
Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

RECOVERING DESIGN-CODE TRACES: AN ACO BASED
APPROACH

1IMAD BOUTERAA, 2NORA BOUNOUR
1,2 LISCO Laboratory, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria

E-mail: 1imad.bouteraa@gmail.com, 2nora_bounour@yahoo.fr

ABSTRACT

Traceability is a key issue to promoting software development quality and productivity. It was recognized
as crucial for several software development and maintenance activities. Despite their importance, traceabil-
ity links are often sacrificed during software evolution due to market pressure. In this work we present an
approach to recover them between the design and the implementation. Our approach recover traces basing
on properties’ similarities, it exploits string edit distance, maximum matching, and Ant Colony Optimiza-
tion. Evaluations show promising results of this work.

Keywords: Traceability, Object-Oriented Programming, Software Evolution, Program Understanding,
Software Maintenance, UML, Ant Colony Optimization.

1 INTRODUCTION

Software systems are developed step by step

starting from an abstract representation of the sys-
tem, arriving to a runnable code ready for deploy-
ment. Throughout this process, artifacts are created,
modified, and refined into more detailed artifacts.
This phased nature of the development leaves traces
and traceability among artifacts.

According to IEEE Standard Glossary of Soft-
ware Engineering Terminology [1] traceability is
defined as:

i. The degree to which a relationship can be es-
tablished between two or more products of the
development process, especially products hav-
ing a predecessor–successor or master–
subordinate relationship to one another.
ii. The degree to which each element in a soft-
ware development product establishes its rea-
son for existing.
Traceability links are used in many software

development tasks, among them we can find:
i. Change impact analysis: this activity aims to

identify witch artifacts are affected by a pro-
posed change. When change starts from the
code, traceability links help developer to up-
date appropriates high-level artifacts. When
change starts from abstract artifacts, traceabil-
ity links help developers to manage the change
and assessing its cost by propagating its impact
trough lower levels artifacts.

ii. Requirement Engineering: Many software en-
gineering standards (see [2]) emphasize on the
need of requirements traceability to be includ-

ed into software development process and treat
it as a quality factor towards achieving process
improvement. It is the key to locate code areas
that implement a given requirement and vali-
date that a system meets its requirements.

iii. Program comprehension: When maintaining a
legacy system, the first major problem a main-
tainer is facing may be the comprehension of
software system [3]. Trace links can help in
both top-down and bottom-up comprehension.
In the former, traces give hints on where to
look for beacons that either confirm or refute a
hypothesis. In the latter one, traces assist pro-
grammers in the assignment of a concept to a
chunk of code and in the aggregation of chunks
into more abstract concepts.

iv. Rational comprehension: traces help develop-
ers to understand the rationale behind certain
design and implementation aspects of a system.
Lack of traceability can lead to less maintaina-

ble software and to defects due to inconsistencies or
omissions. It is one of the top factors causing de-
lays in software engineering projects [4]. And it
causes the software to deviate from the external
quality attributes such as understandability, reusa-
bility, and extendibility [5].

However, traceability links are regularly bro-
ken and sacrificed during software evolution [6].
This is basically due to them updating cost and the
market pressure. Two solutions are envisaged for
this problem: reverse engineering, and trace recov-
ering.

Reverse engineering tools can automatically
generate a design from the code. Obviously the

Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

generated design will be consistent with the code
and traces can be saved during the design recovery
process. But designs produced by users are usually
richer than those extracted automatically, since they
include context and high level semantic infor-
mation. Therefore it is always better to use human
produced designs, and maintain them consistency
with the code.

Trace recovering aims to recuperate traces be-
tween artifacts. Manual creation of traceability
links between requirements and source code is er-
ror-prone, time consuming and complex [7], which
emphasize the need of automation of this activity.

In this paper we present a similarity based trace
recovering approach. Our approach operates on
UML class diagram and the source-code expressed
in java. It associates every design class to a set of
java classes. We believe that the implementation
may split and refine a class from the class diagram
into several java classes. Thus, the recovered traces
are one-to-many rather than one-to-one.

In the rest of this paper we will refer to classes
from a Java program as implementation classes.
And those form UML class diagram as design clas-
ses. An implementation class is associated to a de-
sign class basing on them properties’ similarities.
We distinguish two kinds of properties. Elementary
properties (e.g. class name, fields’ names…etc.)
and relationship properties (e.g. inheritance, associ-
ation… etc.). Similarity computation for the former
one is relatively simple; it can be done using string
edit distance and a maximum matching algorithm.
But with relationship properties we found ourselves
in the need of an assumed mapping to compute
them. For example, to claim that an implementation
class reflects a design class inheritance, we should
at least suppose that the implementation class par-
ent is the corresponding of the design class parent.
To find the best mapping we use Ant Colony Opti-
mization (ACO) [8] [9], a well-known meta-
heuristic that showed its effectiveness in analogous
problems.

The rest of this paper is organized as flow; in
section 2 we briefly present Ant Colony Optimiza-
tion since it is a key for this work. Than we present
our approach in section 3. And we evaluate it in
section 4. After that, we present some related works
in section 5. A conclusion and future works are
presented in the section 6.

2 ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) was intro-

duced by Dorigo, Colorni and Maniezzo [8] in or-

der to resolve the Traveling Salesman Problem
(TSP). The heuristic was inspired from the behavior
of real world ants. Experiments have shown that
ants can find the shortest path between a food
source and their nest.

