analysis; theyejiapility. Also in the worst case, the improvernen
are implementation-level security mutation, of adaptability could lessen other qualities of the
mutation of access control policies and system. So, an efficient trade-off must be
specification-level ~ security =~ mutation. In maintained between the system adaptability and
implementation-level security mutation the other quality of the system. These adaptability
vulnerabilities are injected into the metrics support a higher degree of quantification

implementation ~ and the number of from the basic metric. The metrics are also
vulnerabilities that can be revealed by theqgyantified besides the tracking.

security tests is evaluated. Specification-level

Security mutation introduces errors in the 2.5. Construction and EXpIOitation of Flelelllty
description of the security-related behaviors so in Software Architecture

as to produce threat scenarios. In mutation Flexibility can be attained by aspect-orientation.
analysis of access control policies, there are twdt is a mechanism which focuses on the design-time
important systems to create access and contr@eparation of the crosscutting system featurestwhic

The threat model examines the
application in the view of a potential attacker
and aids them estimate the potential securit){he
risks. The main functions of threat model are
detection of the application’'s assets,
determination of the threats to an application,
ranking the threats and palliation of threats.

e —
591

Journal of Theoretical and Applied Information Technology
31% January 2014. Vol. 59 No.3 P

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISSN17-3195

are embedded into the system [18]. This orientatior2.6. Software Lifecycle
permits an additional dimension of decomposition There are some common stages that can be seen
and strongly localized changes. Software Producy every software process, where each stage censist
Lines are a mechanism for systematic usage 0Off a set of well-defined functions [50]. These stag
commonalities among software products. This isdentify different abstractions of the software and
attained by systematically reusing the COMMONgevelopment.
divisions of the systems. The commonalities and Requirement Specificationoncentrates on the
variations among the products are analyzed. functionalites of the system and on their
Software ~ Architecture ~ Analysis ~ Method gperational limitations. Software design and
(SAAM) and Architecture Trade-off Analysis jmplementationdiscusses about the creation of the
Method (ATAM) generally focus on quality software system according to its requirements.
attributes, and Architecture-Level Modifiability goftware verification and validatioris a level
Analysis (ALMA) focus on maintainability. ArchE \yhich proves that the software system conforms to
design assistant permits the monitoring ofihe |imitations in the specification staggoftware
modifiability during the time of designing, but Wit a\gjution is a period when the changes in the
particular support on selection of architecturalspftware architecture occur. Theaterfall process
techniques. model organizes and explains the Lifecycle stages
as shown in Fig. 1.

Specification of
the Requirements

Implementation and
Design of Software

Verification and
Validation of Software

Software Evolution

Fig. 1. Waterfall Process Model.

Another software process model is ttegative order to rapidly create an initial edition of the
process model, which deals with thespecificationsoftware system, that can be later refined through
application and validation functions concurrently i iterations as shown in Fig. 2.

Design and
Implementation
of Software

Specification of

\ requirements
N\

Inputs from

Validation and
Verification of
Software

Fig. 2. Iterative Process Model.

e —
592

Journal of Theoretical and Applied Information Technology
31% January 2014. Vol. 59 No.3 P

© 2005 - 2014 JATIT & LLS. All rights reserved-

" A mmm—
YT

ISSN:1992-8645 www.jatit.org E-ISSN17-3195

3.1 Proposed ATM Banking Software
Architecture Analysis

) The software architecture for an ATM banking
The proposed ATM banking software system is proposed based on Fuzzy Association
architecture and some of the methods for th&ryles (FAR) and Erlang distribution. The flow of

software architecture analysis with respect tothe proposed model is given in Fig. 3.
evaluation perspectives are discussed in thisesecti

S/W Architecture .
Depiction

3.SOFTWARE ARCHITECTURE ANALYSIS

Stakeholders

(Problem / Requirements
Implications

i
| Statement Analysis

s
- "—l Levels of Suspects }‘7| Bartition Prgpﬁ'i['jpn

|l.- II)
2 - |

T L l
| Correlated Chseryation \—w [Inferval Fixation H il

| Experts parameters l
¢ !]

|C D.F Erlang Distribution l—b Disparity Rate ‘ Measure Adaptability < _'(Flexibility ‘
I 1
. | Reliability |<—‘ - Depth ‘ |

| | e

- 4‘ Hining - Hybridized FAR !“-\

il T Femre 7] |
Data Extraction | — ..l eatu H

Selection
[Assoeiation || T T-
: r—i Information Gain | |_
. — | !usszjzc'atmn
fatd || Strat
Fuzzy Assoctation | rategies

I Matrix |] N

Classified Effects

Fig. 3. Software Architectural Design Process.

The process model involves an input of schemahe ATM banking system, the software architecture
file for the construction of the software architeet is depicted.
Some of the operations in the ATM banking The various parameters in the software
software architecture are GetBalance architecture analysis are computed based on
UpdateBalanc®eposit and Withdraw Some of disparity rate and CDF (Cumulative Distributive
the messages in the software system ar&unction) of the Erlang distribution. The
BalanceMessage BalanceChange and computation of the parameters for software
CustomerMessageBased on the requirements of architecture analysis are given in TABLE 2.

e —
593

Journal of Theoretical and Applied Information Technology
31% January 2014. Vol. 59 No.3 P

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

E-ISSI817-3195

ISSN:1992-8645 www.jatit.org

Table 2: Computation Of Parameters For Software
Architecture Analysis

software reliability structure is framed to fulfthe
emptiness between predictions, expectations, and

CDF of the real behavior of systems. An integrative
Param Erlang algorithm implementing the design for reliability
eter | Distribution F X y (DfR) in software architectures is given in Fig. 5.
(X, y) And the general scheme for the software reliability
Perfor X +yi2 Memory Exgcution prediction is given in Fig. 6.
mance utilization time 3.4.Measurement of Software Architecture
Flexibil Dependenc| Error Reliability by a Fuzzy Model
ity 100 - (x +y) y of probabilit
software y Several models have been proposed for
Reliabil (X +)12 Closed Execution predicting the quality attributes of the software
ity loops time architecture [44]. This technique involves a Fuzzy
Adapta System Easy to model for the prediction of software reliability.
bility X +yl2 requiremen use Some of the parameters considered for the
ts Senenden prediction analysis are Availability, Recoveralilit
Securit X-y Data C‘; of and Failure Probability. The Fuzzy Model aids to
y privacy network evolve the intermediate levels between the reliable

and unreliable states of the software architecture.

The classification results of the software
architecture analysis are obtained by the use of
Fuzzy Association Rules (FAR) and threshold value
for each parameter.

Setting the software's goals and requirements

3.2.Decision-making in Software Architecture
Design
The software architecture of an intensive system
can be defined as the group of relevant design
decisions that has an impact on the qualities ef th
system [48]. A general of the software architecture
design process is given in Fig. 4.

‘ Reliability modeling, Budgeting and Test Planning

‘ Design, Development and Integration ‘

‘ Testing of Robustness and Endurance

‘ Prediction and Readiness ‘

Requirements of the
system and context of
the project

‘ Field Reliability Validation ‘

Architecture
Analysis of acceptable?

Requirements

:

‘F dback and Refi “

Significant features
in architecture

1

Decision-making

Customer Software
components and
inter-relations

Description of the
Evaluation

\/T/\

Evaluation of
Architecture

Fig. 4.

Software Architectural Design Process.

3.3. Reliable Software Architecture

Reliability in Software Architecture has impact architecture and configurations of the product line
both on the cost of field operation and thefrom a shared core property. This mechanism
experience of the users [36]. An integrative provides flexibility to various fault tolerant

Fig. 5. Integrative Design for Reliability.

