
Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

243

A NOVEL APPROACH TO GENERATE TEST CASES FOR
COMPOSITION & SELECTION OF WEB SERVICES BASED

ON MUTATION TESTING

1ASHOK KUMAR. P.S , 2 KAARTHICK .B , 3GOPAL KRISHNA. C
1 Assistant Professor, Dept of Computer science & Engineering, YDIT, Bangalore-566078, INDIA

2 Professor & Head, Department of E & C Engineering, VTU, Coimbatore-641047, INDIA
3 Assistant Professor, Dept of Computer science & Engineering, AIT, Chikmagaluru-577101, INDIA

E.mail: ashokps2000@yahoo.com , bk@kaarthick.in , nithingopal@rediffmail.com

ABSTRACT

Now a day’s Web Service has become a significant part of the web. The importance of Web Services is to
support interoperable and Application – to – Application interaction over a network with proper URI, so
that Web Services provide high value to online business transactions. Testing (Verification & Validation) is
a critical activity in software product design. Rigorous software testing is not possible so different software
testing techniques are invoked before releasing the product. Based on Prim’s algorithm we created all
possible test cases from directed weighted graph. Mutation testing is a structural testing method; it generates
software tests and evaluating the quality of software testing by fault insertion in original code. A case study
has been presented here in order to create the efficacy of our test approach in mutation analysis.

Keywords: Mutants, web service, testing, URI, SRS

1. INTRODUCTION

 Web service is a modest and self-possessed
modular application. Current trends in performing
business-to-business transactions and enterprise
application integration (EAI) have been extended
to the use of web services. Web services facilitate
the incorporation of different business processes
[1]. Software testing is a critical activity in the
software design and development life cycle, where
testing is a collection of quality and creative test
cases. Test cases are directly mapped through
workflow of a system. Test cases are derived from
SRS (system requirement specification) of a system
accepted by the user. For reusability of a system,
patterns are most important, based on Patterns
tester will create test cases. Since exhaustive
testing is usually not traceable, test strategies are
faced with a problematic task that is how to detect
a minimum set of test cases that is sufficiently
effective for revealing potential faults in a
program. If the system design and Architecture is
clear and complete, then test cases are created
before the development cycle has been started and
ready to test the system based on test cases. If the
test cases are created earlier than the development

phase, then the development team will find
ambiguities (or unclearness) in the SRS and design
documents [2][4].

In testing process a mutation is a small change in
a program; such small changes are intended to
model low level defects that arise in the process of
coding systems. The mutation testing is a fault
based testing strategy that measures the quality of
testing by examine whether the test set, test input
data used in testing can reveal certain type of
faults, i.e. we use the structure of the code to guide
the test process and estimating the number of faults
present in systems under test [5].

Mutation testing methods generates simple
syntactic deviations, mutants of the original
program representing typical programming errors
such as a mutation methods replaces an arithmetic
operator like ‘+’ with -, *, / which is intended to
represent the programmer using a wrong operator.

In our agile methodology, test cases are created
just after completion of the design phase, so that it
eliminates the ambiguity in the design
specification. This methodology is totally based on
UML. As the name indicates that Unified Modeling
Language (UML) has global accepted a set of

Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

notations for modeling and design object-oriented
systems (OOMD). It has various set of diagrams
for representing the dynamic behavior of objects in
a system.

Main intension of our work is to creating test

cases based on UML collaboration diagram
generated by the design specification of the system.
UML collaboration diagram represents the
interaction between objects with a sequence of
operation [7][8] . Section 2 describes the related
work & description of Testing. Section 3 defines
the composition of web services approaches.
Section 4 states the recommended methodology
and usage of our system. Section 5 demonstrates
the Case study – Bill payment system in Roopa’s
mall. Section 6 deals with design and
implementation of Mutation testing in web services
application, where Tests are created and measured
based on the basis of their fault insertion
techniques. Section 7 explain the conclusion
briefly.

2. RELATED WORK

 In web services research arena, the mutation
testing has a rich history and it focuses on three
kinds of activities in testing process, like

1) Defining mutation operators,
2) Experiment,
3) Development tools.

The first one involves defining new mutation
operators for different languages and types of
testing.

 Mutation testing is a fault based technique, it
conforming to different programming languages or
types of the applications. It is an efficient method
to assess the quality of a given test suite, also
limitations do exist. The most common problems
are represented by the increased computation time,
necessary to derive the entire mutation testing
process, and the equivalent mutants problem [5].

 The second research activity performing the

experiment with mutations. An empirical study in
mutation testing has been allowed the testing
process is creative and competent manner.
Mutation testing approach is more powerful than
different testing approaches, like statement
coverage, branch coverage, path testing, etc, but
Mutation testing is more effective in finding faults
than data flow [10].

