
Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

385

HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO
SOLVE CONSTRAINED OPTIMIZATION PROBLEMS

NABEEL AL-MILLI
Financial and Business Administration and Computer Science Department

Zarqa University College
Al-Balqa' Applied University

E-mail: Nabeel.almilli@bau.edu.jo

ABSTRACT

In this paper, a new hybrid optimization algorithm based Genetic Algorithms (GAs) is proposed to solve
constrained optimization engineering problems. A hybrid Genetic Algorithms (GA) and great deluge
algorithm are used to solve non-linear constrained optimization problems. The algorithm works on
improving the quality of the search speed of GAs by locating infeasible solutions (i.e. chromosomes) and
use great deluge to return these solutions to the feasible domain of search; thus have a better guided GA
search. This hybridization algorithm prevents GAs from being trapped at local minima via premature
convergence. The simulation results demonstrate a good performance of the proposed approach in solving
mechanical engineering systems.

Keywords: Genetic Algorithm, Great deluge, Welded Beam Design, Pressure Vessel

1. INTRODUCTION

Many real world problems in industrial
engineering optimization are too complex such that
it can be formulated as Nonlinear Programming
(NLPs) problems. Moreover, no known fast
algorithm is able to solve these problems since the
objective functions are complicated and it has
several constraint structures. Constrained
optimization problems have been studied widely in
the operations research and artificial intelligence
literature. Operations research formulations deals
with constraints as quantitative formulas, as a
result, the solvers optimize the objective functions
values subject to constraints.

On the other hand, artificial intelligence deals
with inference-based algorithms with symbolic
constraints. There have been huge research efforts
on developing and testing new algorithms in the
last decade to solve constrained optimization
problems in artificial intelligence field, such as
genetic algorithm, tabu search, simulating
annealing . . . etc. Moreover, a hybridized algorithm
is which inherits the advantages of two or more
algorithms in one algorithm attract researchers to
develop fast and robust algorithms. For instance, it
is not clear there is an exact method which can
solve nonlinear optimization problems. An
exceptional survey about constrained optimization
can be found in [3], [4], [7],[8].

In this work, we introduce a new algorithm was
developed to provide a reasonable solution for
complex optimization problems under constraints
based Genetic Algorithms (GA). Compared to
traditional search techniques, GAs can overcome
many problems encountered by gradient based
methods.

The aim of this algorithm is to provide a good
algorithm which is able to solve nonlinear
constrained optimization problems using Matlab.
On doing this 1) Hybridization between GAs and
great deluge is implemented; 2) An optimization
toolbox using Matlab was developed.

The remainder of this paper is as follow; Section
2 presents a brief background about optimization
algorithms; Section 3 provides a brief introduction
about genetic algorithms; The great deluge method
is illustrated in Section 5. The description of the test
functions is presented in Section 6. Section 7
investigates the achieved results. Finally, the paper
is concluded making comment on the effectiveness
of the technique studied and potential future
research approaches.

2. LITERATURE REVIEW

The use of optimization in engineering design
process is increased every day as the computational
capabilities of the computers are increased.
Therefore the applications of numerical

Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

386

optimization have been increased dramatically.
Moreover, some of numerical optimization can run
on smart phones.

Although there are huge number of fundamental
backgrounds has been published about constrained
optimization algorithms, there are some basic
algorithms we would like to highlight it here. Since
non-linear constrained optimization problems are
an important class of problems with a wide range of
fields such as engineering, operational research and
bio-informatics.

Fletcher [2] describes the optimization process

as “the science of determining the best solution”.
To achieve this description, a mix between science
and heuristics, with different fields such as science,
engineering and economics . . . etc was presented.
Optimization methods can be classified into
derivative and non-derivative methods, Table 1
illustrates some of the basic methods of both
categories. The main difference between both
categories, derivative methods easy to stuck in local
optima, while non-derivative methods are likely to
find a global optima. Moreover, non-derivative
methods do not require any derivative of the
objective functions in order to calculate the
optimum. Therefore, these algorithms are known as
black box algorithms. Also, there are other
promising algorithms, which help to find optimal
design for engineering problems, such as neural
networks, Taguchi methods and response surface
approximations.

