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ABSTRACT 

In this paper, a new hybrid optimization algorithm based Genetic Algorithms (GAs) is proposed to solve 
constrained optimization engineering problems. A hybrid Genetic Algorithms (GA) and great deluge 
algorithm are used to solve non-linear constrained optimization problems. The algorithm works on 
improving the quality of the search speed of GAs by locating infeasible solutions (i.e. chromosomes) and 
use great deluge to return these solutions to the feasible domain of search; thus have a better guided GA 
search. This hybridization algorithm prevents GAs from being trapped at local minima via premature 
convergence. The simulation results demonstrate a good performance of the proposed approach in solving 
mechanical engineering systems. 
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1. INTRODUCTION  
 

Many real world problems in industrial 
engineering optimization are too complex such that 
it can be formulated as Nonlinear Programming 
(NLPs) problems. Moreover, no known fast 
algorithm is able to solve these problems since the 
objective functions are complicated and it has 
several constraint structures. Constrained 
optimization problems have been studied widely in 
the operations research and artificial intelligence 
literature. Operations research formulations deals 
with constraints as quantitative formulas, as a 
result, the solvers optimize the objective functions 
values subject to constraints. 
 

On the other hand, artificial intelligence deals 
with inference-based algorithms with symbolic 
constraints. There have been huge research efforts 
on developing and testing new algorithms in the 
last decade to solve constrained optimization 
problems in artificial intelligence field, such as 
genetic algorithm, tabu search, simulating 
annealing . . . etc. Moreover, a hybridized algorithm 
is which inherits the advantages of two or more 
algorithms in one algorithm attract researchers to 
develop fast and robust algorithms. For instance, it 
is not clear there is an exact method which can 
solve nonlinear optimization problems. An 
exceptional survey about constrained optimization 
can be found in [3], [4], [7],[8]. 

 

In this work, we introduce a new algorithm was 
developed to provide a reasonable solution for 
complex optimization problems under constraints 
based Genetic Algorithms (GA). Compared to 
traditional search techniques, GAs can overcome 
many problems encountered by gradient based 
methods. 
 

The aim of this algorithm is to provide a good 
algorithm which is able to solve nonlinear 
constrained optimization problems using Matlab. 
On doing this 1) Hybridization between GAs and 
great deluge is implemented; 2) An optimization 
toolbox using Matlab was developed. 
 

The remainder of this paper is as follow; Section 
2 presents a brief background about optimization 
algorithms; Section 3 provides a brief introduction 
about genetic algorithms; The great deluge method 
is illustrated in Section 5. The description of the test 
functions is presented in Section 6. Section 7 
investigates the achieved results. Finally, the paper 
is concluded making comment on the effectiveness 
of the technique studied and potential future 
research approaches. 

 
2. LITERATURE REVIEW 

The use of optimization in engineering design 
process is increased every day as the computational 
capabilities of the computers are increased. 
Therefore the applications of numerical 
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optimization have been increased dramatically. 
Moreover, some of numerical optimization can run 
on smart phones. 
 

Although there are huge number of fundamental 
backgrounds has been published about constrained 
optimization algorithms, there are some basic 
algorithms we would like to highlight it here. Since 
non-linear constrained optimization problems are 
an important class of problems with a wide range of 
fields such as engineering, operational research and 
bio-informatics. 

 
Fletcher [2] describes the optimization process 

as “the science of determining the best solution”. 
To achieve this description, a mix between science 
and heuristics, with different fields such as science, 
engineering and economics . . . etc was presented. 
Optimization methods can be classified into 
derivative and non-derivative methods, Table 1 
illustrates some of the basic methods of both 
categories. The main difference between both 
categories, derivative methods easy to stuck in local 
optima, while non-derivative methods are likely to 
find a global optima. Moreover, non-derivative 
methods do not require any derivative of the 
objective functions in order to calculate the 
optimum. Therefore, these algorithms are known as 
black box algorithms. Also, there are other 
promising algorithms, which help to find optimal 
design for engineering problems, such as neural 
networks, Taguchi methods and response surface 
approximations. 

In general, non-derivative methods are more 
suitable for general engineering design problems 
since it’s hard to express your design problem in 
terms of design variables directly. However, a quite 
enough of engineering tools are available today to 
estimate the performance of the design in an early 
stage of the design process. For example, CAD 
package, FEM software, CFD solvers and Matlab. 
 

Table 1: Optimization Methods For Classification  

Derivative Methods 
Non-derivative 

Methods 
Sequential Quadratic 

Programming 
Simulating Annealing 

Direct Search Tabu Search 
Box’s Complex Method Random Search 
Gradient-based method Genetic Algorithms 

 

3. GENETIC ALGORITHM 

Since 1970, Genetic algorithms attract 
researchers to use it for solving hard and complex 
problems. Genetic algorithm idea is adopted from 

darwinian evolution theory Holland [6]. Genetic 
algorithms are a population based mechanism, 
which is used to explore the search space better 
than other searching algorithms especially for 
problems that are NP-hard. Genetic algorithms dose 
not grantee an optimal solution; however it usually 
gives good enough approximations in reasonable 
amount of time. Moreover; genetic algorithms 
requires no gradient information, evolves from one 
population to another and produces multiple optima 
rather than single local one. These features make 
genetic algorithms a well-suited algorithm for 
solving nonlinear constrained optimization 
problems. 
 

