ENERGY EFFICIENT INTRUSION DETECTION SYSTEM FOR WIRELESS SENSOR NETWORK USING NEURAL NETWORK

SYEDA GAUHAR FATIMA, Dr. SYED ABDUL SATTAR AND Dr. K ANITHA SHEELA

1Research Scholar, Department of ECE
Jawaharlal Nehru Technological University, Hyderabad, India
2Professor & Dean, Department of CSE
Academics in Royal College of Technology and Science, Hyderabad
3Co-ordinator, Examination Branch, JNTUH
E-mail: syedagauharfatima0407@gmail.com

ABSTRACT

In wireless sensor network (WSN), the existing intrusion detection techniques rarely consider energy consumption for judging the node state. Also there is need for increased detection rate. Hence in this paper, we propose an energy efficient intrusion detection system for WSN. Initially the nodes deployed in the network are analyzed for malicious activity based on their residual energy. If the energy consumption of a node is greater than a predicted threshold, it is considered as malicious and the packets emerging from these nodes are said to be abnormal. The abnormal packets are passed through the Back Propagation Network (BPN) to analyze the data misinterpretation. In case, the output of BPN is found to be abnormal, then the attack detection is confirmed and attack type is estimated. By simulation results, we show that the proposed technique is more energy efficient.

Keywords: WSN, Intrusion Detection, Energy Efficient, Neural Network

1. INTRODUCTION

1.1 Wireless Sensor Network (WSN)

Wireless sensor network (WSN) has become a very important topic with the rapid development that is vulnerable to a wide range of attacks due to deployment in the hostile environment. A WSN is a large network of resource-constrained sensor nodes with multiple preset functions, such as sensing and processing with number of low-cost, resource limited sensor nodes to sense important data related to environment and to transmit it to sink node that provides gateway functionality to another network, or an access point for human interface. These sensor networks are composed of energy constrained nodes embedding limited transmission, processing and sensing capabilities. Therefore network lifecycle becomes short and hence energy-efficient technique implementation becomes an important requirement for WSN.

The WSN with Coverage and Connectivity have been implemented in many fields like Environment Data Collection where a canonical environmental data collection application is one where a research scientist wants to collect several sensor readings from a set of points in an environment over a period of time in order to detect trends and interdependencies and then analyze the data. Security Monitoring are composed of sensor nodes that are placed at fixed locations throughout an environment that continually monitor one or more sensors to detect an anomaly. Node Tracking Scenarios used in tracking of a tagged object through a region of space monitored by a sensor network [1][2][3][14].

1.2 Intrusion Detection System (IDS)

Intrusion detection system (IDS) is a mechanism which detects malicious intruders based on those anomalies and attempts to monitor computer networks and systems, detecting possible intrusions in the network, and alerting users after intrusions had been detected, reconfiguring the network if this is possible. These malicious intruders damage the important information while transmitting in wireless network. Using detection system, the network will be able to respond and isolate the intruder in order to protect and guarantee its normal operation. Thus, Intrusion Detection Systems are crucial to safe operation in wireless sensor networks.
Two typical WSN IDS: Collaboration-based Intrusion Detection (CID) and Routing Tables Intrusion Detection (RTID). Collaboration-based Intrusion Detection (CID) is a continuous Intrusion detection system that detects intrusion during the cluster duty-cycle. Routing Tables Intrusion Detection (RTID) is an event-driven Intrusion detection system. While the attacks are occurring, the IDS will compare the attack data and raise alarms [4][5][6].

1.3 Issues of IDS in WSN

• It is not possible for IDS to have an active full-powered agent inside every node in a sensor network. Each node is totally independent, sending data and receiving control packets from a central system called Base Station, usually managed by a human user. [7]

• Without the IDS in WSN the threats can damage the network and consume large quantity of energy in monitoring suspicious nodes.

• WSNs are composed by numerous low-cost and small devices, and are deployed into an open and unprotected area so they are vulnerable to various types of attacks.

• The network lifetime decreases through utilizing the network’s energy in an inefficient manner by the malicious nodes.

1.4 Problem Identification and Solution

In [9] a novel intrusion detection scheme based on the energy prediction in cluster-based WSNs (EPIDS) has been proposed. In this approach, sink node predicts the energy consumption of each sensor node and gathers the residual energy of each sensor node. The sensor nodes check their residual energy with the residual energy found by the sink node through a broadcast message. If EPIDS detects abnormal energy consumed at a node then the node’s ID will be put in a blacklist and it will be removed from the routing table.

The main drawback of this approach is that during the process of finding the malicious node, the only thing considered is the energy consumed by that particular node which may not be sufficient enough to judge a node without considering its past transactions.