With respect to web services research, the third
kind of activity is mutation development tools,
Jester, Jumble, MuJava, JavaMut are dedicated
java mutation development tools.
 In Roop’s Mall bill payment system, the web
services use ontology to enrich the linking between
resources and Object-ontology mapping. Here
some of the approaches are developed with respect
to my research projects, which can be considered
as a motivation and inspiration of my recent
research work.

3. COMPOSITION APPROACH IN WEB

SERVICES

 In SOA, the composition of web services can

perform all potential operations within an
information system. The composition operations
facilitate the application into very complex
descriptions of web service capabilities within an
application. The service discovery mechanism
depends on service descriptions. Service discovery
is normally limited to matching of service inputs
and outputs [2].

 The implication of Composition of Web service

is to find effective all possible activities in the web
services application. Composition of web service is
totally based on services that are considering on
available input data, i.e. these services are
specified by the user query. In the initial state of
composition of web services we do not know
which services to be considered or which are not
required. Actually we realize all available services
to be enabled from User end or we mark usable as
input data for a service. The significance of
serviceable activity is to specify all serviceable
activities and build the composition of services
available from input data. The implication of
finding unserviceable activity is to restrict the set
of services which are considered during the
composition.

 For Instance, to Order a ‘LENOVO Laptop’

through online web services can be represented in
mathematical form as,
A web method is an Order set of activity; this can
be represented as grammar style notations,

Let a1, a2, a3……… an be the set of input
data
Let b1, b2, b3 ……… bn be the set of output
data,

Composition of web methods can be defined as,

Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

 P = (A Ụ B) = > ({a1, a2, ..an } Ụ { b1, b2, ..bn})
assume

a’s means input,

b’s means output are the subset of K,
for homogeneous relation can be written as P(K)
Order_ LENOVO Laptop can be written as –

 LENOVO Laptop =
 {av, spec, pr, dd, dp} → Order_Laptop

LENOVO Laptop low-end = {av, spec, Pr, dd, dp}

LENOVO Laptop I5 = {av, spec, Pr, dd, dp,
ospec}

Attribute list resulting entity of the low-end and
high-end LENOVO Laptop can be written as,

Table 1: Entity Attribute List

Symbol Meaning
av available
spec specification
Pr price
dd delivery date
dp delivery place
ospec Other specification
dff difference

To order an LENOVO Laptop can be defined as,
 Laptop order = dff {Laptop low-end , Laptop I5 }

Different operations in composition of web
services are,

1. Selection or Event composition
2. Sequential composition

In theory a Union describes the selection or choice
of two or more web methods or simple web
services,
 i.e.
Laptop order = dff {Laptop low-end , Laptop I5 }

The sequential composition of web services is a
two ordered pair values of web services, like ws1,
ws2
Where, ws1 = (a, b) and ws2 = (x, y)
Sequential composition of web services can be
defined as,

{(a, b), (x, y)} = {ws1, ws2} then,

{ws1, ws2} = dff

Composition of two relations A and X can be
defined as,

 {ws1, ws2} = {A: B} then,
{A: B} can be written as,

{A: B} = dff {a:b | a A,

 x X, (a:x) are defined }

i.e. size of output set ‘a‘ as the same size of input
set ‘x‘

4. RECOMMENDED SYSTEM
METHODOLOGY

Steps involved in this proposed methodologies are,
1. Study the system and deduce that SRS is

accepted by the user?
2. Design and develop collaboration diagram using

Smart Draw software and save the file name as
XYZ.srd extension

3. Transfer the collaboration diagram into graph.
4. A graph is a collection of vertices or nodes and

edges, where
i. Nodes are represented by objects
ii. Edges are represented by information

5. Information weights are represented as sequence
of number between two nodes.

6. Using Prim’s algorithm to find the minimum
weighted node.

7. Finding the Test sequences based on node
traversal in the graph.

Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

246

Figure1: Control Flow Of Proposed System
Methodology

Figure 1 represents the Control flow of
recommended System methodology. The testing
process of our case study Bill payment system in
Roopa’s mall, we introduced Mutation Testing.
Once we get Mutation score we transfer that report
into test team and find the implications with SRS
and test result.

5. EXPERIMENTAL INFORMATION

With respect to Customer view –

• Our product is a final product for Bill
payment system in Roopa’s Mall itself, but
it is not developed for end users or other
customers.

• Our product is totally developed for select
& composing of online items or product
billing system in mall.

Below Algorithm is specifying to find the
minimum weighted node in a collaboration
diagram used in our case study – Bill Payment
System in Roopa’s mall.