Genetic algorithm starts by creating a set of 
solutions (population) of individuals. These 
solutions is generated either randomly or based on a 
construction method based on the problem nature. 
The fitness of each solution is evaluated based on a 
fitness function. Genetic algorithms consist of five 
main operations which are: Encoding, Evaluation, 
Crossover, Mutation and Decoding. These 
operations enable genetic algorithms to be one of 
the most powerful algorithm to solve hard and 
complex optimization problems in finding the 
optimal solutions Holland [6]. A simple genetic 
algorithm is shown in Figure 1. 

 
Based on genetic algorithm concept, a solution 

vector x ∈ X is called chromosome which represent 
a unique solution in the search space; each 
chromosome is created from discrete units called 
genes. Different approaches have been 
implemented to present a problem solution as 
chromosome. As a result a mapping method is 
required which is called encoding. Genetic 
algorithm deals on the encoding of a problem, not 
on the problem itself.  
 

Genetic Algorithms works on a collection of 
chromosomes (solutions) called population. The 
construction of these chromosomes is depends on 
the nature of the problem. In general, genetic 
algorithms works on a population pool of solutions 
in order to generate new solutions. The mechanism 
of generating new solutions is based on two 
operators: crossover and mutation. The crossover 
works on two solutions, called parents, are 
combined together to produce new two solutions, 
called offspring. Crossover operation leads the 
population to converge by making the 
chromosomes in the population similar. The 
selection of parents is based on a selection 
mechanism based on the fitness value of 
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chromosomes in the population pool. High quality 
parents usually produce a high quality offsprings. 
The mutation process usually applied at the gene 
level. The mutation rate is usually small and 
depends on the length of the chromosome. 
Mutation reintroduces genetic diversity back into 
the population and assists the search escape from 
local optima. 

 
Procedure Genetic algorithm 
Begin 
    Initialize solution population 
    Evaluate solution population 
While (termination condition not met) 
    Update generation counter 
    Select generation counter 
    Select parents for the next generation 
    Reproduce or recombine parent to form 
offspring 
    Mutate offsprings 
    Evaluate offsprings 
End while 
End  

Figure 1: A Simple Genetic Algorithm 

 
4. GREATE DELUGE ALGORITHM 

The great deluge algorithm was introduced by 
Dueck (1993). It is a local search procedure which 
has certain similarities with simulated annealing. 
This approach is far less dependent upon 
parameters than simulated annealing. It needs just 
two parameters: the amount of computational time 
that the user wishes to “spend” and an estimate of 
the quality of solution that a user requires. Apart 
from accepting a move that improves the solution 
quality, the great deluge algorithm also accepts a 
worse solution if the quality of the solution is less 
(for the case or minimisation) than or equal to some 
given upper boundary value B (in the paper by 
Dueck it was called a “level”). In this work, the 
“level” is initially set to be the objective function 
value of the initial solution. During its run, the 
“level” is iteratively lowered by a constant β where 
β is a force decay rate (see Figure 3). The great 
deluge algorithm will be applied on each timetable 
to reduce the total penalty cost based on the 
calculated force value. 
The pseudo code for the great deluge is presented in 
Figure 2. 
 
Set initial solution as Sol

bes
 

Calculate the initial cost function value, 
f(Sol);  
Set best solution, Sol

best 
← Sol;  

Set estimated quality of final solution,  
Set number of iterations, NumOfIte;  
Set initial level: level ← f(Sol);  
Set decreasing rate  
    β = ((f(Sol)–estimatedquality)/(NumOfIte);  
Set iteration ← 0;  
Set not_improving_counter ← 0;  
do while (iteration < NumOfIte)  

     generate a new solution called Sol*;  
     Calculate f(Sol*);  
     if (f(Sol*) < f(Sol

best
))  

        Sol ← Sol*;  
        Sol

best 
← Sol*;  

        not_improving_counter ← 0;  
      else  
         if (f(Sol*) ≤ level)  
           Sol ← Sol*;  
           not_improving_counter ← 0;  
         else  

        Increase not_improving_counter by 1;  
          if (not_improving_counter ==  
             not_improving_ length_GDA)  
          exit;  
level = level - β;  
Increase iteration by 1;  
end do; 

Figure 2: The Pseudo Code For The Great Deluge 
Algorithm 

 
 

5. PROBLEM DESCRIPTION 

 
A. Case Study I: Design of a Pressure Vessel 

 
The first case study is a cylindrical vessel design 
Kannan and Kramer [9], which is capped at both 
ends by hemispherical heads as shown in Figure 9. 
The objective function is to minimize the total cost 
of fabrications such as welding, material and 
forming. Four variables have to be optimized as 
following: 

 
TS: Which is the thickness of the shell. 
Th: which is the thickness of the head. 
R: Which is the inner radius. 
L: Which is the length of the cylindrical section of 
the vessel, not including the head. 
 