3.5. Prediction of Reliability in Fault-Tolerant
Software Architectures

The software fault tolerance schemes improve
the reliability of the software architectures [52].
new approach is proposed for the analysis of the
effect of software tolerance scheme for multipld an
differing software architectures. This approach
models the various alternatives of the software

e —
594

Journal of Theoretical and Applied Information Technology

31* January 2014. Vol. 59 No.3 B
© 2005 - 2014 JATIT & LLS. All rights reserved- L ———
7Y TT]
ISSN:1992-8645 www.jatit.org E-ISSI817-3195

schemes. The models are transformed into Markoapplications. The layered architecture provides on-
chains by a tool and the system (software andhe-fly reconfiguration.

hardware) reliabilities are computed. This provide
a validation process for the software architect
during the early development stages.

.7.Security Analysis of Software Architecture
Based on Analytical Hierarchy Process
(AHP)

The evaluation of the software security at an

Test the defected
data

Field Outage Data

l

ﬁ

Software Reliability

early stage is important, as it guarantees the
stakeholder's security objectives [53]. A robust
security evaluation method to estimate the security
support of software architecture in the design phas

estimated during
the service

Number of defects

Growth Model Default Conversion is developed and is known as Security Evaluation
F; fail

i o P Framework (SEF). The SEF also has some

limitations such as the securityevaluation consider

only the architectural level and not the scenaios
the structural components. A hybrid software

l security risk evaluation model based on Analytical

et or Evtmation of Hierarchy Process (AHP) is proposed. The SEF
Software Failure fiware Availability consists of six steps [53] as described in Fig. 7.
Rate (or) Flexibility The initial constituent of the process is the

evaluation of a scenario-based architecture. The
evaluation of the software architecture is a
competent way of guaranteeing design quality. The
architecture’s ability to render a system that
3.6. Performance Analysis of an Adaptive satisfies the stakeholders’ quality requirements to
Software Architecture for Multi-Core detect the potential risks. The involvement of the
Platforms security patterns increases the quality of theritgcu
This analysis method focuses on theconstituents in the architecture.
performance parameters for an adaptive SOﬂv"ar%.S.Software Architecture Adaptability Based
architecture, which has many levels of fault on QoS Self-Adaption
detection, recovery and masking through . .
reconfiguration of the architecture [41]. The 'I_'he _de3|gn of the systems in Softwa_re
architecture is initialized with a formal requirempe ENJiN€ering must be able to adapt to quick

model denoting the multiple levels of information a_llterations of their requirements and evolve over

assurance and functional capability. Thetime [42]. The quantification and evaluation of

architecture encompasses a multi-layer design t etrics such as software adaptability are defined.

apply the constraints using N-variant techniques.The quality of service (QoS) must be ensured by the

The architecture also integrates a reconfiguratioﬁ""‘luesftOf these rTetr|cs. Thgsehmetrlcs are dused by
scheme that utilizes the lower layer to assess thi'€ Software architect to assist the system adaptat

higher layers. When a fault is detected thel© Satisfy the overall quality requirements.

reconfiguration scheme reconfigures the system to
maintain the required services.

A general reliability model is provided with
cross-surveillance for reconfiguration, based an th
generalized stochastic Petri nets. Then, a
probabilistic automation-based behavioral model is
defined. This model is appropriate for modeling the
problems in securing by value faults. Petri net
permits the reliability modeling and reconfiguratio
and the performance analysis is given by the
probabilistic model checking. The goal of this
analysis is to capture the computational power of
the under-utilized cores for enhancing the
survivability and adaptability of critical

Fig. 6. Overview of Software Reliability Prediction.

595

Journal of Theoretical and Applied Information Technology
31* January 2014. Vol. 59 No.3 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645

www.jatit.org

E-ISSI817-3195

Produce Security Scenarios

Requirements A %
& Threats

knowledge; hence, adaptability can be computed
before the software designing process.

A system ofn different functionalitiesf; | i= {1
... N}, and existence oh sets, SUare assumed.
Each Sitonsists of software units offering the

Definition of
Evaluation goal

functionality. For eacH;, an architect can select a
subset E) of the existences, wherg&iis the
software units considered. Thus, the system adapts
its behavior in B| ways for eacH;. Some of the
adaptability metrics used for the software
architecture is given as follows:

S il P 3.8.1.1. Absolute Functionality Adaptability Index
ey TroTle Treten (AFAI) defines the number of software units it uses
software |[€—

& for a given functionality.
architecture @—E
Profile

3.8.1.2. Relative Functionality Adaptability Index
(RFAI) defines the number of software units it uses
FST
Evaluate Scenarios

Scenario T Template

Patterns

Describe the

with respect to the units actually offering needed
functionality. This adaptability index A()
communicates with the architect about the
E adaptability of the functionality. When the RFAI
5 vector values are near unity means that the system

Patterns-based is using most of the adaptability which can be

Design decision

Enhanced Risk-based

Architecture ' J'/#based offered.
L y ﬁ‘% e 3.8.1.3. Absolute Software Units Index
architbeoal (ASUIYefines the total number of software units

transformations|

used by the system. This adaptability index
provides a global view of the system size and an
overview on the attempt needed to manage the
whole software architecture.

3.8.1.4. Mean Functionality Adaptability Index
(MFAIl)defines the mean number of software units
utilized per functionality. This metric gives an

The Analytical Hierarchy Process (AHP) is a overview of the mean size and the steps to manage
decision making technique used in a multivariablethe functionalities.

decision problem. The construction of the hierarchy3 g 1 5 Mean of Relative Functionality

is performed so that the elements at similar lavel Adaptability Index (MRSAIljiefines the mean of
of the same order of magnitude and must b§ne nymber of software units utilized for the

associated with some or all elements in they, tionalities relative to the number of units ttha
nextupper level. After the construction of .yuid be used. It also explains how the

hierarchies, the prioritization process determthes g, ctionaliies concentrate their adaptability
relative importance of theconstituents in eachlleve . ices in average. This index communicates with
of the hierarchy. The AHP employs a pairwisehe architects about the mean extent of utilization
comparison matrix to compute the relative objective¢ e potential units for the functionalities. A
weight of factors. The components in each level arg5,e close to unity denotes that the present
pairwise compared relative to their importance ingrchitecture uses almost all the software units

deciding under consideration. A pairwise gyaiiaple. And a value close to zero denotes that
comparison matrix is constructed to compute thene system can be more adaptable and different
relative importance between factors of the decisiony chitecture alternatives of the same adaptability

elements. o metric could be created.
3.8.1. QL'JAaI’IEl.‘ICatIOH' A(;’f bt'lhe' 3.8.1.6. Absolute System Adaptability Index (ASAI)
rchitecture’s Adaptanility: defines the number of software units utilized by th
_ The adaptability metrics of the software gy qtem relative to the number of available software
architecture are based on the system’s architdcturgiyits for the construction of the system. A value

close to unity denotes that there are only a few

Unsatisfactory

Satisfactory

Compare
the results

Fig. 7. Security Evaluation Framework (SEF).

Software

e —
596

Journal of Theoretical and Applied Information Technology

31% January 2014. Vol. 59 No.3 B
© 2005 - 2014 JATIT & LLS. All rights reserved- L ———
7Y TT]
ISSN:1992-8645 www.jatit.org E-ISSI817-3195

choices available to increase the system
adaptability. With respect to MRSAI, this e
adaptability metric encompasses a global view of
the system size relative to its maximum attainable
size, but does not forecast the amount of differen Q) entvalue
architectural options the system could attain.

3.8.1.7. Adaptability and Quality Requirem@rite
requirements are for the software architecture are
focused and classified as presented in TABLE 3.

