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ABSTRACT 
 

A statistical complexion-based filtering techniques, named as the Adaptive Statistical Complexion based 
Filtering techniques (ASCF), is presented for removal of impulse noise in degraded color images. In 
distinction with the traditional noise detection techniques where only 1-D numerical information is used for 
noise detection and estimation, an innovative noise detection scheme is proposed based on statistical 
personality and features (i.e., the 2-D information) of the degraded pixel or the pixel region, leading to 
effective and efficient noise detection and estimation outcomes. A progressive restoration mechanism is 
devised using multipass nonlinear operations which adapt to the intensity and the types of the noise. 
widespread experiments conducted using a extensive range of test color images have shown that the ASCF 
is advanced to a number of existing well-known standard techniques, in terms of average image restoration 
performance criteria, including objective measurements, the visual image quality, and the computational 
complexity. 

Keywords: color image restoration, impulse noise detection, progressive filtering.   
1. INTRODUCTION  
 
 Images are often corrupted by impulse noise due to 
a faculty image acquisition device or to channel 
transmission errors, much research has been done 
on removing such noise. The noise objective is to 
suppress the noise while preserving the integrity of 
edges and detail information. To this end, nonlinear 
methods have been found to provide more 
satisfactory results than linear techniques. The most 
frequently used nonlinear method it the median 
filter [Arc86], which is superior to linear filters in 
its ability to suppress impulse noise and preserve 
edges. Nonlinear filtering techniques have been 
extensively researched in the last decade due to 
their effectiveness in restoration of impulse noise 
degraded color images. The median filter is usually 
used to remove impulse noise. Compared with 
linear filters, the median filter is more powerful in 
that a single corrupt or noisy pixel in the filtering 
window will not affect the median value 
extensively. For removal of noise in color images, 
various vector median filters have proven relevant 
and effective. Amongst the early publications, the 
most well known vector filters for color image 
denoising include the vector median filter (VMF), 
the vector directional filter (VDF), and the 
directional distance filter (DDF). While these 
vector filters perform well in suppressing the 

impulse noise, they introduce image distortions 
such as blurring around edges and in detail areas 
which feature high spatial frequency contents and 
variations. Different types of weighted nonlinear 
filtering techniques have been investigated over the 
years to achieve better performance in both noise 
suppression and detail preservation. 

 
Recently, fuzzy filtering techniques have been 
developed, achieving powerful image denoising 
performance. A class of chromatic filters for image 
restoration in the color space was also proposed to 
achieve better chromatic smoothness. Adaptive 
filters have demonstrated their effectiveness in 
image restoration considering various types of 
noise with different distributions and image 
structures. In a sharp contrast with the additive 
noise that contaminates all image pixels, the 
impulse noise destroys only some portion of an 
image and leaves other pixels noise-free. Detection 
based vector filtering techniques such as the 
adaptive vector median filter (AVMF), the adaptive 
vector LUM(lower-upper middle) smoother 
(AVLUM), modified weighted vector median filter 
(MWVM), and the adaptive selection center 
weighted vector direction filter (ACWVDF) were 
specially designed to remove the impulse noise 
from color images. They utilize a series of weighted 
median vector filters to perform binary noise 
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detection and switch between the output of an 
identity filter and that of a weighted median vector 
filter, according to the detection results. A survey 
of nonlinear vector filtering was presented in for 
impulse noise removal from color images. 
 
2. STATISTICAL MODELS OF IMPULSE 

NOISE 
 
Color images may be contaminated by various 
types of noise and impulse noise is the noise model 
frequently used and reported in digital restoration 
literature. Impulse noise corruption often occurs in 
digital image acquisition or transmission process as 
a result of photo-electronic sensor faults or channel 
bit errors. Image transmission noise may be caused 
by various sources, such as car ignition systems, 
industrial machines in the vicinity of the receiver, 
switching transients in power lines, lightning in the 
atmosphere and various unprotected switches. This 
type of transmission noise is often modeled as the 
impulse noise. The impulse noise can also be 
introduced into images during acquisition of the 
images. For example, the impulse noise may be 
introduced during fingerprint acquisition in real-life 
border security check. For more background 
information about the physical model of the 
impulse noise, we refer readers to. The two most 
common impulse noise types are fixed-value 
impulse noise (also known as the salt-and-pepper 
noise) and random-value impulse noise. 
                         