Basically, every ant starts by seeking randomly
for a food. Once it’s found, the ant returns to the
nest while laying down pheromone trail. If other
ants find such path of pheromone, they flow it, and
they reinforce it in the returning if they found food.
Over time, pheromone starts to evaporate, thus re-
ducing attraction of some trails. The more time an
ant takes to travel a path, the more time pheromone
evaporates, and the path becomes less and less at-
tractive. A short path gets marched over more fre-
quently, and thus the pheromone density becomes
higher on shorter paths than longer ones.

Ant System was the first ACO algorithm. It
was presented in [8]. To describe its principle, we
take as example the traveling salesman problem. In
Ant System every ant tries to construct solution at
each iteration. A valuable solution for TSP is a tour
that visits each city once. The m ants having built a
solution in an iteration, update the pheromone val-
ues. Pheromone quantity ��� associated to edge
linking city i to j, is updated as a flows: ��� ← �1 � �� ∙ ��� 	 ∑ Δτ����

��� (1)

Where � is the evaporation rate, � is the num-
ber of ants, and Δ���

� is the quantity of pheromone
led on edge ��, �	 by ant
:

Δ����
 �	�/�� if ant � used edge ��, ��,
0 otherwise,

 (2)

Where � is a constant, and �� is the length of
the tour constructed by ant
.

When ant k is in city i and has so far construct-
ed the partial solution
�, the probability of going
to city j is given by:

����
 �	 	��� ∙���
�

∑ 	��� ∙���
�

���∈N�	

�

if ��� ∈ N��
�,
0 otherwise,

 (3)

Where N�
�	 is the set of feasible components;
that is, edges ��, �	 where � is a city not yet visited
by ant
. The parameters � and � control the rela-
tive importance of the pheromone versus the heuris-
tic information ���, which is given by:

� � �

���
 (4)

Where ��� is the distance between cities � and �

3 RECOVERING TRACES

Recovering traceability between design and

code can be viewed as a construction of a mapping

Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

18

• ���� ⊆ � � �	 the set of dependence relation-
ships that may exist in UML class diagrams
• �

� ⊆ � � �	 the set of association relation-
ships that may exist in UML class diagrams
• �� the set of classes that may exist in java pro-
grams
• ! the set of fields that a class " ∈ �� may have
• $! the set of methods that a class " ∈ �� may have
We define the following applications:
• %����
:	� ∪ �� →)� 	 ∪)� !	 the application
that returns for a given class, all of its fields () is
the power set)
• *�+,
:	� ∪ �� →)�$	 ∪)�$! 	 the application
that returns for a given class, all of its methods
• -.���/
:	� ∪ �� →)��	 ∪)���	 the application
that returns for a given class, its supper classes
���������	

 ��� ∈ �: ∃	� ∈ ����, �
 ��, �	� if	� ∈ �

�� ∈ ��: �	inherit directely or indirectly from �� if	� ∈ ��		
• -.���/
:	� →)��	 the application that returns
for a given class, the set of classes on which it de-
pends.

���������	
 �� ∈ �: ∃	� ∈ ����, �
 ��, �	�
• 0

�
:	� →)��	 the application that returns for
a given class, the set of its associated classes.

�������	
 �� ∈ �: ∃	� ∈ ����, �
 ��, �	�
• 12��:	� ∪ �� ∪ 	 ∪ ! ∪ $ ∪$! → 3 the appli-
cation that returns for a given artifact its name.
• 45��:	 ! → �� The application that returns for a
given field, the class representing its type.
• .
��:	$! →)���	 The application that returns for
a given method, the set of classes that it uses as a
parameter or variable type.

3.2.2 similarity for atomic properties CN, F,

and M
Class names have the nature of string in both

design and implementation. So we can use string
edit distance (see [12]) to compute the similarity
between them. Formally we define ��� the similari-
ty between a design class � ∈ � and an implemen-
tation class � ∈ �� in term of class name by: �����, ��
 1 � ���������,��������

|�������|�|�������| (6)

Where �: 3	 → 6 is the edit distance between
two strings.

To compute �
��, �	 the similarity between
� ∈ � and � ∈ �� in term of fields names, we must at
first establish a mapping between fields of � and
fields of �. The mapping should minimize the
amount of editing distances between attribute
names. The mapping is calculated by applying a
minimum-matching algorithm (see [13]) in a bipar-
tite graph of which nodes are names of fields and
edges are weighted by the editing distances be-

tween nodes. We note ���	 the weight of the edge
connected to node � after the application of the
minimum-matching. If � have no corresponding,
���	 is 1. �
 is given by: ����, ��

 	|"�#$�����| � ∑ ����������

|�������|�∈��������� if |"�#$�����| % 00 otherwise
 (7)

By the same reasoning we put �� the similarity
in term of method names: ����, ��

�|&#'(����| �) �*+,-#�-�.|+,-#�-�|
�∈ �!"����

if |&#'(����| % 0
0 otherwise

			
 (8)

3.2.3 similarity for relationship properties; I, A,

and D
We found ourselves unable to compute such

similarities without assuming an existing mapping,
i.e. we compute relationship similarities basing on a
mapping between design and implementation clas-
ses. To describe this situation consider the class
diagram illustrated by Figure 2, and suppose that
we have in the implementation a class defined as
“c4 extends c1”. We can’t deduce a heritance
correspondence between Class4 from the class dia-
gram and c4 from the code, unless we assume that
c1 from the code corresponds to Class1 from the
design. So, to decide if there exists a heritance cor-
respondence between design and implementation
classes, we must at least suppose a mapping be-
tween design supper classes and implementation
classes.