Requirement
satisfied

ity Values

Qualii

AgA; A A A, ... Adapt Adapt Adapt
Table 2: Adaptability’s Behavior Relative To A Qual Adaptability Metric Values
Requirement

Fig. 8. Quality in Helps wherethe requirement is

Requirement higher than.
As adaptability formulated as
increases Higher Lower N
than than quality value
Increase of quality Helps Hurts
value
i Quality
Decrease Of quallty HurtS Helps req‘:li:emenl\alue
value VAL
Quiality value not H p juirement
affeCted NO eﬁeCt E satisfied
The first dimension of TABLE 3, distinguishes - b e
oy . . AgAy AyAz A, Adapt Adapt Adapt
the software qualities into three categories: Aduptabili Metric Values
* Qualities that increase their value when —— — _ _
adaptability is increased. Fig. 9. Quality in Hurts where the requirement is
lower than.

* Qualities that decrease their value
when adaptability is increased.

* Qualites that do not rely on
adaptability variations.

The second dimension in TABLE Il defines
how the requirement is computed in terms of th
variations in intensity asigheror lower. The labels
Helpsand Hurts are given in TABLE Il to obtain
the effect of adaptability on quality requirements.

In Fig. 7, the requirement to satisfy is called
Quality Requirement valuéddapt is the lowest
which can fulfill the requirement, anddapt
denotes the lowesA' whose lower bound also
&ulfills the requirement, which indeed is fulfilled
until Adapt™®™. These values satisfy the
requirements: the system should have at least
. ') adaptabilityAdapt, and, any selected architecture
Fig. 8and Fig. 9, gives a general graph forwith at leastAdapt adaptability value will also

_quahty requirements th‘fﬂ b_elongs the fitselps _satisfy it. For intermediate adaptabilities, thesi#é
i.e. the quality value which increases when there Ibe architectural choices that will fulfill the

an increase in _adaptability and are computed a?equirement and others that will not fulfill the
higher than X-axis denotes increasing values of therequirements
applicable adaptability metricd{). Y-axis denotes Fig. 8 shows the graph for requirements

the values for the target qualitsdapt'™ is the belonging toHurts whose quality value increases

maximum adaptability_ value which can t.)(.e with adaptability and are computed as lower than.
considered by the architect. When the adaptablllt){o\dapt refers to the maximunA for whatever

metric is not ex_p_licitly giver_l, thengcombinatioh architectural option, with such value, for sure
all the adaptability metrics is considered. Thearpp fulfils the constraint, andAdapt refers to the

bound Vi) and the lower boundVgi) on the payinum Aj for which options that fulfill the
quality the architecture with adaptabiliy can be requirement

reached is estimated. The evaluation of a given constraint or, more
generally, the (adaptability vs. property) tradé-of
study implies to produce the graph of the system
under observation. Starting wih = Ag, Vaou, VaoL
are computed. Next, the adaptability value is

e ——
597

Journal of Theoretical and Applied Information Technology
31* January 2014. Vol. 59 No.3 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISSN17-3195

increased and considered the next lowest value One way to build flexibility is by introduction of
A; and itsVa1y andV,, are computed. The process metadata which means that specific alterations can
goes until A, reachesAdapt™®™. These results be performed in configuration files. Thus, the
produce the actual upper and lower bound curvegecompilation in the source code is not required an
Depending on where the target quality belongs, thenodifications do not involve programming
variable Adapt is considered as the lowe&stthat knowledge.

can fulfill the requirement or the highe&twhere 3.9.1. Overview of Flexibility Enhancement:

both Vay and Vi fulfill the requirement. During the construction of a software
Similarly, to computeAdapt, quality is checked system, flexibility is built into the system. There
whether it belongs tdielps the lowestA; where can be variations in the system during evolution,
both Vi, andVy bounds fulfill the constraints, or which increases the present flexibility. Fig. 10
belonging toHurts the highest, that can fulfill the ghows the construction and exploitation of

requirement. , flexibility. For the construction of flexibility, He
The practical calculation of the bounds for agcenarios act as the input to the design of

given A (i.e., Vay and V), avoid taking into o chitectyre. While designing the architecture, an

consideration the non-suitable architectural ofgtion automated feedback is provided about the present

This refers that a software unit offering T : :
.) . .2 degree of flexibility in an architecture modeling
functionality f; should not be considered in 100l

architecture unless another software unit requifing
had already been considered.

3.9. Construction and Exploitation of Flexibility
in Software Architecture

Flexibility in the software architecture is
considered during system evolution [18]. An
automated flexibility analysis is designed withlrea
time feedback. A flexibility exploitation analysis
implemented for the purpose of software evolution.
This constructs the design time analysis and r®sul
in effective utilization of the given flexibility yo
forming flexibility-aware function-plans. Flexibii
is the main attribute that defines the easinesst, co

Fig. 10. Construction and Exploitation of Flexibility.

A tool-based support for derivation of work
[plans and analysis of change impacts is provided.
Exploiting the flexibility is a development process
which is activated by a strong change request. The

exploitation process can be used for rapid

and speed in which the required changes to .thﬁjentification of the areas of a system which are
software systems could be conducted. A mOde“n%ﬁected by the saving effort for flexibility
and analysis approach is proposed for the

construction and applicationof flexibility exploitation and change request.
throughout the life-cycle in order to increase
systematic support for flexibility.

Flexibility is about the response to the future
variations of the software. Flexibility is a groop) : -
expected potential variations, similar to be guided to choos_e more appropriate deC|5|oqs.
modifiability. Flexibility scenarios are conditions S€cond, the architect can be supported in
which define the constraints about the potentiaf€cognition —of sufficient or insufficient
changes to the system. The realization of thearchitectural decisions, by the measurement of the
flexibility scenarios prepares the system for theattained level of characteristics. Practically,
changes at a later point in time with less effort. architecture design deals with large-scale systems,

The software architecture estimates with its keywhich makes the impact change analysis manually,
design conclusions how many changes are required tedious process. Also, additional complexity is
at the implementation level. The architect has theestablished for the architecture model.
responsibility to lead design decisions, thereby The automated analysis of a modeled software
providing flexibility. The system is modularized in architecture relative flexibility and its scenaii®
a manner that a specific modification depicted in ahot easy. So, a new architectural view known as
flexibility scenario can be performed with minimal Change Impact Viewis introduced. Here, the
local impact alone. flexibility scenarios are the initial-class modgjin

entities. Also, an explicitmpactsrelationship is
introduced between flexibility scenarios and

e —
598

3.9.2. Construction of Flexibility:
Generally there are two approaches for the
optimization of flexibility. First, the architectao

Journal of Theoretical and Applied Information Technology
31* January 2014. Vol. 59 No.3 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISSN17-3195

architectural entities. The architect models theto an already regarded flexibility scenario, the
impact of each scenario on every impacted entitychange impact view is utilized to identify how the
by adding these details as numbers. During theariation is accounted and it can yield a rough
initial phase of the system design, the architect&omputation of the effort to be spent.

can come up only with rough estimates of elemenB.9.3. Realization of Changes

sizes. A link of the architecture model with theesi The flexibility is established by
metrics of the implementation is possible when anncorporation of flexibility mechanisms and
implementation already exists. consideration of flexibility scenarios. During the

For the automated flexibility analysis, the software evolution, major change requests are
metric should be comparable and computable. Th@eeged. Now the provided flexibility has to be
impact analysis for every change on an element igypoited. The original modifications of the system
estimated. Also, the architecture element's codqgagive to the change request have to be organized
size is estimated roughly. The flexibility metrig i and planned in a manner that the present flexjbilit

defined according to the function shown in Fig. 11 : : :
.) : 'schemes are employed during the implementation.
where ‘LoC’ refers to the Lines of Code executed. Flexibility Exploitation Analysis is a semi-

;Lhe tﬂexibility_ 0:; s%ftvxiare e;}rchit(?(l:Furefis d?ﬁn? h automated analysis based on the results in work
e time period [0, 1], where refers for hig plans which address the present flexibility

;:ex'g':'ty _and to r?]fers trllow glexibilit()j/. Tlge explicitly during the architecture construction.eTh
exibility 1S _unity when ineé change due 1o a.architectsapply the change requests to the model

scenario impacts less than 10 lines of codes. Th|8f the software architecture arterive the work
limit refers a minimal change impact to the Presenthctions from the modifications of the model, i.e.

system. Similarly, the fiexibility is zero when the the architecture model is altered to denote the

qhgnge Impacts more than 10 [lnes of code. Th'?arget system state for a change request, diffesenc
l'm!t refers a con&dgrable division of the SYSteM;, the earlier software architecture are computed
which has to be modified to account for the changeand it is translated into work activities

requirements. The intermediate values of the The design time approach i.nvolves the

e o e il oo 1 fodeing of ey scenaro 3 least fo te
also be altered by the architect @?(pllcn flexibility schemes in a _change impact

: view. When a change request similar to a modeled
flexibility scenario occurs in the change impact
,, view, the architects can alter the software
\ architecture model as

-

suggested by the change impact view. The derived
work functions can be denoted in terms of
flexibility scheme roles that are affected. The
implementation of the changes often leads to work

Flexibility

Ratio of Change functions from various fields of functions. So,
10LoC 10% 100 % besides the implementation functions other fields
of functions during the work planning are also

Fig. 11. Flexibility Metric. considered.