Let C  = {c = (c1,c2)  |1 ≤ c1 ≤ H,1≤ c2 ≤ W} denote 
the set of the pixel coordinates of a color image, 
where  H and W are height and the width of the 
image, respectively  at each pixel coordinate c  €  C 
,a multivariate value vector in the RGB color space, 
X(C) = [xR(c), xG(c), xB(c)]T, is used  to represent 
the RGB(Red ,Green, Blue) pixels values.  
  
Two approaches as reported in the literature are 
used in this paper to model the impulse noise for 
color image restoration. In the first approach, the 
impulse noise corruption of the color images in the 
RGB space is expressed by a multivariate model. 
        

 Y(c) =    s(c),        with probability (1-PI) 
      
      nT(c),       with probability PI            (1)                          
          
and in the second approach the impulse noise 
corruption of the color images in the RGB space is 
expressed by a multivariate model.  

 
 

 Y(c) =    s(c),        with probability (1-P)3 
                      nt(c), with probability 1-(1-P)3                                        

            (2)  
Where S(c) and X(c) represent the original and the 
observed pixel  (vector) values at coordinate c, 
respectively , and the value of nT(c) and nt(c) is 
generated by substituting at least one color 
component of the pixel  S(c) by distinct value ‘d’ in 
both (1) and (2). In (1), PI is the impulse noise ratio; 
a factor r=0.5 is used to simulate the channel 
correlation for each corrupted pixel, namely if at 
least one of the three components of the pixel is 
corrupted by the impulse noise, its remaining noise 
free components will have a 50% probability to be 
corrupted. The second approach (2) is a more 
generalized impulse noise model of color images 
where P = PR = PG = PB is the impulse noise ratio 
for each channel of a corrupted color image, 
assuming that the image is corrupted by the impulse 
noise in a channel independent manner. 
 
In (1) and (2) ,if d, the component value of nt(c) or 
nT(c) equals the maximum or the minimum value of 
the digital image (e.gg,, 255 or 0 for an 8- bit 
channel of the 24- bit color image in the RGB 
space), the impulse noise is referred to as the        
salt  and pepper  impulse . Each pixel of the image 
may be corrupted by either the pepper or salt 
impulse with unequal probabilities. However, if the 
amplitudes of the impulse are distributed randomly 
with, e.gg, the uniform or the Gaussian distribution, 
in the range of [0,255], a more general type of the 
impulse noise is generated and named as the 
random impulse noise. 
The impulse noise can be represented by a joint 
probability distribution describing the spatial 
distribution of the impulses as well as their 
amplitudes. As is typically the case, these two 
quantities are considered to be independent. In this 
paper, an Adaptive Statistical Complexion based 
Filtering techniques (ASCF) with a low 
computational complexity is proposed for 
restoration of digital color images corrupted by the 
impulse noise. This technique uses a set of novel 
noise detection criteria for detection of the 
corrupted pixels, which are based on 2-D geometric 
and dimension features of the noisy pixel or the 
noisy region of images. This is in contrast with the 
traditional noise detection techniques where      
only 1-D statistical information is used for 
estimation of the noise ratio and the noise statistical 
distribution model. Based on the result of the 
estimation, an adaptive  progressive filtering 
operation is employed in combination with 
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optimized dimension and shape of processing 
windows .Computational efficiency of the ASCF is 
also investigated .Denoising performance of the 
ASCF is evaluated to demonstrate noticeable gains 
against that of a number of well-known benchmark 
techniques mentioned above, in terms of standard 
objective measurements perceptual image quality 
and computational complexity, especially for 
suppression of the impulse noise in medium-and 
large-size color images  