In general, non-derivative methods are more
suitable for general engineering design problems
since it’s hard to express your design problem in
terms of design variables directly. However, a quite
enough of engineering tools are available today to
estimate the performance of the design in an early
stage of the design process. For example, CAD
package, FEM software, CFD solvers and Matlab.

Table 1: Optimization Methods For Classification

Derivative Methods
Non-derivative

Methods
Sequential Quadratic

Programming
Simulating Annealing

Direct Search Tabu Search
Box’s Complex Method Random Search
Gradient-based method Genetic Algorithms

3. GENETIC ALGORITHM

Since 1970, Genetic algorithms attract
researchers to use it for solving hard and complex
problems. Genetic algorithm idea is adopted from

darwinian evolution theory Holland [6]. Genetic
algorithms are a population based mechanism,
which is used to explore the search space better
than other searching algorithms especially for
problems that are NP-hard. Genetic algorithms dose
not grantee an optimal solution; however it usually
gives good enough approximations in reasonable
amount of time. Moreover; genetic algorithms
requires no gradient information, evolves from one
population to another and produces multiple optima
rather than single local one. These features make
genetic algorithms a well-suited algorithm for
solving nonlinear constrained optimization
problems.

Genetic algorithm starts by creating a set of
solutions (population) of individuals. These
solutions is generated either randomly or based on a
construction method based on the problem nature.
The fitness of each solution is evaluated based on a
fitness function. Genetic algorithms consist of five
main operations which are: Encoding, Evaluation,
Crossover, Mutation and Decoding. These
operations enable genetic algorithms to be one of
the most powerful algorithm to solve hard and
complex optimization problems in finding the
optimal solutions Holland [6]. A simple genetic
algorithm is shown in Figure 1.

Based on genetic algorithm concept, a solution

vector x ∈ X is called chromosome which represent
a unique solution in the search space; each
chromosome is created from discrete units called
genes. Different approaches have been
implemented to present a problem solution as
chromosome. As a result a mapping method is
required which is called encoding. Genetic
algorithm deals on the encoding of a problem, not
on the problem itself.

Genetic Algorithms works on a collection of
chromosomes (solutions) called population. The
construction of these chromosomes is depends on
the nature of the problem. In general, genetic
algorithms works on a population pool of solutions
in order to generate new solutions. The mechanism
of generating new solutions is based on two
operators: crossover and mutation. The crossover
works on two solutions, called parents, are
combined together to produce new two solutions,
called offspring. Crossover operation leads the
population to converge by making the
chromosomes in the population similar. The
selection of parents is based on a selection
mechanism based on the fitness value of

Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

387

chromosomes in the population pool. High quality
parents usually produce a high quality offsprings.
The mutation process usually applied at the gene
level. The mutation rate is usually small and
depends on the length of the chromosome.
Mutation reintroduces genetic diversity back into
the population and assists the search escape from
local optima.

Procedure Genetic algorithm
Begin
 Initialize solution population
 Evaluate solution population
While (termination condition not met)
 Update generation counter
 Select generation counter
 Select parents for the next generation
 Reproduce or recombine parent to form
offspring
 Mutate offsprings
 Evaluate offsprings
End while
End

Figure 1: A Simple Genetic Algorithm

4. GREATE DELUGE ALGORITHM

The great deluge algorithm was introduced by
Dueck (1993). It is a local search procedure which
has certain similarities with simulated annealing.
This approach is far less dependent upon
parameters than simulated annealing. It needs just
two parameters: the amount of computational time
that the user wishes to “spend” and an estimate of
the quality of solution that a user requires. Apart
from accepting a move that improves the solution
quality, the great deluge algorithm also accepts a
worse solution if the quality of the solution is less
(for the case or minimisation) than or equal to some
given upper boundary value B (in the paper by
Dueck it was called a “level”). In this work, the
“level” is initially set to be the objective function
value of the initial solution. During its run, the
“level” is iteratively lowered by a constant β where
β is a force decay rate (see Figure 3). The great
deluge algorithm will be applied on each timetable
to reduce the total penalty cost based on the
calculated force value.
The pseudo code for the great deluge is presented in
Figure 2.