Prim’s Algorithm to find minimum weighted node,

input: G, V, F
output: find minimum weighted node

for (int i=0 ; i= lvl ; i – –)

destination [i] = ∞
edges [i] = null;

 while (F is a vertex)
for(each vertices v=v1, v2)

 if(length (v1, v2) < distance [v2])
 distance [v2] = length (v1 , v2)
 edges [v2] = v1

 end if
 end for

 end while
 end for

5.1 Case Study: Bill Payment System in
 Roopa’s Mall

In Roopa’s mall bill payment system, cashier
gets the cash from customer and returns the balance
and receipt or bill to customer. A bill should
contain whole information about the products
purchased by customer with price on unit or item
wise. The collaboration diagram of this system
represents the entire functions of this case study.
The system has major live components like: GUI,
Trade Bill, Bill verifier, Cash Trade, Cash Handler
and Bill/ receipt. The entire Roopa’s Mall bill
payment system has been represented in the form
of a collaboration diagram.

GUI

Bill
Verifier

Bill /
receipt1

3
6

10 9

8

72

4

5

Bill
Trade

Cash
Trade

Cash
Handler

1. Cash info
2. Accept cash
3. Currency verifier
4. Cash Trading
5. Cash verifier
6. Confirm amount
7. Check balance
8. balance information
9. Print bill
10. Issue bill & product info

Figure 2: Collaboration Diagram Of
Roopa’s Mall Bill Payment System

Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

247

 When customer expects a bill in the bill
counter, cashier will edit all the merchandised
products through GUI. The dash board of bill GUI
will automatically generate the product price with
respect to the number of units, that will take care of
bill transact. Bill verifier will verify the bill
information with price details.

 GUI will provide full information about the
mall, even though what are the facilities, offer,
discounts and different products are available
within the mall as well as the unit price of the
product and merchandised product information.
The cash transact gives cash confirmation
acknowledgement and balance information to bill
transact. Bill transact sends an acknowledgement to
GUI. Finally bill transact will issues a bill to
customer.

5.1.1 Collaboration diagram to weighted

 graph

 After design and develop the collaboration
diagram using Smart Draw software and save the
file as XYZ.srd, then pass this file as input to the
parser [11]. The parser collects all the information
about objects and statements, which are
represented as nodes and edges in a directed graph
with weights shown in figure 3.

Figure 3: Conversion Of Function In Collaboration

Diagram To Directed Graph

 A directed graph is a non-linear data
structure, where each and every edge are directed,
which can be represented in mathematically as,

The Mapping of objects in collaboration model to
its corresponding auxiliary node in a directed graph
can be represents in Table 2.

Table 2: Mapping Info Table Of Objects

Objects in
collaboration model

auxiliary
node

GUI G
Bill Trade BT
Bill Verifier BV
Cash Trade CT
Cash Handler CH
Bill B

 The mapping information of contents in
collaboration model and weights with respect to
an edge in a directed graph is represented in Table
3.

Table 3: Mapping Information Weight And Contents

contents in
collaboration model

Weights

Accept cash 2
balance information 8
Cash info 1
Cash trading 4
Cash verifier 5
Check balance 7
Confirm amount 6
Currency verifier 3
Print bill 9
Issue bill 10

Figure 3 represents the mapping information for
weight and contents in collaboration diagram graph
for bill payment system.

Figure 4: Mapping Information For Weight And

Contents Graph

 In weighted directed graph spanning tree is
useful for reducing the cost of communication. By
using Prim’s algorithm we design and generated
the mapping of spanning tree with respect to all
valid, invalid and terminated test sequences of
graph are represented in table 4.

Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

248

Table 4: Test Case Sequence Of Bill Payment System

test sequence of
graph

Spanning
tree

<G-1-BT> valid
<BT-2-BV> valid
<BV-3-CT> valid
<CT-4-CH> valid
<CH-5-CT> valid
<CT-6-BV> valid
<BV-7-BT> valid
<BT-8-B> valid
<BT-9-B> invalid
<BT-10-G> invalid
<G-1-BT-2-BV-7-
8-B-9-BT-10-G>

terminated

6. MUTATION TESTING IN WEB

SERVICES APPLICATION

Mutation testing is a white-box fault-based
technique, it measures the effectiveness of test set
for fault localization, where test set should kill all
the mutants, i.e. mutation is a low-level defect
creation technique. The main importance of
mutation testing is to measure the effectiveness of
test sets in discovering defects [13].

6.1 Fault Insertion

Test cases are created using Prim’s algorithm
for the testing process of Bill payment system.
Mutations will define good test sets are comprised
in test process. In the concept of Fault insertion
approach, we introduce a `defect’ or ‘bug' by
altering a program and observing that, if our
`mutated program' acts different to the original
program with respect to any element of the test set
[10].