3. DIMENSIONAL AND GEOMETRIC 

FEATURES OF IMPULSE NOISE 

A major problem in restoration of color images to 
date is the destruction of detailed image structures 
due to inability of denoising filters to distinguish a 
cluster of corrupted pixels from a cluster of pixels 
presenting fine (detailed) image structures and the 
incorrect removal or modification of pixel 
segments. This section describes a novel technique 
which detects and removes, effectively and 
efficiently, impulses in color images. 
   As defined in, any two pixels at (i1, j1) and 
(i2, j2) are called 4-neighbors, if they have a city 
block distance D4=1 from each other. Similarly, 8-
neighbors are two pixels with a chessboard distance 
D8=1. The city block distance is defined as D4 ((i1, 
j1), (i2,j2)) = | i1 - i2 | + | j1- j2 | and the chessboard 
distance is defined as D8 ( (i1, j1), (i2 ,j2) ) = Max { 
i1-i2 | ,| j1- j2 |}. For example, each color image pixel 
in fig.1(d) is represented by the coordinates  of  its 
position, i.e., a pair of integers (column number, 
row number ).given a pixel ( 3,3 ), for instance, its 
4-neighbors are (2,3),(3,4),(3,2), and (4,3) and its 8-
neighbors are its 4-neighbors plus (2,2),(4,4),(2,4) 
and (4,2). 
 
Careful examination of a variety of color images 
corrupted by the fore mentioned impulse noise 
models reveals that most of uncorrupted pixels or 
pixel regions in a natural color image demonstrate a 
certain degree of smoothness. This means that the 
color intensities of a pixel always change gradually 
in all its 8-neighbors directions (e.g., in a smooth 
area), or change gradually at least in one (edge) 
direction (e.g., in a boundary area). In contrast with 
normal or uncorrupted pixels of images, impulse 
noise corrupted pixels always stand out as an 
isolate spot or a cluster by its very un-harmonious 
colors, shapes and sizes compared with those of its 
neighborhood. Even in the boundary (or edge) area, 
uncorrupted objects in natural color images have 
different types of edges from those corrupted by the 
impulses. 

It is observed that almost all impulses only have 
sharp step edges and, in contrast almost none of the 
uncorrupted objects have this type of edges in its 
vicinity. The borders of the uncorrupted objects still 
have a narrow transitional region of a few pixels, 
even in the gradient direction of a sharp changing 
boundary area. In cases where images corrupted by 
the impulse with the low noise ratio, the sizes of the 
corrupted pixels (i.e.,   corrupted areas) are most 
likely represented by isolated individual pixels or a 
short line with one pixel width. The pixels of the 
line may be adjacent in the diagonal direction .with 
the increase of the noise ratio, corrupted pixel 
regions /clumps with two pixel width in two 
perpendicular directions may occur along with the 
individual impulses and smaller impulse regions as 
shown in images corrupted with the low impulse 
ratio. The shapes of the noise regions may be 
isolated point, a short thin line, a cross of two short 
thin lines or other small round shaped blocks. In 
other words, with the increase of the noise ratio, the 
noise may appear isolated or clustered with more 
different sizes and shapes. 
  
According to the above observations and analysis 
of color, shapes and sizes of impulse noise 
corrupted pixels /regions, and the types of edges 
which form the borders of the noise regions, a 
novel impulse noise detection method is devised 
here based on 2 –D geometric features of the 
impulses, instead of the 1-D rank ordered statistical 
information used by other well know filtering 
techniques, to determine if each pixel in a color 
image is corrupted or cleaned. One of the geometric 
properties of the impulse noise is the edge feature 
of its boundary. An edge can be defined as a local 
discontinuity in color component or illumination 
intensity function and the edge orientation is 
defined as edges of an octagonally shaped object 
whose amplitude is higher or lower than its 
background. Therefore, the criteria for identifying 
the edge feature around the pixel are based on the 
two types of derivatives, which are approximated 
by pixel differences in digital color images.  
 
Given that Y(c) = [ yR(c), yG(c), yB(c) ]T is the 
vector containing color components functions of a 
color image, the two special types of partial 
derivatives are denoted as ∂Y(c)/∂ca and ∂Y(c)/∂cd  
respectively. ∂Y(c)/∂ca at C= (i, j) is approximated 
by Ga, the difference between the pixel and its 4-
neighbors for each component of the color pixel, 
and defined as follows: 
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                    S1

a (n1
a)     = y [i.j]-y [i-n1

a ,j] 
                    S2

a (n2
a)   = y [i,j]-y[i, j-n2

a] 
                    S3

a (n3
a)    = y [i,j]-y[i+n3

a ,j] 
                    S4 

a(n4
a )   = y [i,j]-y[i, j+n4

a]                                           
           [3] 
             