The variables R and L are treated as continuous 
variables, whilst TS and Th as discrete variables 
which are multiples of 0.0625 inch. The problem 
formulation (TS,Th, R, L) = (x1, x2, x3, x4) can be 
stated as follows: 
 
Minimize 
 f(X) = 0.6224x1x3x4 +1.7781x2x3+ 3.1661x12x4 +           
            19.84x12x3  
Subject to: 
g1(X) = −x1 + 0.0193x3 ≤ 0  
g2(X) = −x2 + 0:00954x3 ≤ 0  
g3(X) = −πx32 x4 −4/3πx33 + 1,296, 000 ≤ 0  
g4(X) = x4 − 240 ≤ 0 
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Figure 3: Diagram Of The Pressure Vessel Used As Case 

Study 
 

 
 
B. Case Study II: Welded Beam Design 
 
The second case study is welded beam design 
problem. The objective is to minimize the cost 
subject to a set of constraints on share strss (τ), 
bending stress in the beam (σ), buckling load on the 
bar (Pc), end reflection of the bean(δ), and side 
constraints.The problem consists of four design 
variables (h(x1), l(x2), t(x3), b(x4))=(x1, x2, x3, x4). 
Minimize f(X) = 1.10471x1 2x2 + 
0.04811x3x4(14.0x2) 
 
Subject to: 
 

 
where: 
 

 

 

 

 
Figure 4: Diagram Of Welded Beam Design 

 
6. SIMULATION RESULTS 

 
The proposed algorithm was programmed using 
Matlab and simulations were performed on an Intel 
Pentium 4 2.33 GHz computer. The algorithm was 
tested on a standard optimization functions with 11 
runs for each function. 
 
The parameters used in the algorithm are chosen 
after preliminary experiments. Table 2 shows the 
parameters settings used in our experiments. Tables 
3 and 4 provide a summary of the results obtained 
by our hybrid algorithm. 
 

Table 2: Parameter Settings  

Parameters Value 

Genetic Algorithm iteration 10000 
Great Deluge iteration 1000 

Population Size 50 
Crossover Rate 0.74% 
Mutation Rate 0.05 % 

 
 

Table 3: Pressure Vessel Results 
Run x1 x2 x3 x4 f(x) 

1 0.20540 0.347391 9.03662 0.20599 1.72486 
2 0.20570 0.347011 9.03662 0.20544 1.72485 

3 0.25801 0.347048 9.03659 0.20569 1.72485 

4 0.20580 0.347046 9.03658 0.20571 1.72485 

5 0.20561 0.34704 9.0367 0.2057 1.72486 
6 0.20551 0.347039 9.03661 0.20571 1.72485 
7 0.20532 0.347011 9.0366 0.2057 1.7248 
8 0.20546 0.347100 9.03660 0.20571 1.7248 
9 0.20481 0.34201 9.03669 0.20576 1.7248 

10 0.20601 0.347022 9.03668 0.20573 1.7248 
11 0.20581 0.34709 9.03661 0.20576 1.7248 
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Table 4: Welded Beam Design Results 
 

Run x1 x2 x3 x4 f(x) 
1 0.58209 0.347391 0.20140 0.447043 1.8374 
2 0.58604 0.347011 0.20250 0.447017 1.8335 

3 0.55205 0.347048 0.24530 0.467035 1.8345 

4 0.54205 0.347046 0.23352 0.457039 1.8386 

5 0.58204 0.34704 0.25540 0.447069 1.8337 
6 0.58209 0.347039 0.25470 0.437034 1.8358 
7 0.55205 0.347011 0.27540 0.437035 1.8359 
8 0.54279 0.347100 0.29950 0.427037 1.8384 
9 0.52409 0.34201 0.21750 0.427033 1.8333 
10 0.55509 0.347022 0.20320 0.457049 1.8324 
11 0.56509 0.34709 0.20590 0.457037 1.8358 

 
Our method is able to produce good enough results. 
The objective of these results is to give an 
indication of the variability between runs of the 
proposed algorithm. It is believed the quality of the 
solutions obtained in these experiments can be 
attributed to the ability of the algorithm in effective 
exploration of different regions of the solution 
space, applied to 50 different solutions, for each 
iteration. Our approach is able to further improve 
resultant solutions. However, the longer the search 
times, the slower the rate of improvement. 

 
7. CONCLUSION  

This paper has described the hybridization between 
genetic algorithms and great deluge algorithm. A 
set of problems have been solved using this 
method. The algorithm attempts to exploit the 
inherent advantages from genetic algorithms and 
great deluge algorithm. The proposed algorithm 
provides a balance between exploration and 
exploitation within the search strategy. Moreover, 
the results of the proposed algorithm outperform 
several algorithms. 
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