In this paper, we propose a Hybrid Intrusion Detection System (HIDS) which consists of anomaly and misuse detection module. This approach increases the detection rate and decreases the false positive rate.

2. LITERATURE REVIEW

K.Q. Yan et al.[8] have proposed an Intrusion Detection System (IDS) created in cluster head. The proposed IDS is a Hybrid Intrusion Detection System (HIDS). It consists of anomaly and misuse detection module. The goal is to raise the detection rate and lower the false positive rate by the advantages of misuse detection and anomaly detection. However, a decision-making module is used to integrate the detect results and to report the types of attacks. The advantage of this approach is that the performance of the misuse detection module is evaluated.

Wen Shen et al.[9] have proposed a novel intrusion detection scheme based on the energy prediction in cluster-based WSNs (EPIDS). The main contribution of EPIDS is to detect attackers by comparing the energy consumptions of sensor nodes. The sensor nodes with abnormal energy consumptions are identified as malicious attackers. The advantage of this EPIDS is it is designed to distinguish the types of denial of service (DoS) attack according to the energy consumption rate of the malicious nodes.

Tran Hoang Hai et al.[10] have proposed a lightweight intrusion detection framework integrated for clustered sensor networks. And provide algorithms to minimize the triggered intrusion modules in clustered WSNs by using an over-hearing mechanism to reduce the sending alert packets. The advantage of this approach is it can prevent most routing attacks on sensor networks and less energy consumption in intrusion detection than other schemes.

Edith C.H. Ngai et al.[11] have proposed a novel algorithm for detecting the intruder in a sinkhole attack. The algorithm first finds a list of suspected nodes through checking data consistency, and then effectively identifies the intruder in the list through analyzing the network flow information. The algorithm is also robust to deal with multiple malicious nodes that cooperatively hide the real intruder. The advantage of this approach is its communication and computation overheads are reasonably low for wireless sensor networks.

Abror Abduvaliyev et al.[12] have proposed the architecture of hybrid intrusion detection system (eHIDS) for wireless sensor networks. In order to get hybrid scheme, authors have used combined
version of anomaly and misuse detection techniques. In addition, they have also used cluster-based wireless sensor networks to reduce communication and computation costs. The advantage of this scheme is it performs better than other schemes in terms of energy efficiency and high detection rate.

3. PROPOSED SOLUTION

3.1 Overview

In this paper, we propose an energy efficient intrusion detection system for WSN. Initially the nodes deployed in the network are analyzed for malicious activity based on the residual energy. If the energy consumed and residual energy of the node is greater than the predicted threshold, the node is considered as malicious node. Then the packets arriving from the malicious node is normal and abnormal packets. The abnormal packets are converted into binary value and passed through the back propagation network to analyze the data misinterpretation. If the output is detected as abnormal packet, then the attack detection is confirmed and attack type is estimated. Otherwise, there is no detection of attack.

3.2 Back Propagation Network (BPN)

The back propagation network is the most characteristic model of supervised learning used in the neural network. It obtains the training data from the environment that includes input and output variables. BPN analyzes from the input and output variable whether which new input, output variables can be utilized for prediction.

BPN includes several layers which contains many processing units.

- **Input layer**: This includes the BPN inputs and corresponds to the initial values of decision.
- **Hidden layer**: It includes the neurons that perform weight adjustments of neuron linkages and estimating the appropriate weights. It also comprises of numerous sub-layers for learning the internal reflection and regulations among the inputs and outputs, thereby attaining accurate results.
- **Output layer**: This includes the BPN output and corresponds to the ultimate result of training at this training operation.

The time duration for updating the weights and biases of the network until all data are trained and task get complete is termed as epoch. Using these epoch values, BPN continues its training repeatedly by tuning the weights between the layers till the output of the network is equalized to the target value.

The control procedure of BPN involves the following two functions.

- **Forward Pass**: This runs the neural network and estimates the error in each neuron existing in the output layer.
- **Backward Pass**: This process is initiated at the output layer and the errors are transmitted back through the network layer wise. This is performed utilizing the local gradient of each neuron.