Where na  = [n1

a,n2
a,n3

a,n4
a]T, na

k  > 0   and the 
default value of  nak     is 1,for  1≤k≤4, and subscript  
“T” represents the transpose operation. 
 When a derivative is only considered in the 
diagonal direction, ∂y(c)/∂cd is approximated by Gd, 
the difference between the pixel and its other 8-
neighbors, for each component of the color 
component, and defined as follows: 
 
 
                G1

d(n1
d)  = y[ i,j]-y[ i-n1

d, j-n1
d] 

                G2
d(n2

d)   =  y[ i,j]-y[ i+n2
d, j-n2

d] 
                G3

d(n3
d)   =  y[ i,j]-y[ i+n3

d, j+n3
d]       

  G4
d(n4

d)   =  y[ i,j]-y[ i-n4
d, j+n4

d]                          
      [4] 
 

Where nd = [n1
d, n2

d, n3
d, n4

d]T,  nk
d > 0  and the 

default value of  nd
k  is 1 , for 1≤k≤4.  The two 

special derivatives, Ga and Gd, will be used to 
measure the edge feature (sharpness) and other 
geometric properties to determine whether center 
pixel at c = (i,j) is corrupted or not in the ASCF 
technique. 

4. PRINCIPLE OF ASCF TECHNIQUE  

In detecting and removing impulse noise a filter 
may make three main types of mistakes. Type I 
error (miss) occurs when there is a corrupted pixel 
which the filter does not detect. Type II error (false 
alarm) happens when the filter detects an impulse 
noise pixel which is actually clean. When the filter 
removes an impulse noise and replaces it with a 
value determined by a certain restoration strategy, 
type III error (over – or under-correcting error) is 
defined as the difference between the resultant 
value after the restoration process and true pixel 
value as the noise -free pixel was.Different types of 
the so-called “switching” filters and fuzzy filtering 
techniques have been developed over the years, 
achieving good performance in both noise 
suppression and detail preservation. Similar to the 
other well-known benchmark techniques including 
the so-called “switching” filters. And fuzzy-based 
filtering techniques. The ASCF technique described 
in this section consists of two components, i.e., 
impulse detection and impulse removal. The novel 
criteria used by the ASCF for noisy pixel detection 

are based on a combination of the 2-D edge, 
geometric and size features of the noisy 
pixel/region in the images. They depart from 
traditional noise detection techniques used by the 
other existing filters, which only use some 
properties of the edge of a noisy pixel are 1-D rank 
ordered statistical information around the noisy 
pixel. For example, multiple threshold framework 
and corruption detectors are used in based on 
statistical information about the neighborhood of 
each local pixel to locate impulse noise and to 
preserve clean pixels. Time-consuming multiple 
reference filtering and complex parameter training 
process highly limit the usage of these filters in 
real-time applications. The new criteria presented in 
this paper also depart from recently developed 
fuzzy impulse noise filtering techniques. For 
example, the fuzzy noise detection method is 
mainly based on calculation of fuzzy gradient 
values and fuzzy reasoning, and the fuzzy 
membership function representing the impulse 
noise is a simplification of the obtained noise 
histogram. 
 
5. A TWO DIMENSIONAL IMPULSE NOISE 

DETECTION 
A key component of the AGFF technique is a novel 
impulse detection scheme based on the 2-D 
geometric information of the corrupted pixels. First, 
we define the edge feature –identification threshold, 
Te, which represents the value of a derivative to 
distinguish the sharp step edges from other types of 
edges [3]. Since very short thin lines usually form 
impulse noise pixels, the length of a line is also 
used as a feature to distinguish a short noise line 
from a fine line in color images. The length 
threshold, Tl, may be defined accordingly to the 
noise ratio.  
       Second, in terms of the pixel coordinates of a 
color image, C, a set of corrupted pixels is defined 
as 
     S1 ={ c|(( Sa < (-Te ))^ (Sa <(=Te ))) 
     V((Sa >Te )^ (Sa >Te  )), n