Set initial solution as Sol

bes

Calculate the initial cost function value,
f(Sol);
Set best solution, Sol

best
← Sol;

Set estimated quality of final solution,
Set number of iterations, NumOfIte;
Set initial level: level ← f(Sol);
Set decreasing rate
 β = ((f(Sol)–estimatedquality)/(NumOfIte);
Set iteration ← 0;
Set not_improving_counter ← 0;
do while (iteration < NumOfIte)

 generate a new solution called Sol*;
 Calculate f(Sol*);
 if (f(Sol*) < f(Sol

best
))

 Sol ← Sol*;
 Sol

best
← Sol*;

 not_improving_counter ← 0;
 else
 if (f(Sol*) ≤ level)
 Sol ← Sol*;
 not_improving_counter ← 0;
 else

 Increase not_improving_counter by 1;
 if (not_improving_counter ==
 not_improving_ length_GDA)
 exit;
level = level - β;
Increase iteration by 1;
end do;

Figure 2: The Pseudo Code For The Great Deluge
Algorithm

5. PROBLEM DESCRIPTION

A. Case Study I: Design of a Pressure Vessel

The first case study is a cylindrical vessel design
Kannan and Kramer [9], which is capped at both
ends by hemispherical heads as shown in Figure 9.
The objective function is to minimize the total cost
of fabrications such as welding, material and
forming. Four variables have to be optimized as
following:

TS: Which is the thickness of the shell.
Th: which is the thickness of the head.
R: Which is the inner radius.
L: Which is the length of the cylindrical section of
the vessel, not including the head.

The variables R and L are treated as continuous
variables, whilst TS and Th as discrete variables
which are multiples of 0.0625 inch. The problem
formulation (TS,Th, R, L) = (x1, x2, x3, x4) can be
stated as follows:

Minimize
 f(X) = 0.6224x1x3x4 +1.7781x2x3+ 3.1661x12x4 +
 19.84x12x3
Subject to:
g1(X) = −x1 + 0.0193x3 ≤ 0
g2(X) = −x2 + 0:00954x3 ≤ 0
g3(X) = −πx32 x4 −4/3πx33 + 1,296, 000 ≤ 0
g4(X) = x4 − 240 ≤ 0

Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

388

Figure 3: Diagram Of The Pressure Vessel Used As Case

Study

B. Case Study II: Welded Beam Design

The second case study is welded beam design
problem. The objective is to minimize the cost
subject to a set of constraints on share strss (τ),
bending stress in the beam (σ), buckling load on the
bar (Pc), end reflection of the bean(δ), and side
constraints.The problem consists of four design
variables (h(x1), l(x2), t(x3), b(x4))=(x1, x2, x3, x4).
Minimize f(X) = 1.10471x1 2x2 +
0.04811x3x4(14.0x2)

Subject to:

where:

Figure 4: Diagram Of Welded Beam Design

6. SIMULATION RESULTS

The proposed algorithm was programmed using
Matlab and simulations were performed on an Intel
Pentium 4 2.33 GHz computer. The algorithm was
tested on a standard optimization functions with 11
runs for each function.

The parameters used in the algorithm are chosen
after preliminary experiments. Table 2 shows the
parameters settings used in our experiments. Tables
3 and 4 provide a summary of the results obtained
by our hybrid algorithm.