3.4 Node States

The sensor nodes operates in the following five states

1. **Sleep state** (E_s): During this state, the sensor nodes do not interact with other nodes. It remains idle.
2. **Sensing state** (E_{sen}): During this state, the node senses physical parameters such as temperature, atmospheric pressure etc.
3. **Computing state** (E_{cm}): The sensor node processes the received data during the computing state.
4. **Transmission state** (E_{tx}): This state involves the transmission of data to the sink
5. **Reception state** (E_{rx}): This state involves the reception of data packets
Based on the time and energy consumed during these working states, the energy dissipation in sensor nodes can be estimated. (Shown in section 3.5.1)

3.5 Estimation of Metrics

3.5.1 Energy Dissipation

Let $S= \{S_0, S_1, S_2, \ldots, S_n\}$ be the operational states of the nodes

Let x and y be the two states of node, (where $x, y = 1, 2, 3, 4$) The state of node (Explained in section 3.2) keeps changing during the process of data transmission or reception at time t_1. In time duration t_n, the probability that the node changes its state is denoted using Equation (1)

$$P_{xy}^n = P \{S_n = y | S_0 = x\}$$

Equation (1) is computed using the following Chapman-Kalmogorov equations:

$$P_{xy}^n = \sum_{i=0}^{n} p_{xi}^i p_{iy}^{n-i}$$

Equation (2)

The time duration T upto which the node stays in the state y is given using the equation (3)

$$T_S = \sum_{i=1}^{t} P_{xy}^n$$

Equation (3)

The amount of energy dissipated in the subsequent time duration T_S is given using Eq (4)

$$E_d = \sum_{y=1}^{d} \sum_{t=1}^{T_S} P_{xy}^n * E_y$$

Equation (4)

where E_y represents the energy dissipated in state y during one T_S.

As energy dissipation is concerned with the four states such as sensing, computing, transmission and reception, this count is alone is considered for the computation in Eq (4).

3.5.2 Residual Energy

The residual energy (RE_i) of each node (N_i) after one data communication is estimated using following formula:

$$RE_i = E_{ini} - (E_{tx} + E_{rx})$$

Equation (5)

Where $E_i = \text{Initial energy of the node}$

E_{tx} & $E_{rx} = \text{energy utilized at the time of transmission and reception of data}$.

3.6 Detection of Malicious Node

The steps involved in the detection of malicious node is as follows

1) Initially the sink node S_i predicts the energy consumption (E_{ci}) of each sensor node and stores in its route cache.

2) After execution of some task in the network, S_i collects the residual energy RE_i ($i=1, 2, 3, \ldots, n$) (Estimated of each node in the network.

3) S_i then broadcasts the collected $RE_{i-\text{Info}}$ to its entire nodes (N_i).

$$S_i \xrightarrow{RE_{i-\text{Info}}} N_i$$

4) N_i upon receiving the $RE_{i-\text{Info}}$ compares its current RE_i (RE_{ic}) with the received RE_i. Then it transmits its current residual energy information ($RE_{ic-\text{Info}}$) to S_i.

$$S_i \leftarrow RE_{ic-\text{Info}} \rightarrow N_i$$

5) S_i upon receiving the $RE_{ic-\text{Info}}$ executes the following condition to estimate the malicious behavior of node

$$E_{ci} - (RE_i - RE_{ic}) > \text{Threshold}$$

Then

N_i is considered as malicious (MN_i).

MN_i is added to black list (i.e., MN_i is separated from moving to the routing table entries)

End if

Fig 2 Malicious Node Detection

Fig 2 represents the malicious node detection technique. The node N_2 and N_4 are detected as malicious nodes and recorded in the blacklist.

3.7 Classifying the Data packets
The data packets evolving from the nodes are analyzed whether it exhibits strange or normal behavior based on the node type.

\[N_i = M N_i \]

Then

The packet originating from MN \(i \) is considered as abnormal packets

Packets are submitted to Back Propagation Network (BPN) to analyze the misinterpretation.

Else

The packet are considered as normal packets

End if

3.7.1 Analysis of Data Misinterpretation

The process of analyzing the data to decide whether it is misinterpreted or not is executed using the following steps.

Let the learning rate be assigned to 0.5 or in the range of (0.1, 1.0). (Assigned during simulation)

Let the values of weights and biases be in the range of (0, 1)

1) Initially, the abnormal data packet is converted to stream binary value and then it is passed through BPN as inputs value.

Process flow: Abnormal data \(\rightarrow \) Binary Value \(\rightarrow \) BPN

This input training data (Binary value) comprises of target value for performing the training.

2) The input layer performs the computation of actual output using feed forward method. The number of processing inputs layer is determined based on selected features for packet.

3) The output of input layer is fed to the hidden layer that estimates the error and performs the output improvement using the back propagation technique. The number of hidden layer is estimated based on average of input and output layers.

4) The training data is learned continually and weights among the layers are adjusted through many epochs.

5) Step 4 is repeated until the output of network is analogous to the target value and the training is absolute.

6) The output of BPN (OB) is compared with the output of malicious detection (OM) to estimate about the intrusion and attack type. This is shown using the following condition.

\[\text{If (OM = abnormal) & (OB = normal)} \]

Then

No attack detection and it is invalidly classified.