d
k  €  Nd ,  nk

a  =1        
           [5] 
     For 1≤k≤4, Nd = {1, 2, 3… Tm} 
      Tm = (Tl +1)/2}    
Where Tm is used to define corrupted pixel-sizes in 
and its default value is 2. According to (5), IF the 
two partial derivatives  Sa  and Sd  of a pixel have 
the same sign while their magnitude are greater 
than a preset threshold , when  nk

a  is 1 and nk
d  is 1 

or 2 or 3, or (its components may have different  
values), THEN the pixel belongs to . Set includes 
individual impulse pixels, slant noise lines with 
one-pixel width and the pixels of the lines only 
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adjacent to each other in diagonal direction within 
the defined length of Tl. Third, a set of corrupted 
pixels, which include individual impulse pixels, 
straight noise lines with one-pixel width the pixels 
of the lines being only   4-neighbors to each other 
within the defined length of, is defined as 
              
              S2 ={ c|(( Sa< (-Te ))^ (Sd <(=Te ))) 
          V ((Ga >Te) ^ (Gd >Te)), n

a
k € Na,,   nk

d  =1    
                         [6] 
          For 1≤k≤4, Na = {1, 2, 3… Tm} 
          Tm = (Tl +1)/2}   

 
Where Tm is used to define corrupted pixel-sizes in 
S1 and its default value is 2. According to (6) , IF 
the two partial derivatives Sa   and  Sd   of a pixel 
have the same sign while their magnitudes are 
greater than a preset  Threshold  Te,, when nk

d  is 1 
and   nk

a    is 1 or 2 or 3  Tm(its k components may 
have different values), then the pixel belongs to S2.  
 Next, a set of corrupted pixels is defined as the S3, 
which include noisy pixels/regions within 3-pixel 
width in any region except noisy pixels already in 
S1 and/or S2, i.e., c € S1US2. 
 
        If S ={ c|(( Sa < (-Te ))^ (Sd <(=Te ))) 
          V((Sa >Te )^ (Sa >Te  )), ndk  €  Nd ,  nk

a  =L}           
               [7] 
     
Where 1≤k≤ 4, L is 2 or 3, and the default value for 
nd and na is 2. Thus, S3 can be represented as    
         S3 = S - (S1US2)           
                         [8]                                 
Where Tm=2 for S1 and S2 in (8). According to (8), 
IF the two partial derivatives Sa and Sd of a pixel 
have the same sign while their magnitudes are 
greater than a preset threshold Te, when  nd 

k  and  
na 

k    are 2 or 3 and the pixel is not in S1 or S2, 
THEN the pixel belongs to S3. 
Finally, according to observation and analysis of a 
variety of natural images corrupted with the 
impulse noise, a protrusive point in a border area 
with high possibility of being a corrupted pixel is 
defined as: 
           S4 = {c| (( Sa

k
 < (-Te ))^ (Sd

v
 <(=Te ))) 

                    V ((\Sak >Te) ^ (Sa
k >Te)), 

                     ndk = na
k  =nd

v  =,  nv
a  =1, 

                    V K€ {y|y € N n ̂  y≠ e}, e € Nn, 

                    Nn = {1, 2, 3, 4}, (v=k) 
                    ^ (v € {2, 3} V v € {3, 4} V v € {4, 1}         
     
                        [9] 
                    Vv € {1, 2})}.                                                       
                        

 According to (9), IF the two partial derivatives Gd  
and  G d  pixel have the same sign while their 
magnitudes are greater than a preset threshold  T e, 
with the partial derivatives indexed by k containing 
only three out of the four distance settings, and the 
partial derivatives indexed by being either {2, 3} or 
{3, 4} or{4, 1} or {1, 2} and equal to  k, when 
nd

k,n
a
k  ,n

d
v   and  nv

a  , , , and are 1, THEN the pixel 
belongs to S 4 . Since an impulse noise ratio  p 1 < , 
U1=1

n  S i  c C 
 ,  where n=4 , in the current design, T 

e in (5)  and (9) may be set at different values. 
 