In the rest of this paper we consider a mapping
�2� between a set of design classes � ⊂ � and a
set of implementation classes 8 ⊂ �� as a set of
pairs	� ∈ � � 8. A mapping must verify the fol-
lowing condition:
��, �	 ∈ �2�	 ∧ ��′, �′	 ∈ �2�	 ⟹ � < �′ ∧ � < �′

In the rest of this paper, for a given mapping
�2� we note �2���	 ∈ � the corresponding of
� ∈ � according to �2�

Class2

Class1 Class5

Class3 Class6Class4

a

b c

d

e

Figure 2: Class Diagram Example

3.2.3.1 Inheritance similarity

Inheritance similarity is computed by checking
if the design inheritances for a given class are re-

Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

19

flected by its implementing class. All object orient-
ed programming languages have inheritance re-
served keywords (e.g. “extends” in java). So we
can check such similarity by parsing the code.

The inheritance similarity between a design
class � and an implementation class � according to
the assumed mapping �2� is given by: ���"��, �,-,��

 ∑ #��
����∈���
��,�,��
� 	
|%&

�'����| if	12��#3���� % 00 otherwise 			 (9)

Where =��� is the application that returns the
set of matched design supper classes. Formally, we
define this set by: ;��"��, �,-,��
 <�: � ∈ 12��#3���� ∧ -,���� ∈ 12��#3����? (10)

And >��� is the originality inheritance weight
from a given design class, it is defined by:
������	
 �

|��∈	:�∈�
���������|
 (11)

3.2.3.2 Associations similarity

We use the same process to compute the asso-
ciation similarity. Generally an association relation-
ship is implemented as a class field. Basing on this
principal, we define the association similarity be-
tween a design class � and an implementation class
� according to the assumed mapping �2� by: ����(��, �,-,��

 ∑ #�		�����∈��		���,�,��
� 	
|)��(����| if	@��A���� % 00 otherwise 			 (12)

Where =
��� is the application that returns the
set of matched design associated classes. Formally,
we define this set by: ;���(��, �,-,��
<�: � ∈ @��A���� ∧ -,���� ∈ 	������������? (13)

%����
45��
 returns the set of fields types for
a given implementation class, formally it is defined
by: "$��BC�#����
 ⋃ BC�#�E��∈��������� (14)

3.2.3.3 Dependencies similarity

Dependency relationship is described as flows:
“A dependency is a relationship that signifies that a
single or a set of model elements requires other
model elements for their specification or implemen-
tation.” [14]

According to this definition, if a design class 2
depends on another class ?. This must be reflected
in the code by a use of the supplier corresponding
class (i.e. the corresponding of ?) in the corre-
sponding of 2. So, there is two ways to implement a
dependency relation; as a type of parameter varia-
ble, or as a type of local variable in a method. As-
sociation can also be considered as a special kind of
dependency, but we ignore this case.

We define the dependence similarity between a
design class � and an implementation class � ac-
cording to the assumed mapping �2� by: ���
���, �,-,��

�∑ #��
�����∈���
����,�,��
� 	

|%&

�'����| if	12��$3���� % 00 otherwise 			 (15)

Where =���� is the application that returns the
set of matched suppliers. Formally, we define this
set by: ;��
���, �,-,��
 <�: � ∈ 12��$3���� ∧ -,���� ∈ 	F��BC�#����? (16)

@
��45��
 returns the set of used types for a
given implementation class, formally it is defined
by: "$��BC�#����
 ⋃ 2�#��-��∈��!"���� (17)

3.2.4 mapping construction

Due to the resemblance between the traveling
salesman problem and the construction of a good
mapping between design and implementation, we
decide to use Ant Colony Optimization [8]. Table 2
summarizes the common points between those two
problems.

In order to apply ACO on mapping construc-
tion we must define � the distance heuristic, and �
the length of a solution. � is computed by combin-
ing all atomic similarities, it is given by: ���, ��
 #��⋅�����,���#�⋅����,���#�⋅����,��

#���+#�∙��,-|�����	���|�.�+#�∙��,-|���
��	���|�. (18)

>��,>
, and >� are parameters representing
respectively the weights of ���,�
, and ��. In the
denominator we multiply >
 by A1 C 0|���������|E to
eliminate its effect when	� has no fields. We use
the same mechanism to ignore >� in the denomina-
tor when � has no methods.