3.9.1.1. Preparation of Input Software Architecture
The automated analysis algorithm can executéodet

the architecture model in near real-time and prvid The software architecture model acts as
direct feedback to the architect, based on thgphe primary input for the analysis. For this input,
flexibility-specific enhancements of the architeetu the architects can reuse the architecture moded fro
model. This flexibility metric can aggregate the the design phase. The model of the architecture is
flexibility values for multiple scenarios and syste enriched in following steps. First, the architects
parts. The computation of the aggregated flexibilit should guarantee that all known flexibility schemes
scenarios can be performed by weighing theyre documented explicitly. This is done by
scenarios so that it does not strongly impact theynnotating the components with role names of
flexibility results. Accurate flexibility analysis flexibility patterns or styles. Second, the arctiite

results can be obtained by regarding the persistejilize the following model annotations to show
and explicit considerations in the architecturegther fields of activities.

model. When a change request was received similar

e —
599

Journal of Theoretical and Applied Information Technology
31* January 2014. Vol. 59 No.3 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISS1$17-3195

e All the components are specified by the e Coding activity will end up in
physical representation of the accumulativebuild activity.
configuration (meta-data) files and source « Coding and Configuration activitieswill
files. result in accumulative deployment

« All the components are annotated with the activities.
number of test cases. « Test case annotations to various parts will

« All the components are specified with the lead to accumulativetest execution
number of deployment nodes and the activities

multiplicities in the deployment model.
This information is furnished only once and 4. FUZZY ASSOCIATION RULE
then it can be applied to any number of change Various methods to implement the fuzzy
request analysis. association rule have been proposed. FAR is usually
3.9.3.2. Extension of Change Requests: applied in databases and statistics. Some of the
A copy is created for every change applications of FAR_are in a pattern deduction on
request. The architects apply the changes to th@€o-referenced —crime [13], EC (Electronic
architecture model so that it contemplates the-Cmmerce) environments [33], and stock markets
desired system state after the implementationeof th[3]: The FAR is implemented in various
change request. Changes which do not alter th@echanisms involving, Multilevel FAR based on

structure of the component structure but only thecumulative Distributive Function [25], a
internal components are highlighted in the quantitative algorithm for generic extraction of

architecture model with internal alteration FAR [14], multi-level FAR for membership
annotations. functions [26], and multi-class fuzzy classifiers

The manner in which the change request shoulégz]'
be applied in the architecture should be decided4.1.Fuzzy Transforms To Detect TheFuzzy
The creative decisions involve decisions which Association Rules

cannot be entirely automated by the tool-support. Fuzzy transforms are used for the detection of
3.9.3.3. Computation of Difference and Derivation coarse-grained fuzzy association rules (FAR) in the
of Work Plans: datasets [31]. The FAR are denoted in the means of

The analysis tool calculates the variationslinguistic expressions. A pre-processing phase
between the base edition and target editions of thevaluates the optimal fuzzy division of the domains
software architecture model and converts them int®f the quantitative features. During the extractibn

workplan activities. the FAR, a confidence index (con) and the
Some of the alterations mapped to the activitieg\PrioriGen algorithm is utilized to compute the
with respect to specific features are: inverse fuzzy transform. This technique is alsause

« Component repositoryAdd, Remove in the data mining process, where a detailed

Modify Component; Add, Remove analysis of the FAR is not necessary.
Modify Interface Port ’ ' The extraction process of the fuzzy association

rules is shown in Fig. 12. The extraction process
involves two sub-processes. The AprioriGen
algorithm is used for the selection of user FAR and
for selecting the predecessors with maximum
dimension and support greater than or equal to the
threshold sup The AprioriGen algorithm involves
two steps: Join step and Pruning step. The joim ste
. o . involves the production and formation of an itemset
The .f.ollowmg Wofk activities are derived from by ‘k’ attributes. This is performed by combining
the additional mode |nformat-|0n: two (k-1) attribute having similar first (k-2)

* When a component is added or altered andyripytes. The pruning step involves the removal o
there is an annotation of the source codey| the entities that do not contain all the fiistl)
representation, results eoding activity. subsets. The second sub-process involves the

* The alterations to the parts with a meta-extraction of the FAR if the grade of confidence

data representation will result in (con)is greater than or equal to the threshold.con
configuration activity

e System structure: Add, Remove,
Update Component Instance

e Component deployment: Increase,
Decrease the count of Deployment
Nodes for all Component Instances

» Flexibility Roles:Add, Delete a Role to
or from Component

600

Journal of Theoretical and Applied Information Technology
31* January 2014. Vol. 59 No.3 N

© 2005 - 2014 JATIT & LLS. All rights reserved-

JATIT
ISSN:1992-8645 www.jatit.org E-ISS17-3195
A A e A
[1
| — Setup threshold sup: | | Applyapriori- | .| Obtain potential :
: gen algorithm fuzzy assodiation I
I First sub-process rule set !
i e S e vl
___ .
Estimate the linguistic
Insert into expression to affiliate to - Analyze it
fuzzy 7 in the rule consequent e potential fuzzy |7
association A assodation rule

rule set

Compute the direct F-
transform for each

1

|

1

1

1

1

1

1

|

1

1 Calculate con :
combination (A1 a1 Ax) 1
1
1
1
1
1
1
1
1
|
1
1
|

Compute the
inverse F-transform

All rules J i

Second sub-process

Fig. 12. Extraction of Fuzzy Association Rules.

In Fig. 12, X ... X is the group of data sets association among the different parameters. After
collected. X is denoted as An; and X is denoted the extraction of the associations, the investars ¢
as A ne Xz = H (X ...Xg), where H is a function implement the rules in their decision support
estimated through a suitable fuzzy partition of thesystems.
individual attribute domains. The average of iX

denoted as. 4.4. Temporal Fuzzy Association Rule With 2-

tuple Linguistic Expression

4.2.Enhanced Fuzzy Association Rule Fuzzy association rules that have temporal

A fuzzy Associative Rule Mining (ARM) patterns are dealt with the 2-tuple linguistic
algorithm known as FFI_Stream is proposed to deaéxpression [20]. This method identifies the FAR in
with statistical values in data streams [15]. Reala temporal manner while conserving the
datasets and synthetic datasets are used for tlieterpretability of linguistic variables. IterativRule
performance analysis of the system. WhenLearning (IRL) combined with a Genetic Algorithm
compared to discrete methods, this techniqu€GA) implements the rules and shapes the
establishes a trade-off between the numbers ahembership functions. The rules found are
fuzzy association rules and the efficiency of thedifferentiated with those from a classical methéd o
system. A time based sliding window model is usedinding the FAR.