The strategy of the progressive restoration for the 
ASCF is, first, to restore   corrupted individual 
pixels or noise regions of small size. If it made 
either Type II or Type III errors, it should not 
introduce any new impulse noise regions bigger 
than the existing ones. Then, further operations are 
carried out around large noise corrupted regions to 
restore areas of the images associated with noise 
regions of the considerable size reability In order to    
take the advantage of the median filter and to avoid 
the draw backs. (I.e causing a number of the 
aircrafts for the uncorrupted pixels)[9] a detection 
scheme is   described  in this section for  use before 
the median filtering for the restoration, as a result, 
the proposed restoration method based on the 
restricted median can keep  the image unchanged 
when the filter processing window moves across 
the uncorrupted image details. 
  
Clearly, it may become expensive to perform a sort 
on pixels within a large rectangular window. If the 
width of processing window is larger than three, a 
modified median filter can be applied alternatively 
in the ASCF technique. The modified median will 
be based in the part of the pixels which from the out 
– line of the window or the noise- free pixels within 
the processing window (3), since part of the pixels 
inside the window may have been corrupted. The 
noisy central pixel and its corrupted eight 
neighborhood pixels, if detected, will be excluded 
from the set for the median filtering. The modified 
median filter increases the reliability of the 
restoration and reduces the computational cost, 
especially for removing impulses of high noise 
ratio. If the channel correlation, factor r, for each 
corrupted pixel as defined in (1), approaches I, the 
modified vector filtering is recommended  
 
The number of fuzzy membership functions 
associated with each variable depends on the 
denoising operations and the sum of the fuzzy 
membership values where the functions overlap is 
recommended to be one or less than one. Because 
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the AGFF can tolerate the estimation deviation of 
the noise ratios, the simple trapezoidal shape is 
chosen as the functions in the fuzzification process. 
The maximum method is used in defuzzification. 
The noise type of the salt-and-pepper can be 
determined by the values of s1 or s2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Block Diagram Of ASCF 
 
A design principle for the following operations, 
which are adapted to different noise ratios and 
types, is to use as small a size of the window and as 
less a number of the passes as possible, as long as 
the impulse noise can be removed (to ensure 
preserving image details as much as possible). The 
number of passes was determined for removal of a 
noise region based on the worst case scenario 
within the estimated maximal size of the noise 
region. The operations designed for removing 
impulses from different corrupted pixel sets in 
natural digital color images, are defined as follows. 
 
Operation I  Consists of a two-pass filtering to 
restore color images with a low noise ratio. In the 
first pass, it restores impulse corrupted pixels in S2. 
In the second pass, it restores impulse corrupted 
pixels in S1 . 
 
Operation II  Consists of Operation I and 
Operator D. The Operator D is designed to remove 
corrupted pixels in S4. Operation II is designed to 

restore color images with a medium or high noise 
ratio. 
 
Operation III Consists of two passes of Operation 
I, Operator D and one-pass filtering to restore 
pixels in S3. First, one-pass filtering of pixels in S3 
is applied, which is followed by Operation I. The 
second pass includes Operator D which is followed 
by another Operation I. Operation III is designed to 
restore corrupted images with a high noise ratio. 
 
Operation IV   Consists of two passes of Operation 
III and one-pass filtering of pixels in S3 to restore 
color images with impulse of very high noise ratio. 
It applies Operation III and then restores impulse 
corrupted pixels in S3 where for in (7). Finally, it 
repeats Operation  
 
6. RESULTS OF THE IMPULSE NOISE 

FILTER. 
 
Window sizes of 3×3, 5×5 and 7×7 are 
experimented. A plot between PSNR and 
percentage of impulse noise for this window size is 
drawn in Figure 3. The best results for higher 
percentages of the impulse noise, a larger widow 
seems to be more appropriate but this filter is less 
suitable for a high level of noise as there is a loss of 
image details. As the window size of 3×3 produces 
better results up to 20% impulse noise, this filter is 
meant to deal with low and middle percentages of 
the impulse noise. This level of noise is usually 
found in many practical applications. The 
performance of this filter is illustrated through a set 
of color images with the impulse noise of densities 
10%, 15and 20%. 
 