Table 2: Common Points Between TSP And Mapping
Construction

Travel Selman Problem Mapping construction
A solution is a cercal
that travel all cities

A solution is a map-
ping that relies every
design class to an
implementation class

A solution is construct-
ed component by com-
ponent

A solution is con-
structed component
by component

A component is an edge
that relies two cities

A component is an
edge that relies a de-
sign class to an im-
plementation class

The quality of a com-
ponent is computed
basing on the distances
between cities

The quality of a
component is com-
puted basing on
atomic similarities

Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

20

between the design
and the implementa-
tion class

The qualities of com-
ponents can guide the
construction of the best
solution

The qualities of com-
ponents can guide the
construction of the
solution

The quality of a solu-
tion is computed using
qualities of all compo-
nents (i.e. distances)

The quality of a solu-
tion is computed us-
ing qualities of all
components (i.e. sim-
ilarities)

Once we construct a mapping �2� that maps

every design class to an implementation class, we
can compute relationship similarities and introduce
them in similarity formula. We define the global
similarity between a design class � and an imple-
mentation class	�, or the score of the trace from �	to
� according to the assumed mapping �2� by:
���, �,���	

��⋅��	,��
���
⋅���
�	,�,����
��		�⋅��		��	,�,����
���
�⋅���
��	,�,����
��
����
⋅����|��

��	���|��
���		�⋅����|�		�	���|��
����
�⋅����|��

��	���|��

 (19)
Where	>�,>���, >
���, and >���� are parame-

ters.
Now we can assess the global quality of the

mapping. The quality (length in TSP) of a mapping
�2� that maps a set of design classes � to a set of
implementation classes is given by: ��G,-,��
 ∑ /��,��
���,��
��∈�

|0| (20)

After defining all the needed similarities, we
can apply ACO meta-heuristic on the problem of
mapping construction. In our approach, ants seek
for the best mapping by constructing mappings and
assessing them qualities. The construction of a
mapping is a progressive task; it’s done component
by component. A component is pair ��, �	 ∈ � � ��	
indicating that the design class � is implemented in
the code as �. To construct a mapping between
� ⊂ � and 8 ⊂ �� , ants flow the algorithm in Fig-
ure 3.

1

2

3

4

5

6

7

8

9

10

11

while (stop condition not reached)

 -,�
 enmpty	set
 for each � in G
 choose � a valid corresponding of � from L
 save ��, �� into -,�
 rof

 update pheromone basing on -,�
 if (���',M�#�-,�� N ���',M�#�O#�'&,��)
 O#�'&,�
 -,�
 fi

end while

Figure 3: Mapping construction algorithm

Where ?�
+*2� is an initially empty shared
variable. The stop condition – in the first line – can
be defined as a number of iterations, the stability of
the results, or a reaching of predefined threshold by
the ?�
+*2� distance.

A valid corresponding – in the fourth line – for
a design class according to a partial mapping �2�
is an implementation class that never be used in all
ordered pairs belonging to �2�. The probability of
choosing � ∈ 8 as the corresponding of � ∈ � ac-
cording to the partial mapping �2� ∈ P�� � 8	 is
given by formula 21

P����

 �	 	��� ∙���,���
∑ 	� � ∙���,��� ∈N�!,��
�

if � ∈ N�L,-,��,
0 otherwise,

 (21)

N�8,�2�	 is the set of valid implementing
classes according to the partial mapping �2�, it is
defined by: N�L,-,��
 <� ∈ L: ∀��, �� ∈ -,� ⇒ � % �? (22)

When the program reaches the seventh line, a
valid solution (i.e. a mapping) should be construct-
ed. The pheromone updating policy is based on the
quality of the solution. We define the new phero-
mone value between � ∈ � and � ∈ 8 according to
the solution �2� ∈ P�� � 8	 by: �����

�	�1 � �� ∙ ��� 	 � S ��T,-,�� if	��, �� ∈ -,�
�1 � �� ∙ ��� otherwise,

 (23)

Where � is the evaporation rate, � is a con-
stant, ��� is the amount of pheromone that repre-
sents the attraction of choosing � as the correspond-
ing of �

3.2.5 trace scoring

From a theoretical perspective, traces exist be-
tween every design class and every implementation
class. But some are relevant and others aren’t. We
score each trace by its relevance degree. The rele-
vance degree of a trace is given by formula (19)
using the best mapping constructed previously by
ACO.

3.3 Trace Filtering
In this step we use a threshold to accept or re-

ject traces. The decision is taken by comparing
traces scores to a threshold. The threshold can be
selected by the user or computed automatically us-
ing Zhao method [15]. If we apply Zhao method on
our work, we can automatically determine the
threshold for each design class � by sorting its trac-
es in descending order according to their scores.
Then we compute the differences between each two
successive scores, and we identify the two traces

Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

21

having the greatest distance. The score G of the up-
per one is used as a threshold. All traces that trace
� having score greater than or equal to G will be
considered as accepted traces.

It’s worth noting that our approach may accept
for the same design class many corresponding im-
plementation classes. Two interpretations are pos-
sible for such case, the former is that the design
class is refined into many implementation classes;
the latter is that the scores are to contiguous for
automatic filtering and they require human inter-
vention.

4 CASE STUDY

4.1 Subject
We use as subject of our experiment an ATM

system. A well-known example in object oriented
development. We got the design and the Java im-
plementation from [16] it’s a pedagogic example
that aims to teach the object oriented paradigm.

Due to its pedagogic purpose, the design of our
subject fits perfectly with its implementation. So if
we take the original versions of the code and the
design, we will be able to perfectly recover all trac-
es by only using class names. To make our subject
more realistic, we modify some names in the source
code. The modification is basically a translation
from English to French. This may accrue in the
case where programmers are originally franco-
phone. Table 3 represents statistics about the ATM
system design and implementation.