for the estimation of the fuzzy association rules i . L .
the given input and the clustering technique isduse4'5' Ur_ls_lgned Fuzzy Association Rules with
Minimum Supports

to compute the fuzzy sets.
o o] Classical algorithms for mining the association
4.3.Fuzzy Association Rule in Financial Data rules are constructed on the binary factors of the
Association databases. This has three demerits. First, the
The investment profitability is enhanced by thealgorithm can focus on quantitative attributes.
fuzzy association rules and a decision supporBecond, only positive FAR are found in the data
system [27]. The investors could cognize themining. Third, the algorithm treats every item with

e ——
601

Journal of Theoretical and Applied Information Technology
31* January 2014. Vol. 59 No.3 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISSN17-3195

similar frequency although various items may have4.11. Multilevel Association Rules for

various frequencies [10]. A discovery algorithm is Quantitative Data

proposed for mining unsigned fuzzy association pata-mining involves the translation of data into

rules. useful and organized information [23]. A multi-

4.6. Fuzzy Association Rules Using Genetic level fuzzy .association rule _model i§ proposed for
Algorithm and 2-tuple Linguistic the extraction of gengral information §tored as
Expressions quantitative values during transfers. This method

A multi-objective genetic algorithm is proposed uses the various support value at each level and

for detecting the FAR without any specifications of various membership functions for every item. The

the minimum confidence and support [28] Thisderivation of large itemsets involves a top-down
technique involves the extraction of .both progressively deepening scheme. Also fuzzy

membership functions and FAR in a single Step.boundarles are utilized instead of the conventional

Iterative Rule Learning (IRL) is used to cover theSharp boundary intervals.
uncovered instances. 4.12. Fuzzy Association Rules Based on
Equivalence Redundancy of ltems

The computational time of the mining process is
improved and the extracted repetitive rules are

the useful information from the databases WithpruneOI in_this method [1.1]' The “equivalence
redundancy of the fuzzy itemsets and related

imprecise_ d_ata [1.7]' This t_echniq_ue combines therheorems are defined. A basic algorithm based on
fuzzy apriori algorithm and imprecise data ConceptsApriori algorithm is proposed for the extraction of
to deduce the useful fuzzy association rules in th

: She rules using the equivalence redundancy of fuzzy
given databases. itemsets.

4.7.Fuzzy Association Rules in Low-Quality
Data

A data-mining algorithm is proposed to obtain

4.8. Axiomatic Fuzzy Set Association Rules 4.13Fuzzy Association Rule Based Extraction of
Fuzzy Set Association Rules are proposed for prequent Patterns

classification issues such as, AFS (Axiomatic Fuzzy

Set) theory and AFSRC (AFS association rules fo

classification) [12]. It is a simple and efficient

mechanism which retains the significant rules for

classes which are imbalanced. This is performed b

g Frequent itemset is usually located in large
transactional databases [16]. A new method for the
estimation of the frequent patterns is proposed for
the uncertain data. The fuzzy concept is utilizesl t
fuzzifying class support of a rule. A new modeI&EteCtion of the recurring patterns. This methauj ca
creates the membership functions.automatically b roduce large frequent ltemsets and then estimate
executing the available data he FAR from_ the uncertain dataset. The adva_mtage
' of this technique is that the dataset scanning is

4.9. Follow-upMamdani Fuzzy Modeling performed only once.

Fuzzy logic has exploited for the interpretation5 BACKGROUND WORK
of human derived control rules [29]. The linguistic
fuzzy rules are used to represent the data i.1. Software Architecture for Online Services
classification and association rule mining. Fuzzy The web-services are increasing drastically,
Rules Based Systems (FRBS) are applied in dat@ith their functions and memory consumption. An
mining for classification of datasets which are efficient software architecture is proposed for web
imbalanced. services like social networking, search and geo-
4.10. Fuzzy Association Rules for Discovering Iocatiorr services [4]. Sppial networks ”.ke Twitter
Threats to Privacy have risen as an _e_ffrcrent open social network
. . . mong all communities. A spatial and semantic
. Thls_technlque focuses on the preservation o nalysis of the social network data is analyzed. A
privacy in databases through f_u_zzy rules. The fuzz3functional diversity approach is proposed to
rules are based on a decision tree [40]. Theenhance the fault tolerance for the data collection
predeqessor of e?‘Ch created by these SysteMigere its performance is evaluated. This software
comprise the details about the released variableg, pjiecture enables the spatial patterns inside th
(Quasi-identifier), ~whereas the —accompanyingye, jocations and can give the user with resoutcefu
comprises the data only about the protecte npredictable elements.
variable. The software system is able to collect a huge
amount of geo-located Twitter data online and

e —
602

Journal of Theoretical and Applied Information Technology
31* January 2014. Vol. 59 No.3 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISS17-3195
provide different search functionalities on the These techniques function as modeling

database. The architecture is constructed on theoftware artifacts providing traceability and
assumption that the real time condition is reducedjisualization of the impact of software architeetur
which allows more advanced semantic analysisgrtifacts’ evolution.
The software architecture is built on Python-based]]
web framework Django. The software system is5.3. Softwa_lre_Archltecture Analysis for Large-
combined with Apache Lucene / Solr system. The Scale Distributed Systems
architecture comprises a highly efficient inverted Large-scale distributed systems involve
index representation. The semantic aspect of theubstantial investment and high risk [1]. Some of
search needs to be considered carefully by théhe former architectural decisions describe how the
following strategy. First, an adaptable Slangsystem is organized in terms of permanent data
database is combined into the original system whicltommunication, coarse-grained modularization,
permits the system to replace correct Englishdata management, data I/O and allocation. Such an
phrases to the detected slangs in tweets. Second,0gganization’s mainframe is known as System
semantic similarity based short path and a wordne®rganization Pattern. Analysis of the software
lexical database is used to expand the actual quesrchitecture early in the development cycle
to synonyms, hypernyms and hyponyms of evenjdentifies the significant technical risks and @i
query word. Finally, by employing advanced them at minimal cost. But, architecture analysis
Lucene’s query handling, phrase and word basethethods such as the Architecture Trade-off
queries with different logical conditions are emabl Analysis Method (ATAM) cannot be applied very
efficiently. A fault tolerant system is implemented early in conceptually designed architecture, as the
by using individual machines simultaneously forinfluence of System Organization Pattern on the
collection and then merging the databases. minute details of the final system cannot be
. . accurately defined. So, the Early Architecture
5.2. Software Architecture Evolution Evaluation Method (EAEM) is developed to

Software evolvability is the software system’s estimate the System Organization Pattern before an
capability for change to future events [35].This ATAM-based estimation would be feasible. The
results in better economic value of the softwaoe. F architecture evaluation works upon the Goal-
long-term systems, evolvability is required Question-Metric scheme. It recognizes the
explicitly during the whole software lifecycle to substantial risks faced by the architectural denisi
have a good productive lifetime of software jnvolving the System Organization Pattern. The
systems. EAEM depends on the existing quality scenario-

The software lifecycle studies can be based onjirected architecture analysis methods.
five sub-categories:)

5.4. Concern-based Software Architecture for
5.2.1. Quality Considerations during Design: Groupware Systems
The approaches for the assessment of the This software architecture analysis involves

software lifecycle can be based on conditions likecollaboration and interaction ~analysis, ~which

quality attribute focused on the requirement,permits t_he stud)_/ and characterization of the
influencing factors and scenario. collaborative functions by the groupware system

5.2.2. Evaluation of Architectural Quality: psters [?0]. Thel aqtomagon ofrt]he collaboration ?ng
The approaches for the evaluation of the'” eraf: lon analysis endows the assessment of the
architectural quality can be experience—basedusers work and improvement of groupware system
;) behavior and support. A concern-based architecture
metric-based and scenario-based. :
523 Economic Valuation: is proposed for the groupware development as a
- .Th ! auah|on. | he inf . _model for the integration of analysis subsystems
h ese approaches en arge.t e, n ormatloqnto groupware systems. The whole groupware
on the architectural conclusions busmesssystem can be represented by a group of subsystems

consequences, and aid development teams if\ieta-information, Analysis, Identification,
selecting among architectural options. Application and Awareness). The subsystems
5.2.4. Architecture Knowledge Management: communicate with each other to substantiate the