A comparative analysis of the proposed techniques 
is carried out with respect to two recent approaches 
in the literature, namely, SMDE method proposed 
by Pei-Eng Ng et al. [19] and Luo’s EDPA [20]. A 
sample set of the original images used in the 
experimentation are displayed in the values of MSE 
and PSNR enumerated in Table 1 for different 
experiments indicate that the proposed method is 
able to reduce more noise from the images while 
preserving almost all image details. The results are 
better than those reported in the literature as 
demonstrated by a higher value of PSNR in most of 
the images analyses. It can also be observed 
visually that the proposed filters are quite effective 
in noise reduction. The results of denoising 
obtained by a few existing methods in the literature 
are shown in Figure 2 including the results 
achieved by the proposed impulse filter for 

Filtered Image 

Average Fuzzy 

Impulse 
detection based 

Fuzzy 
peer 

group 

Noisy 
Image 

Filtering Stage 

Impulse 
Detection 

ASCF 



Journal of Theoretical and Applied Information Technology 
 31st  January 2014. Vol. 59 No.3 

© 2005 - 2014 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
539 

 

comparative purposes. while input to each filter 
have the same level of noise (a) Lena Image with 
Impulse noise of density 15%, (b) Lena with 
FNRC, (c) Lena with NRFF, (d) Lena with 
Proposed, (e) Fish Image with Impulse noise of 
density 15%, (f) Fish with FNRC, (g) Fish with 
NRFF, (h) Fish with Proposed, (i) Bird Image with 
Impulse noise of density 15%, (j) Bird with FNRC, 
(k) Bird with NRFF, and (l) Bird with Proposed 
method. A plot (See Figure 4) between PSNR and 
percentage of Impulse noise for different methods 
proves this point for the Lena image 
                                                   

      

(a)                                   (b)                       

      

               (c)                                      (d) 

      

               (e)                                      (f) 

     

              (g)                                        (h) 

        

(i)                               (j) 

        

                    (k)                                   (l) 

Figure 2: Denoised Images obtained with different 
Filters 

 

Figure 3: PSNR vs. Window sizes for Impulse noise 

 

Figure 4: A comparative analysis of impulse noise 
reduction 
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7.  CONCLUSION  
 
A statistical complexion-based filtering technique 
has been proposed for removing impulse noise from 
corrupted digital color images. The special 
contribution of the new filtering technique is its 
novel impulse detection method, which uses 2-D 
geometric features (shape and edge type) and the 
size of the impulse corrupted pixel/pixel region, 
instead of 1-D statistical information, to identify the 
impulse in an effective and efficient manner. The 
other novelty is its progressive adaptive restoration 
mechanism, where a carefully selected set of sizes 
and shapes of processing windows are employed, 
adapting to noise ratio and type to recover the 
corrupted pixels step by step through a reliable 
multipass process of low computational complexity 
This technique also provides a very reliable impulse 
noise type and ratio discrimination method. 
Through extensive experiment conducted using a 
wide range of natural color images, the proposed 
filtering technique has demonstrated superior 
performance to that of well-known benchmark 
techniques, in terms of standard objective 
measurements, visual image quality and the 
computational complexity, in removing the salt-
and-pepper and the random impulse noise which 
are commonly considered in color image 
restoration. The technique is very useful for online 
applications to suppress impulse noise especially 
for medium and large sized color images. It can be 
further integrated with other benchmark techniques 
to suppress a mixed Gaussian and impulse noise 
contamination for color images to improve their 
performance 
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Table 1: Comparison Of Performance For Impulse Noise 
 

 
 

Image Noisy SMDE EDPA Proposed 

 MSE PSNR MSE PSNR MSE PSNR MSE PSNR 

Lena  

10% 11.40 37.20 5.18 40.99 1.85 45.46 1.47 47.46 
15% 19.05 34.33 5.94 40.39 2.85 43.58 2.24 45.63 
20% 25.28 34.10 7.27 39.52 3.89 42.23 3.12 44.19 

Fish  

10% 12.78 37.06 10.04 38.11 4.23 41.87 4.02 43.09 

15% 19.12 35.32 10.85 36.78 6.53 40.33 5.53 40.70 

20% 25.61 34.05 11.66 37.46 7.84 39.19 7.04 39.66 

Bird  

10% 12.83 37.05 9.39 38.40 3.28 42.97 2.71 44.80 
15% 19.45 35.24 10.79 37.80 4.99 41.15 4.26 42.84 
20% 25.80 34.02 12.41 37.19 7.11 39.61 5.99 40.36 