Table 3: ATM statistics

 Artifact type Occurrence count

Im
p

le
m

en
ta

-
tio

n

Line of code 2418
Constructors 39
Fields 174
Methods 151
Packages 6
Classes 65

D
es

ig
n

Classes 22
Fields 108
Operations 97
Associations 17
Inheritances 4
Dependencies 17

4.2 Metrics

To measure the quality of results we use the

two most frequent and basic measures for infor-

mation retrieval effectiveness, Recall and Precision
[17]. Precession measures the fraction of relevance
of the returned results to the need information. Re-
call measures the fraction of the relevant results
that are retrieved.

Formally precision and recall are defined as:

precision(�) �	
|/���I2�+��	 ∩ �2+",����	|

|�2+",����	|

recall(�) �	
|/���I2�+��	 ∩ �2+",����	|

|/���I2�+��	|

4.3 Results

To illustrate the gain that relationships bring, we com-
pare the results of our approach with those given by for-
mula (18) that combines all atomic similarities. Table 4,

Table 5, and

Table 6 represent respectively the returned re-
sults for the predefined thresholds 0.70 and 0.50
and for the automatic threshold. In every one of
those tables, Classes column represents the design
classes of our subject, It contains all classes that
exist in class diagrams of ATM system; η column
represents the results assessed by the similarity that
combines all atomic similarities; And L column
represents the results returned by our approach.

Table 4: Results For The Threshold 0.70

Classes
Recall Precision
η L η L

Money 1 1 1 1
Balances 0 0 − −
ATM 0 0 − −
Log 0 0 − −
Cash Dispenser 0 0 − −
Message 1 0 1 −
Envelope Acceptor 1 1 1 1
Card Reader 1 0 1 −
Network ToBank 1 0 1 −
Status 1 1 1 1
Customer Console 1 1 1 1
Receipt 0 0 − −
Transaction 1 0 1 −
Card 1 1 1 1
Receipt Printer 1 1 0.5 1
Operator Panel 1 1 1 1
Session 1 0 1 −
Withdrawal 1 0 1 −
Inquiry 0 0 − −
Transfer 1 0 1 −
Deposit 1 0 1 −
Account Information 1 1 1 1
Total 0.72 0.36 0.94 1

Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

22

Table 5: Results For The Threshold 0.50

Classes
Recall Precision
η L η L

Money 1 1 1 1
Balances 0 0 − −
ATM 1 1 1 1
Log 1 1 0.5 1
Cash Dispenser 0 0 − −
Message 1 1 1 1
Envelope Acceptor 1 1 0.33 1
Card Reader 1 1 1 1
Network ToBank 1 0 1 −
Status 1 1 0.25 0.25
Customer Console 1 1 1 1
Receipt 1 0 1 −
Transaction 1 0 1 −
Card 1 1 1 1
Receipt Printer 1 1 0.33 1
Operator Panel 1 1 1 1
Session 1 0 0.5 −
Withdrawal 1 0 1 −
Inquiry 0 0 − −
Transfer 1 0 1 −
Deposit 1 0 1 −
Account Information 1 1 0.09 0.09
Total 0.86 0.54 0.5 0,48

Table 6: Results For Zhao Threshold

Classes
Recall Precision
η L η L

Money 1 1 1 1
Balances 1 1 1 1
ATM 1 1 1 1
Log 1 1 0.5 1
Cash Dispenser 1 1 1 1
Message 1 1 1 1
Envelope Acceptor 1 1 1 1
Card Reader 1 1 1 1
Network ToBank 1 1 1 1
Status 1 1 1 1
Customer Console 1 1 1 1
Receipt 1 1 1 1
Transaction 1 1 1 1
Card 1 1 1 1
Receipt Printer 1 1 1 1
Operator Panel 1 1 1 1
Session 1 1 1 1
Withdrawal 1 1 1 1
Inquiry 1 1 0.16 0.25
Transfer 1 1 1 1
Deposit 1 1 1 1
Account Information 1 1 1 1
Total 1 1 0.78 0.88

4.4 Discussion

From Table 4 we could see that when we use the prede-
fined threshold 0.70 � method (i.e. the one based on

atomic similarities) retrieves more traces than our ap-
proach. Our approach seems very weak since it retrieves
only 36% of traces. Comparing to � witch retrieves 72%

of traces we can claim that relationships similarities
decrease the quality of results when we use 0.70 as a
threshold. This can be interpreted in two ways, i) as a

disadvantage of introducing relationship similarities; ii)
or as a decreasing of similarities when we consider rela-

tionships. According to the second interpretation, we
suppose that we can get better results using smaller

threshold and that’s what leads as to results of

Table 5. We will discuss results of this last one
after talking about the precision. As Table 4 re-
ports, the two considered methods give a high level
of precision. Results of η method are 94% precise
and those of our approach are 100% precise. The
perfect precision of our approach when we use the
threshold 0.70 is not very significant because of its
low recall.

In

Table 5 we can see that when we use of thresh-
old 0.50 both of methods return a better recall. η
method retrieves 86% of traces and our approach
retrieves 54% of traces. Despite the improvement
of our approach’s recall (i.e. from 36% to 54%), it
remains useless. The least we can say, 54% is in-
significant comparing to 86% retrieved by η meth-
od. From the precision point of view, η method
returns also better results than ours. η method is
precise at 50% and our approach is at 48%. But for
both methods, returning results precise at almost
50% is not useful as an automated trace recovering
technique.