These approaches enhance the architecturgyasic functions and analyze the collaborative work
integrity by improving architecture documentation of the users. The basic functions are user
by the extraction of architectural knowledge from management and support for collaborative functions
different information sources. within the shared workspaces. This architecture is
5.2.5. Models for Software Evolution: designed for the COLLECE groupware system,

e

603

Journal of Theoretical and Applied Information Technology
31* January 2014. Vol. 59 No.3 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISS1$17-3195
which sustains the collaborative programmingsoftware architecture are complexity, formality and
principles. management.
5.5. Combining Software Architecture with 5.9. Improving the Deployment Architecture of
Team Structure in Open Source Software Software in Distributed Systems
Development The allocation of the software components of

The integration of the developer team structurethe respective hardware nodes has a significant
and open source software (OSS) architecturémpact on the QoS of distributed software systems
monitors the socio-technical interactions in a(DSS) [21]. For a specified system, the deployment
system development [6]. A high level of structural architectureprovides the same functionalities but
interdependency combined with larger teams resultlifferent QoS levels. The parameters which
in better project performance. influence the deployment architecture’s quality are
. o : often not cognized before the system’s initial
5'60?1338?'&25\/6;'_?;'&5 O\/r:)e:z(s)g dc;f Web Systems deployment and may alter at runtime. This

necessitates the redeployment of the software to

A framework for modeling the session epnhance the QoS of the system. A framework is
reliability has been proposed by integration ofruse eyaluated in determining the most suitable
view and system view [8]. The user view is defineddeployment architecture for a DSS relative to
by the session layer, whereas the system view iﬁwultiple confusing QoS dimensions. The
defined by the service layer. The session layer cagamework bolsters a formal modeling and a group
handle heavy tailed workloads which exist in realgf adaptive algorithms for enhancing the system’s
Web systems. The service layer concentrates on ”Ukployment.
observed request reliability from the service p Deployment Improvement Framework (DIF)
the manner in which the components interact tasystem’'s QoS by determining the appropriate
of the requests is estimated by cognizing thenardware hosts. DIF permits quick, quantitative
which the components interact with each other iSrgmework model’s design and the algorithms

defined by the software architecture. permit the random specification of new QoS
5.7. Enhancing Software Adaptability through dimensions and their enhancements. The data about
Reflection Programming the system parameters are either obtained at design

The development of software is analyzed fromtime or at run-time and an enhanced deployment
. o - .architecture is computed and applied.

the programming aspect and it is deemed that it is

the period of adaptive programming at present [9]5.10. Reliability Oriented Software Evolution

Reflex technology for enhancing the software Based on Contribution Degree of

adaptability. The self-reflection and meditation a Component
principle for encoding the execution state as code The reliability of the software architecture is

known asreification. The reflection programming enhanced by the analysis contribution degree of
enables the automatic execution of the softwaromponent [24]. The various components of the

through self-reflection. system serve various roles in the reliability-otéeh
5.8. Variability Analysis in Software software architecture evolution. The reliability-
Architecture oriented evolution technique upon the contribution

Variability is an important parameter in the g;gtreene] of component is employed in an ATM

context of software architecture [47]. Besides the
idea of product lines, the issue of variabilitythe ~ 5.11Fuzzy Rules for Time-Series Data

software domain is examined. In this survey, a Time series analysis is used frequently in
study is conducted among various subjects in termgarious applications [34]. Several data mining
of variability. It is observed that there is no techniques have concentrated only on binary-valued
common apprehension of “variability” in the view gata, but time series data are quantitative valies.
of software architecture. It is also noted that 8om fzzy mining scheme is proposed to estimate the

challenges in the variability of the software |inguistic association rules. This method uses a
architecture also exist in the product line domaingjiging ~ window to produce continuous

Some of the challenges with variability in the gypsequences from a specified time series. The

e —
604

Journal of Theoretical and Applied Information Technology
31% January 2014. Vol. 59 No.3 P

© 2005 - 2014 JATIT & LLS. All rights reserved-

" A mmm—
YT

ISSN:1992-8645 www.jatit.org E-ISSI17-3195

fuzzy itemsets are analyzed from the subsequenc@2. Security Analysis of Software Architecture
and relevant post-processing is performed to Based on Analytical Hierarchy Process
exclude the repetitive patterns. (AHP)

6. DISCUSSIONAND RESULTS The security analysis i§_c_ione for a flower sho_p
system. Security vulnerabilities such as Cross Site

6.1. Software Architecture Analysis for an ATM Scripting (XSS) and SQL injection were
Banking System Based on Fuzzy deliberately implemented in the less secure version
Association Rules of the system. A MySql server and an Apache
The software architecture for an ATM banking HTTP server were configured as a database server

system is implemented in NetBeans IDE, working&nd web server respectively. The security analysis

upon the principle of Fuzzy Association RulesiS performed by estimating the security risk. The

(FAR). The software architecture is analyzed infisk values for various scenarios of different

terms Of re“abmty, performance’ Security, EigenveCtOFS and Eigen scores are given in F|g 14.

ﬂex|b|||ty, and adaptabmty The anaIySiS resigt Risk Value of Flowershop Software Architecture

shown in Fig. 13. #

— 40

BarChart using JFreeChart

EHES

30
25
20
15
10

0

51 52 53 54 55 56 87 58 59 S10

Scenarios

Fig. 14. Comparison of Risk Values of Flower Shop
Software Architecture.

6.3. Construction and Exploitation of Flexibility
in Software Architecture

An Airline Reservation System is taken as the
example software architecture for the flexibility
analysis [18]. Four scenarios are considered amd th
overall flexibility metric for these scenarios igt0

6.4.Improving the Deployment Architecture of
Software in Distributed Systems

Several algorithms like Mixed-Integer
Nonlinear Programing (MINLP) algorithm, Mixed
Integer linear Programming (MIP), Genetic
algorithm and Greedy algorithm are considered in
the security analysis in the distributed systems’

The threshold values for the individual softwa.re architecture with 12 component§, 8 users,
parameters are initiated using FAR as Reliabjlitiy 8 services, and'5 hosts [2.1]' The comparison OT the
= 90%, Flexibilityy = 80%, Performangg = 95%, average security anal_yS|s among e.'ght. various
Securityy = 95%, and Adaptability= 98%. The Services for these algorithms is shown in Fig. 15.
architectural analysis with respect to the threshol Communication Security
values classifies the ATM banking system software e
architecture with the following results:

e High reliability

50% +

. : 40% -

* High security 10% |

* Low adaptability 20% |

» High flexibility 10% |
. 0% : : T

ngh performance MINLP MIP Greedy Genetic

Algorithms

Rebtily Paf Sorly Fladlly Adyga
PARAMETERS

Fig. 13. Software Architecture Analysis Reults of
Proposed ATM Banking System.

60%

605

Journal of Theoretical and Applied Information Technology
31% January 2014. Vol. 59 No.3 P

© 2005 - 2014 JATIT & LLS. All rights reserved-

ISSN:1992-8645 www.jatit.org E-ISSN17-3195
Fig. 15. Qomparison of Cpmmulnic.ation Security for software architectures [18], [21], [24], [54], [5B]
Various Algorithms in a Distributed System. terms of reliability, flexibility, performance,
security, and adaptability. The comparison result i
6.5. Reliability Oriented Software Evolution given in Fig. 18.
Based on Contribution Degree Of Software Architecture Comparative Analysis
Component mProposed mExisting

The reliability analysis is performed for an ATM
Banking System. Several scenarios such as Accou
Manager (R6), Helper (R7), Transactor (R9),
Verifier (R10) and Messenger (R8) are used[24]
The reliability of two scenarios R6 and R7 is
analyzed and shown in Fig.16. The improved
software architecture model provided a reliabidify
54.51%. After software evolution the reliability of :
the system increased to 85.12%, which is a 56% Fig. 18. Software Architecture Comparative Analysis.