Table 2: Parameter Settings

Parameters Value

Genetic Algorithm iteration 10000
Great Deluge iteration 1000

Population Size 50
Crossover Rate 0.74%
Mutation Rate 0.05 %

Table 3: Pressure Vessel Results
Run x1 x2 x3 x4 f(x)

1 0.20540 0.347391 9.03662 0.20599 1.72486
2 0.20570 0.347011 9.03662 0.20544 1.72485

3 0.25801 0.347048 9.03659 0.20569 1.72485

4 0.20580 0.347046 9.03658 0.20571 1.72485

5 0.20561 0.34704 9.0367 0.2057 1.72486
6 0.20551 0.347039 9.03661 0.20571 1.72485
7 0.20532 0.347011 9.0366 0.2057 1.7248
8 0.20546 0.347100 9.03660 0.20571 1.7248
9 0.20481 0.34201 9.03669 0.20576 1.7248

10 0.20601 0.347022 9.03668 0.20573 1.7248
11 0.20581 0.34709 9.03661 0.20576 1.7248

Journal of Theoretical and Applied Information Technology
 20th January 2014. Vol. 59 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

389

Table 4: Welded Beam Design Results

Run x1 x2 x3 x4 f(x)
1 0.58209 0.347391 0.20140 0.447043 1.8374
2 0.58604 0.347011 0.20250 0.447017 1.8335

3 0.55205 0.347048 0.24530 0.467035 1.8345

4 0.54205 0.347046 0.23352 0.457039 1.8386

5 0.58204 0.34704 0.25540 0.447069 1.8337
6 0.58209 0.347039 0.25470 0.437034 1.8358
7 0.55205 0.347011 0.27540 0.437035 1.8359
8 0.54279 0.347100 0.29950 0.427037 1.8384
9 0.52409 0.34201 0.21750 0.427033 1.8333
10 0.55509 0.347022 0.20320 0.457049 1.8324
11 0.56509 0.34709 0.20590 0.457037 1.8358

Our method is able to produce good enough results.
The objective of these results is to give an
indication of the variability between runs of the
proposed algorithm. It is believed the quality of the
solutions obtained in these experiments can be
attributed to the ability of the algorithm in effective
exploration of different regions of the solution
space, applied to 50 different solutions, for each
iteration. Our approach is able to further improve
resultant solutions. However, the longer the search
times, the slower the rate of improvement.

7. CONCLUSION

This paper has described the hybridization between
genetic algorithms and great deluge algorithm. A
set of problems have been solved using this
method. The algorithm attempts to exploit the
inherent advantages from genetic algorithms and
great deluge algorithm. The proposed algorithm
provides a balance between exploration and
exploitation within the search strategy. Moreover,
the results of the proposed algorithm outperform
several algorithms.

REFRENCES:

[1] Vanderplaats GN. Multidiscipline Design

Optimization. Colorado Springs, Vanderplaats
Research and Development, Inc, 2007.

[2] R. Fletcher. Practical Methods of Optimization, A
Wiley-Interscience Publications, John Wiley &
Sons, Chichester, , 1987.

[3] Sandgren E. Nonlinear integer discrete
programming in mechanical design. In: Proc ASME
Design Technology Conference, Kissimmee,
FL,USA, 1988.

[4] Deb. Kalyanmoy. GeneAS: a robust optimal design
technique for mechanical component design. In:
Proc Evolutionary Algorithms in Engineering
Applications. Springer, Berlin Heidelberg New York
628 Int J Adv Manuf Technol (2009) 40:617-628.

[5] K.M. Ragsdelland D.T. Phillips Optimal Design of a
Class of Welded Structures Using Geometric

Programming. ASME Journal of Engineering for
Industries, 98(3):1021-1025, Series B, 1976.

[6] Holland J. Genetic Algorithms, Scientific
American, 66-72, 1992.

[7] Yeniay O. A Comparative study on optimization
methods for the constrained nonlinear programming
problems, Mathematical Problems in Engineering, 2
,165-173, 2005.

[8] CAC. Coello Use of a self-adaptive penalty
approach for engineering optimization problems.
Comput Ind 41: 113-127, 2004.

[9] BK. Kannan and SN. Kramer.An augmented
Lagrange multiplier based method for mixed integer
discrete continuous optimization and its applications
to mechanical design. ASME J Mech Des 116:318-
320, 1994.