Choosing the right threshold is a challenge. We
can see that for both methods, if we increase the
threshold, we gain more precision but we lose some
recall. And if we decrease it, we gain more recall
and we lose precision. The reason is that the simi-
larity between a design class and its relevant corre-
sponding implementation class change from a class
to another. This is confirmed by Figure 4 which
represents similarities between design classes and
there relevant correspondents. From Figure 4 we
can see that there is no good common threshold.
Even if we choose the average, we will get bad re-
sults because of the important similarity variance.

Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

23

Figure 4: Similarities Between Design Classes And There
Relevant Correspondents

Due to the bad quality that we got when we used common
thresholds, we must specify a threshold for each design
class. So we use Zhao method to assess the right thresh-

old.

Table 6 represents the gotten results using an
automatic threshold assessment. From that table we
can see that both of methods got a perfect recall
(i.e. 100%). In term of precision, results of our ap-
proach are precise at 88%, and those of η method
are at 78%. We could claim that our approach is
precise than η method, and relationships help us to
eliminate false positive traces.

From

Table 6 we could see that our approach reduce
false positives traces in the case of Log and the case
of Inquiry. To details the effectiveness of our ap-
proach in the case of Inquiry and Log. We drive the
histograms of Figure 5 and Figure 6. They represent
the traces’ scores and Zhao thresholds respectively
for Inquiry and for Log.

Figure 5: Traces' Scores For Inquiry Class

Figure 6: Traces' Scores For Log Class

5 RELATED WORKS

A lot of papers treat the problem of trace re-

covering. The iterative nature of software develop-
ment breeds lot of kinds of traces. In the literature
several works were proposed to recover those traces
by focusing on specific kinds. We identify two
main categories of trace recovery approaches.
Those basing on Information Retrieval (IR) tech-
nics, and those how are basing on properties’ simi-
larities.

5.1 IR based Approaches
In [18] authors recover traces between free text

documents and source code. They exploit the idea
of language model, i.e. a stochastic model that as-
signs a probability value to every string of words
taken from a prescribed vocabulary. Language
models are estimated from the documents, one for
each document or identifiable section. Then they
apply Bayesian classification to score the sequence
of mnemonics extracted from a selected area of
code against the language models. A high score
indicates a high probability that a particular se-
quence of mnemonics drives from the document or
document’s section that generated the language

0

0.2

0.4

0.6

0.8

1

1.2

M
o

n
e

y

B
a

la
n

c
e

s

A
T

M

L
o

g

C
a

sh
 D

is
p

e
n

se
r

M
e

ss
a

g
e

E
n

v
e

lo
p

e
…

C
a

rd
 R

e
a

d
e

r

N
e

tw
o

rk
 T

o
B

a
n

k

S
ta

tu
s

C
u

st
o

m
e

r…

R
e

c
e

ip
t

T
ra

n
sa

c
ti

o
n

C
a

rd

R
e

c
e

ip
t

P
ri

n
te

r

O
p

e
ra

to
r

P
a

n
e

l

S
e

ss
io

n

W
it

h
d

ra
w

a
l

In
q

u
ir

y

T
ra

n
sf

e
r

D
e

p
o

si
t

A
c
c
o

u
n

t…

η method our approach

η average our approach average

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
T
M
A
p
p
le
t

D
B
A

D
is
tr
ib
u
te
u
rE
sp
e
ce
s

C
u
st
o
m
e
rC
o
n
so
le

E
n
v
e
lo
p
e
A
cc
e
p
to
r

W
it
h
d
ra
w
a
l

C
a
rt
e
S
a
is
ie

S
o
ld
e

In
fo
rm

a
ti
o
n
D
e
C
o
m
p
te

Lo
g
P
a
n
e
l

S
im

E
n
v
e
lo
p
e
A
cc
e
p
to
r

C
a
rd
P
a
n
e
l

S
im

O
p
e
ra
to
rP
a
n
e
l

S
u
cc
e
s

S
im

K
e
y
b
o
a
rd

our approach

η method

our approach's threshold

η method's threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
T
M
A
p
p
le
t

D
B
A

D
is
tr
ib
u
te
u
rE
sp
e
…

C
u
st
o
m
e
rC
o
n
so
le

E
n
v
e
lo
p
e
A
cc
e
p
to
r

W
it
h
d
ra
w
a
l

C
a
rt
e
S
a
is
ie

S
o
ld
e

In
fo
rm

a
ti
o
n
D
e
C
o
…

Lo
g
P
a
n
e
l

S
im

E
n
v
e
lo
p
e
A
cc
…

C
a
rd
P
a
n
e
l

S
im

O
p
e
ra
to
rP
a
n
e
l

S
u
cc
e
s

S
im

K
e
y
b
o
a
rd

our approach

η method

our approach's threshold

η method's threshold

Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

24

model. In the context of information retrieval, this
approach is classified as a probabilistic approach.

Then Antoniol et al. [19] exploit VSM (Vector
Space Model) to recover traceability links between
source code and free text. The request for a given
class is composed of identifiers belonging to that
class. And similarity between the request and the
document is computed by cosine.

In [20] authors compare the probabilistic mod-
el presented in [18] and the vector space model
presented in [19]. The results show that the former
model is mostly better than the latter in term of
recall and precision.