100%

Reliability Flexibility =~ Performance Security Adaptability

Increase. 7. 7.CONCLUSION
Component Reliability vs Architecture Reliability ..
i The performance characteristics of the
07 software architecture have been analyzed in terms
5% -7 of reliability, flexibility, adaptability and secity. A
20 e T "/ software architecture is proposed for an ATM
o 04 = H fat
Bog | —mocemm T = 7 banking system based on Fuzzy Association Rule
N (FAR). Various techniques concentrating on
- o individual performance parameters can be
p ‘ ‘ . integrated for the efficient analysis and design of
™ < L the software architecture. The various techniqaes t
: implement the fuzzy association rule have been

Fig. 16. Comparison of Architecture Reliability for Two

Scenarios Provided With Component Reliability. discussed. The results of the software architecture

analysis with respect to security, component

reliability, architecture reliability, adaptabilitgnd

6.6. Reliability Evaluation of Software risk value has been presented.The proposed
Architecture under Uncertainty software architecture is efficient compared to the

A Monte Carlo (MC) simulation process has €Xisting software —architectures in terms = of
been considered in the analysis of reliabilitytie t reliability, flexibility, performance, security, dn
software architecture under uncertainty [43]. The2daptability. The future of software architecture
analysis is based on 3000 MC trails. The histogran@nalysis involveshybrid Architecture Trade-off

of the reliability samples is computed and is showrfAnalysis Method (ATAM), hybrid Architecture-
in Fig. 17. Level Modifiability Analysis (ALMA), and

Ao o RN Bemalcn software evolution which is an advancement to
018 - : SAAM.
0.16 &
g | REFERENCES:
£ [1] A. Zalewski and S. Kijas, "Beyond ATAM:
£ Early architecture evaluation method for
002 large-scale distributed systemgurnal of
a 086 087 0.85 0.89 09 0.91 0.92 0.93 054 095 096 057 098 039 1 SyStemS and Softwarml. 861 pp. 683'697-
Reliability 2 0 13 .
Fig. 17. Histogram of Reliability Samples. [2] P. Potena, "Optimization of adaptation plans

67.0 I . p d Soft for a service-oriented architecture with cost,
T Avehr_zt;l tomsazlﬁ%]tr? Sro?tose ottware reliability, availability and performance
renitecture vvi er Software tradeoff," Journal of Systems and Software,

Architectures _ vol. 86, pp. 624-648, 2013.
The proposed ATM banking software system

architecture is analyzed with various existing

e —
606

Journal of Theoretical and Applied Information Technology

31* January 2014. Vol. 59 No.3 N
© 2005 - 2014 JATIT & LLS. All rights reserved- AT
ISSN:1992-8645 www.jatit.org E-ISSI817-3195

3]

[4]

5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

P. Paranjape-Voditel and U. Deshpande, "A
stock market portfolio recommender system
based on association rule miningdpplied

Soft Computing,vol. 13, pp. 1055-1063,
2013.

M. Oussalahet al, "A software architecture [14]
for Twitter collection, search and geolocation
services," Knowledge-Based Systemeol.

37, pp. 105-120, 2013.

N. Niu, et al, "Enterprise
Systems Architecture - Analysis and
Evaluation," Industrial Informatics, IEEE
Transactions onvol. PP, pp. 1-1, 2013.

N. Nan and S. Kumar, "Joint Effect of Team
Structure and Software Architecture in Open
Source Software DevelopmenEhgineering
Management, |IEEE Transactions owgl.
PP, pp. 1-12, 2013.

A. Marback et al, "A threat model-based
approach to security testing,Software:
Practice and Experiencejol. 43, pp. 241-
258, 2013.

Information

(19]

(16]

N. Janevski and K. Goseva-Popstojanova,
"Session Reliability of Web Systems Under [17]
Heavy-Tailed Workloads: An Approach
based on Design and Analysis of
Experiments,"Software Engineering, IEEE
Transactions onyol. PP, pp. 1-1, 2013.

W. Yudong and X. Xinjun, "The Analysis
and Reflection of Software Adaptability and
Its Supported Technical,” inComputer
Science and Electronics Engineering
(ICCSEE), 2012 International Conference
on, 2012, pp. 635-638.

0. Weimin, "Mining positive and negative [19]
fuzzy association rules with multiple
minimum supports,” in Systems and
Informatics (ICSAI), 2012 International
Conference on2012, pp. 2242-2246.

T. Watanabe and R. Fujioka, "Fuzzy
association rules mining algorithm based on
equivalence redundancy of items,” in [20]
Systems, Man, and Cybernetics (SMC), 2012
IEEE International Conference p2012, pp.
1960-1965.

X. Wang et al, "Mining axiomatic fuzzy set
association rules for classification problems," [21]
European Journal of Operational Research,
vol. 218, pp. 202-210, 2012.

R. Sridhay et al, "Analysis and Pattern
Deduction on Linguistic, Numeric Based
Mean and Fuzzy Association Rule Algorithm [22]
on Any Geo-referenced Crime Point Data
Integrated with Google Map," in

(18]

Proceedings of the International Conference
on Soft Computing for Problem Solving
(SocProS 2011) December 20-22, 20iddl.
131, K. Deepet al, Eds., ed: Springer India,
2012, pp. 15-27.

I. B. A. Souguj et al, "A quantitative
algorithm for extracting generic basis of
fuzzy association rules," iffuzzy Systems
and Knowledge Discovery (FSKD), 2012 9th
International Conference 2012, pp. 23-
27.

L. Shen and S. Liu, "A New Fuzzy
Association Rules Mining in Data Streams,"
in Advanced Technology in Teaching -
Proceedings of the 2009 3rd International
Conference on Teaching and Computational
Science (WTCS 2009)ol. 117, Y. Wu, Ed.,
ed: Springer Berlin Heidelberg, 2012, pp.
163-172.

D. S. Rajputet al, "Fuzzy association rule
mining based frequent pattern extraction
from uncertain data," innformation and
Communication Technologies (WICT), 2012
World Congress qr2012, pp. 709-714.

A. M. Palacios et al, "Mining fuzzy
association rules from low-quality dat&bft
Computingyol. 16, pp. 883-901, 2012/05/01
2012.

M. Naab and J. Stammel, "Architectural
flexibility in a software-system's life-cycle:
systematic construction and exploitation of
flexibility," presented at the Proceedings of
the 8th international ACM SIGSOFT
conference on Quality of Software
Architectures, Bertinoro, Italy, 2012.

M. Meitner and F. Saglietti, "Software
Reliability Testing Covering Subsystem
Interactions," in Measurement, Modelling,
and Evaluation of Computing Systems and
Dependability and Fault Tolerancevol.
7201, J. Schmitt, Ed., ed: Springer Berlin
Heidelberg, 2012, pp. 46-60.

S. G. Matthews et al, "Temporal fuzzy
association rule mining with 2-tuple
linguistic representation,” iffuzzy Systems
(FUZZ-IEEE), 2012 IEEE International
Conference 02012, pp. 1-8.

S. Malek et al, "An Extensible Framework
for Improving a Distributed Software
System's Deployment Architecture,”
Software Engineering, IEEE Transactions
on,vol. 38, pp. 73-100, 2012.