Else if (OM = abnormal) & (OB = abnormal)

Then

Attack has been detected and attack class is identified. (Using the condition)

Based on the attack detection in the nodes, the attack category is identified by executing the following condition.

a) If \(E_{ci} \geq \gamma (R E_i) \), then the malicious node introduces Hello flood attack.

b) If \(E_{ci} \leq R E_i \), then the malicious node introduces selective forwarding attack.

c) If \(2(RE_i) \leq E_{ci} \leq (\gamma -1) RE_i \), then the malicious node introduces Sybil attack.

d) If \(RE_i \leq E_{ci} \leq 2 (RE_i) \), then the malicious node introduces wormhole attack.

e) If \((\gamma -1)RE_i \leq E_{ci} \leq \gamma (RE_i) \), then the malicious node introduces sinkhole attack.

Where \(\gamma \) is a constant.

3.6.2 Advantages of this proposed approach

- Since the past of the node is been taken into consideration the intrusion detection will be done more effectively
- And also the energy of the network will increased and utilized in a efficient manner

3.7 Flow chart of the Proposed Approach

The following flowchart represents the overall process involved in our proposed technique.
4. SIMULATION RESULTS

4.1. Simulation Model and Parameters

We use Network Simulator Version-2 (NS2) [15] to simulate our proposed algorithm. In our simulation, the channel capacity of mobile hosts is set to the same value: 2 Mbps. We use the distributed coordination function (DCF) of IEEE 802.11 for wireless LANs as the MAC layer protocol. It has the functionality to notify the network layer about link breakage.

In our simulation, mobile nodes move in a 500 meter x 500 meter region for 25 seconds simulation time. All nodes have the same transmission range of 250 meters. The simulated traffic is Constant Bit Rate (CBR). Our simulation settings and parameters are summarized in table 1.

<table>
<thead>
<tr>
<th>Table 1: Simulation Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Nodes</td>
</tr>
<tr>
<td>Area Size</td>
</tr>
<tr>
<td>Mac</td>
</tr>
<tr>
<td>Radio Range</td>
</tr>
<tr>
<td>Simulation Time</td>
</tr>
<tr>
<td>Traffic Source</td>
</tr>
<tr>
<td>Packet Size</td>
</tr>
<tr>
<td>Receiving Power</td>
</tr>
<tr>
<td>Sending power</td>
</tr>
<tr>
<td>Idle Power</td>
</tr>
<tr>
<td>Initial Energy</td>
</tr>
<tr>
<td>Rate</td>
</tr>
</tbody>
</table>

4.2 Performance Metrics

We evaluate mainly the performance according to the following metrics:

Average Packet Delivery Ratio: It is the ratio of the number of packets received successfully and the total number of packets transmitted.

Average Packet Drop: It is the average number of packets dropped by the misbehaving nodes.

Delay: It is the time taken by the packets to reach the receiver.

Energy Consumption: It is the amount of energy consumed by the nodes for the data transmission.

We compare our Energy Efficient Intrusion Detection System (EEIDS) with the HIDS [8] technique.

4.3 Results

A. Based on Nodes

We vary the number of nodes as 50,100,150 and 200, keeping 5% of the total nodes as malicious nodes.
Figures 4 to 6 show the results of packet delivery ratio, packet drop and energy consumption for EEIDS and HIDS, respectively, for varying the nodes from 50 to 200. From the figures, it can be observed that EEIDS outperforms HIDS in terms of delivery ratio by 2%, packet drop by 70% and energy consumption by 10%.

B. Based on malicious nodes

Now we vary the number of malicious nodes from 5 to 25 for 100 nodes.

Figures 7 to 9 show the results of packet delivery ratio, packet drop and energy consumption for EEIDS and HIDS, respectively, for varying the attackers from 5 to 25. From the figures, it can be observed that EEIDS outperforms HIDS in terms of delivery ratio by 24%, packet drop by 39% and energy consumption by 13%.

5. CONCLUSION

In this paper, we have proposed an energy efficient intrusion detection system for WSN. Initially the nodes deployed in the network are analyzed for malicious activity based on the residual energy. If the energy consumed and residual energy of the node is greater than the predicted threshold, the node is considered as malicious node and the packets emerging from these nodes is said to be abnormal. The abnormal packets are through the back propagation network (BPN) to analyze the data misinterpretation. In case, the output of BPN is found to be abnormal, then the attack detection is confirmed and attack type is estimated. Otherwise, there is no detection of attack. By simulation results, we have shown that the proposed technique is more energy efficient.

REFERENCE

[15]. Network Simulator: http://www.isi.edu/nsnam/