De Lucia [21], [22] propose an approach based
on LSI (Latent Semantic Indexing) to recover traces
between different kinds of artifacts (e.g. require-
ment, design, test case, and code). The approach is
implemented in a system named ADAMS.

Wang et al. [23] enhance the LSI method to re-
cover more relevant traces between high level doc-
uments and source code. The paper presents four
enhancements: source code clustering, identifier
classifying, similarity thesaurus, and hierarchical
structure enhancement.

De Lucia et al. [24] propose an approach to
help developers to maintain source code identifiers
and comments consistent with high-level artifacts.
The approach use LSI to assess the similarity be-
tween low-level and high-level artifacts. It was im-
plemented in an eclipse plug-in named COCONUT.
In addition to similarity computation, the tool sug-
gests identifiers obtained by extracting n-grams
form the high-level documents.

Another IR based approach was proposed in
[25]. In that work, authors use semantic relatedness
to recover traceability links between free-text doc-
uments and source-code. Authors use a Wikipedia-
based semantic relatedness measure, namely Ex-
plicit Semantic Analysis (ESA) [26] as SR retrieval
technique.

Textual and structural information are com-
bined in [27] to recover traceability links. Authors
use LSI to recover document-to-source traces, and
JRipples [28] to recover source-to-source traces.
Then they infer document-to-document traces bas-
ing on the previous results. Although such a combi-
nation increase the recovered links, it has an im-
portant disadvantage. False positive links recovered
by IR will significantly pollute the results by infer-
ring false positive links. To overcome this draw-
back, an approach was recently proposed in [29],
basically the improvement consists of validating IR
recovered links before inferring new ones.

IR based approaches don’t exploit the structur-
al aspect of the code and the design. They are rather

adapted to free text. It’s worth noting that those
approaches suffer from the same problems of IR,
i.e. polysemy (different meanings for the same
word) and synonymy (same meaning for different
words). The LSI technique was proposed to over-
come these failings, but it is unable in front of sit-
uations where the artifacts are written using differ-
ent lexicons. Which is very probable in software
development since several developers gets involved
in this task.

5.2 Properties’ Similarities based Approaches
Antoniol et al. [30], [31] recover traces be-

tween design and code using the edit distance com-
putation and the maximum match algorithm. Global
similarity between two artifacts is computed basing
on the resemblance of their names, their fields
names, and their methods names and signatures.

Then Antoniol et al. [32] extend the work in
[30] by introducing relationship and dictionnary
similarities. This work differs from ours since it
uses relationships to check the quality of tractability
rather than using them in the construction of traces.

In [33] authors asses the similarity between a
design artifact and an implementation artifact bas-
ing on three kinds of similarities: classifiers names,
metric profiles, and packages.

Classes in design and in implementation share
lot of properties. Which properties are more rele-
vant to trace recovering is the subject of the re-
search presented by Antoniol et al. [34]. In that
work, different combinations where analyzed. All
the gotten results suggest that the best performing
combinations are those with an explicit representa-
tion of the class name, while very poor performanc-
es are associated to methods based on the relations
of a class with the other classes.

It is worth noting that this work use relation-
ships in a different manner than us. They transform
it to a class attributes of type string. If, for example,
class A generalizes class B, the attribute "generaliz-
es->B" is attached to class A, and the attribute "ex-
tends->A" is attached to class B. This is not the best
way to exploit relationships in trace recovery, since
all relationships having the same type will have the
same common prefix (e.g “generalize->”), which
disturbs the similarity. To illustrate this case, take
the example of “generalize->pen” and “generalize-
>cat” , the similarity between those two strings
basing on edit distance is at 90%, which is far high-
er than the reality. Another disadvantage of this
method is that the similarity depends only on the
names of the classes.

6 CONCLUSION

Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

25

Traceability links helps in terms of quality and

productivity. They are generally involved in several
activities of software development, and especially
in maintenance. But market and delays pressures
force developers to sacrifice them. The purpose of
this work is to recover traces between design and
implementation.

This work describes a similarity based ap-
proach to recover traceability links between UML
design classes and java classes. The similarity is
computed basing on properties resemblance. Two
categories of properties are considered: elementary
properties and relationship properties. Resemblance
for the former is assessed using string edit distance
and a maximum matching algorithm. To compute
the similarity in term of a relationship property, we
must assume a mapping between the design and the
code. The mapping is constructed using an ACO
algorithm.

The originality of this work consists in the ex-
ploitation of relationships. When computing simi-
larity in terms of a relationship, we consider the
nature of the relationship, and all the property of
the class that is at the other end of the relationship.
According to the evaluation result, we can see that
this approach seems promising. Experimentation
shows that, when we use Zhao threshold, relation-
ships improve to 10% the precision while keeping
the same recall. Evaluation shows also that our ap-
proach gives bad results when using a predefined
threshold. Thus we strongly recommend the use of
Zhao threshold to filter traces.

The case study subject is not large enough to
evaluate this work, but the lack of suitable subjects
on the internet has forced us to take such a decision.
In future work we will extend our approach to cov-
er other programing languages and diagrams. An
evaluation on larger subjects is also planned and
will be the subject of future works. It is worth not-
ing that this work is part of a large change impact
analysis project.