For the mutation analysis process table 3

represents the parameters list of collaboration
diagram. For bill payment system we created 90
mutants are shown in table 6 and different
attributes and their descriptions of a bill payment
systems are represented in table 6.

Table 5: Attributes And Their Meaning

attributes meaning
method- name Change the name of

the method
data- name Change the name of

the method
data- value Change the name of

the method
Parameter-
name

Change the name
Parameter

Parameter-
value

Change the value of
the Parameter

class-name Change the name of
the class

sub-class-
name

Change the name of
the sub-class

relation-
operator

alter the relational
operators

Object
reference

Call with Cross
object reference

If a test set is good, it kills all mutants i.e.

alter the operators in program [5].

For example, in a mutated program, if I found
ADD sign (+) that can be replaced by any one of
operators like, (- ,*, /).

Figure 5: Equivalent Mutant

Figure 5 represents an example, of an Arithmetic
Operator Replacement (AOR) mutation. It is
important to detect and avoid equivalent mutants
because it causes low mutation score, and mutants
cannot be killed.
Table 6: Mutants Summary Of The Bill Payment System

Test parameters
Faults
injected

Faults
found

method- name 15 15
data- name 8 8
data- value 10 8
Parameter-name 15 15
Parameter-value 12 8
class-name 4 4
sub-class-name 13 13
relation-operator 8 6
Object reference 5 4

Results 90 81

Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

249

6.1.1 Mutation test score
 A mutation score is a quantitative

measurement of the quality of the test set. Mutation
score can be defined as a percentage in the ratio of
the number of killed mutants to the total number of
non-equivalent mutants. The total number of non-
equivalent mutants results from the difference
between the total number of mutants and the
number of equivalent mutants. Equivalent mutants
always produce the same output as the original
program, so they cannot be killed.
Mutant/Mutation score can be also computed for
the entire Test set -

Mutation score M can be defined as,

Figure 6 represents the graph of mutation analysis
about Faults Injected and Faults Found for bill
payment system.

Figure 6: Mutation Testing Graph

7. CONCLUSION
 Our agile methodology is well suited for

generating sufficient test cases for UML
Collaboration diagram. In our case study Roopa’s
Mall Bill payment system, we tested application by
traversing a directed graph through prim’s
algorithm. Mutation testing is a complicated and
computationally expensive testing methodology.
Mutation testing is not a replacement for code
coverage, but it is a complementary approach, i.e.
it is useful in detecting those pieces of the code,

when faults are injected, but it is not actually full
testing approach. For mutation testing we have
clear understanding of system requirement
specification and different features of Java. From
our experiment we concluded that our methodology
is useful to detect errors at an early stage in the
development life cycle.

REFRENCES:

[1] J. D. McGregor, and D. A. Sykes, “A Practical

Guide to Testing Object-Oriented Software “,
Addison Wesley, NJ, 2001.

[2] Binder, R. V. Testing Object-Oriented
Systems: Models, Patterns, and Tools.
Addison-Wesley, 2000.

[3] R.V.Binder, Testing object-oriented software:
a survey. Software Testing Verification and
Reliability, 6(3/4): 125-252, 1996.

[4] UML Specification, http://www.omg.org/
technology/documents/formal/uml.htm.

[5] Booch, J. Rumbaugh and I. Jacobson:
“Unified Modeling Language User Guide”.
Addition-Wesley, 1999.

[6] K. BARCLAY, J.SAVAGE, Object-Oriented
Design with UML and Java, Elsevier, 2004,

[7] S. K. Swain. UML-based Testing of Software
System, Technical Report, KIIT, 2005.

[8] Prasanna M, Chandran K R, Thiruvenkadam
K. Automatic Test Case Generation for UML
Collaboration Diagrams. IETE J Res
2011;57:77-81

[9] Puneet Patel1 and Nitin N. Patil2, Test case
formation using UML activity diagram ,
World Journal of Science and Technology
2012, 2(3):pp. 57-62

[10] J. Hartmann, M. Vieira, H. Foster, and A.
Ruder., “A UMLbased approach to system
testing. Innovations in Systems and Software
Engineering”, 1(1):12-24, April 2005.

[11] Debasish Kundu and Debasis Samanta., “A
Novel Approach to Generate Test Cases from
UML Activity Diagrams.”, Journal of Object
Technology Vol. 8, No. 3, May/June 2009

[12] L. Briand and Y. Labiche., “A UML-based
approach to system testing.” In 4th
International Conference on The Unified
Modeling Language, Modeling Languages,
Concepts, and Tools, pp. 194-208, 2001.