A. Koziolek, "Research Preview: Prioritizing
Quality Requirements Based on Software
Architecture Evaluation Feedback," in

607

Journal of Theoretical and Applied Information Technology

31* January 2014. Vol. 59 No.3 N
© 2005 - 2014 JATIT & LLS. All rights reserved- AT
ISSN:1992-8645 www.jatit.org E-ISSI817-3195

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Requirements Engineering: Foundation for [32]
Software Qualityvol. 7195, B. Regnell and

D. Damian, Eds., ed: Springer Berlin
Heidelberg, 2012, pp. 52-58.

A. M. N. Kousarj et al, "Improvement of [33]
Mining Fuzzy Multiple-Level Association
Rules from Quantitative DataJournal of
Software Engineering and Applicationgl.

5, pp. 190-199, 2012. [34]

W. Jun and C. WeiRu, "A Reliability-
oriented Evolution Method of Software
Architecture Based on Contribution Degree [35]
of Component,” Journal of Software
(1796217X)yol. 7, pp. 1744-1750, 2012.

C. Jr-Shianet al, "Enhance the Multi-level
Fuzzy Association Rules Based on [36]
Cumulative Probability Distribution
Approach,” in Software Engineering,
Artificial Intelligence, Networking and
Parallel & Distributed Computing (SNPD),
2012 13th ACIS International Conference
on, 2012, pp. 89-94.

T.-P. Hong et al, "A multi-level ant-colony
mining algorithm for membership functions,"
Information Sciencesyol. 182, pp. 3-14,
2012.

G. T. S. Ho et al, "Using a fuzzy
association rule mining approach to identify
the financial data association, Expert
Systems with Applicationgol. 39, pp. 9054-
9063, 2012.

H. L. Ghazi and M. S. Abadeh, "Mining [39]
fuzzy association rules with 2-tuple linguistic
terms in stock market data by using genetic
algorithm," in Artificial Intelligence and
Signal Processing (AISP), 2012 16th CSI
International Symposium ¢2012, pp. 354-
359.

A. Fernandez and F. Herrera, "Linguistic
Fuzzy Rules in Data Mining: Follow-Up
Mamdani Fuzzy Modeling Principle," in
Combining Experimentation and Theory [41]
vol. 271, E. Trillas et al, Eds., ed: Springer
Berlin Heidelberg, 2012, pp. 103-122.

R. Duque et al, ‘"Integration of
collaboration and interaction analysis
mechanisms in a concern-based architecture
for groupware systems," Science of
Computer Programmingyol. 77, pp. 29-45,
2012.

F. Di Martino and S. Sessa, "Detection of
Fuzzy Association Rules by Fuzzy
Transforms," Advances in Fuzzy Systems,
vol. 2012, p. 12, 2012.

(37]

(38]

[40]

[42]

E. D'Andrea and B. Lazzerini, "A
hierarchical approach to multi-class fuzzy
classifiers," Expert Systems with
Applications,2012.

H.-P. Chiy et al, "Applying cluster-based
fuzzy association rules mining framework
into EC environment," Applied Soft
Computingyol. 12, pp. 2114-2122, 2012.
C.-H. Chen et al, "Fuzzy data mining for
time-series data,’Applied Soft Computing,
vol. 12, pp. 536-542, 2012.

H. P. Breivold et al, "A systematic review
of software architecture evolution research,"
Information and Software Technologygl.
54, pp. 16-40, 2012.

A. Asthana and K. Okumoto, "Integrative
Software Design for Reliability: Beyond
Models and Defect PredictionBell Labs
Technical Journalyol. 17, pp. 37-59, 2012.
Andr, et al, "Kieker: a framework for
application performance monitoring and
dynamic software analysis," presented at the
Proceedings of the third joint WOSP/SIPEW
international conference on Performance
Engineering, Boston, Massachusetts, USA,
2012.

B. A. Akinnuwesj et al, "A framework for
user-centric model for evaluating the
performance of distributed software system
architecture,” Expert Systems with
Applicationsyol. 39, pp. 9323-9339, 2012.

F. Zeshan and R. Mohamad, "Software
architecture reliability prediction models: An
overview," in Software Engineering
(MySEC), 2011 5th Malaysian Conference
in, 2011, pp. 119-123.

L. Troiang et al, "Interpretability of fuzzy
association rules as means of discovering
threats to privacy,International Journal of
Computer Mathematicsyol. 89, pp. 325-
333, 2012/02/01 2011.

L. Tan and A. Krings, "An Adaptive N-
Variant Software Architecture for Multi-
Core Platforms: Models and Performance
Analysis," inComputational Science and Its
Applications - ICCSA 2011vol. 6783, B.
Murgante et al, Eds., ed: Springer Berlin
Heidelberg, 2011, pp. 490-505.

D. Perez-Palacin et al, "Software
architecture adaptability metrics for QoS-
based self-adaptation," presented at the
Proceedings of the joint ACM SIGSOFT
conference -- QoSA and ACM SIGSOFT
symposium -- ISARCS on Quality of
software architectures -- QoSA and

608

Journal of Theoretical and Applied Information Technology
31% January 2014. Vol. 59 No.3 B

© 2005 - 2014 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645

www.jatit.org

E-ISSI817-3195

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

architecting critical systems -- ISARCS,
Boulder, Colorado, USA, 2011.

I. Meedeniya et al, "Architecture-based
reliability evaluation under
presented at the Proceedings of the joint
ACM SIGSOFT conference -- QoSA and

ACM SIGSOFT symposium -- ISARCS on

Quality of software architectures -- QO0SA

and architecting critical systems -- ISARCS, [54]

Boulder, Colorado, USA, 2011.
R. Kumaret al, "Measuring software
reliability: a fuzzy model,'SIGSOFT Softw.

Eng. Notesyol. 36, pp. 1-6, 2011. [55]

S. S. Jalaji et al, "A New Approach to
Evaluate Performance of Component-Based
Software Architecture,” in Computer
Modeling and Simulation (EMS), 2011 Fifth
UKSim European Symposium,d011, pp.
451-456.

O. Georgieva and A. Dimov, "Software
reliability assessment via fuzzy logic model,"
presented at the Proceedings of the 12th
International Conference on Computer
Systems and Technologies, Vienna, Austria,
2011.

M. Galster and P. Avgeriou, "The notion of
variability in software architecture: results
from a preliminary exploratory study,"
presented at the Proceedings of the 5th
Workshop on Variability Modeling of
Software-Intensive Systems, Namur,
Belgium, 2011.

D. Falessi et al, "Decision-making
techniques for software architecture design:
A comparative survey ACM Comput. Surv.,
vol. 43, pp. 1-28, 2011.

V. Cortellessa et al, "What Is Software
Performance?," inModel-Based Software
Performance Analysised: Springer Berlin
Heidelberg, 2011, pp. 1-7.

V. Cortellessa et al, "Software Lifecycle
and Performance Analysis," Model-Based
Software Performance Analysisd: Springer
Berlin Heidelberg, 2011, pp. 65-77.

M. Bunke and K. Sohr, "An Architecture-
Centric Approach to Detecting Security
Patterns in Software," iRngineering Secure
Software and Systemsvol. 6542, U.
Erlingsson et al, Eds., ed: Springer Berlin
Heidelberg, 2011, pp. 156-166.

F. Brosch et al, "Reliability prediction for
fault-tolerant software architectures,"
presented at the Proceedings of the joint
ACM SIGSOFT conference -- QoSA and
ACM SIGSOFT symposium -- ISARCS on

uncertainty," [53]

Quality of software architectures -- QoSA
and architecting critical systems -- ISARCS,
Boulder, Colorado, USA, 2011.

A. Alkussayer and W. H. Allen, "Security
risk analysis of software architecture based
on AHP," in Networked Computing (INC),
2011 The 7th International Conference, on
2011, pp. 60-67.

N. Subramanian and L. Chung, "Metrics for
software adaptability," Proc. Software
Quality Management (SQM 2001), April,
2001.

M. Frigo and S. G. Johnson, "FFTW: an
adaptive software architecture for the FFT,"
in Acoustics, Speech and Signal Processing,
1998. Proceedings of the 1998 IEEE
International Conference 01998, pp. 1381-
1384 vol.3.

609