REFERENCES:

[1] IEEE Std 610.12, IEEE Standard Glossary of

Software Engineering Terminology, (1990)
[2] ISO/IEC 12207, Software & Systems Engineer-

ing Standards Committee of the IEEE Com-
puter Society, (2008)

[3] Zhao W., Zhang L., Liu Y., Luo J., & Sun J.:
Understanding how the requirements are im-
plemented in source code. In Software Engi-
neering Conference, Tenth Asia-Pacific, (De-
cember 2003), pp. 68-77.

[4] Borg M.: IR-based Traceability Recovery as a
Plugin–An Industrial Case Study. In Proceed-
ings of the Fourth BCS-IRSG conference on
Future Directions in Information Access.
(2011), pp. 14-17

[5] Shatnawi R., Alzu'bi A.: A Verification of the
Correspondence between Design and Imple-
mentation Quality Attributes Using a Hierar-
chal Quality Model. IAENG International
Journal of Computer Science, Vol. 38, No. 3,
(2011), pp. 225-233.

[6] Hammad M., Collard M. L., & Maletic J. I.:
Automatically identifying changes that impact
code-to-design traceability during evolution.
Software Quality Journal, Vol. 19, No. 1,
(2011), pp. 35-64.

[7] Delater A., Narayan N., & Paech B.: Tracing
Requirements and Source Code during Soft-
ware Development. In ICSEA 2012, The Sev-
enth International Conference on Software
Engineering Advances, (2012), pp. 274-282.

[8] Dorigo M., Maniezzo V., Colorni A., & Ma-
niezzo V.:Positive feedback as a search strat-
egy. (Tech. Rep. 91-016). Milan, Italy:
Politecnico di Milano, Dipartimento di
Elettronica, (1991).

[9] Colorni A., Dorigo M., & Maniezzo V.: Dis-
tributed optimization by ant colonies. In Pro-
ceedings of the first European conference on
artificial life, (1991), pp. 134-142.

[10]: IBM, “Java naming conventions,” available at
http://www.ibm.com/developerworks/library/
ws-tip-namingconv.html (last visited on
24/08/13)

[11]: Oracle, “Code Conventions for the Java Pro-
gramming Language,” available at
http://www.oracle.com/technetwork/java/code
conv-138413.html (last visited on 24/08/13)

[12] Gusfield D.: Algorithms on strings, trees and
sequences: computer science and computa-
tional biology. Cambridge University Press.
(1997)

[13] Cormen T. H., Leiserson C. E., Rivest R. L., &
Stein C.: Introduction to algorithms. Third
edition. The MIT press. (2001)

[14] OMG Unified Modeling LanguageTM (OMG
UML),Superstructure, Version 2.4.1, Date:
August 2011

[15] Zhao W., Zhang L., Liu Y., Sun J., & Yang F.:
SNIAFL: Towards a static noninteractive ap-
proach to feature location. ACM Transactions
on Software Engineering and Methodology
(TOSEM), Vol. 15, No. 2, (2006), pp. 195-
226.

Journal of Theoretical and Applied Information Technology
 10th January 2014. Vol. 59 No.1

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

26

[16]: http://www.math-
cs.gordon.edu/courses/cs211/ATMExample/
(last visited on 24/08/13)

[17] Manning C. D., Raghavan P., & Schütze H.:
Introduction to information retrieval. Cam-
bridge: Cambridge University Press, (2008)

[18] Antoniol G., Canfora G., De Lucia A., & Mer-
lo E.: Recovering code to documentation links
in OO systems. Reverse Engineering. Pro-
ceedings. Sixth Working Conference on.,
(1999), pp. 136-144.

[19] Antoniol G, Canfora G., Casazza G., et al.:
Information retrieval models for recovering
traceability links between code and documen-
tation. In : Software Maintenance, 2000. Pro-
ceedings. International Conference on. IEEE,
(2000). pp. 40-49.

[20] Antoniol G., Canfora G., Casazza G., & De
Lucia A.: Recovering traceability links be-
tween code and documentation. Software En-
gineering, IEEE Transactions on, Vol. 28, No.
10 (2002), pp. 970-983.

[21] De Lucia A., Fasano F., Oliveto R., & Tortora
G.: Enhancing an artefact management system
with traceability recovery features. In Soft-
ware Maintenance Proceedings. 20th IEEE In-
ternational Conference on, (2004), pp. 306-
315.

[22] De Lucia A., Fasano F., Oliveto R., & Tortora
G.: Adams re-trace: A traceability recovery
tool. In Software Maintenance and Reengi-
neering, CSMR 2005. Ninth European Con-
ference on, (2005) pp. 32-41.

[23] Wang X., Lai G., & Liu C.: Recovering rela-
tionships between documentation and source
code based on the characteristics of software
engineering. Electronic Notes in Theoretical
Computer Science, Vol. 243, (2009), pp. 121-
137.

[24] De Lucia A., Di Penta M., & Oliveto R.: Im-
proving source code lexicon via traceability
and information retrieval. Software Engineer-
ing, IEEE Transactions on, Vol. 37, No. 2,
(2011), pp. 205-227.

[25] Mahmoud A., Niu N., & Xu S.: A semantic
relatedness approach for traceability link re-
covery. In Program Comprehension (ICPC),
2012 IEEE 20th International Conference on,
(2012, June), pp. 183-192.

[26] Gabrilovich E., & Markovitch S.: Computing
Semantic Relatedness Using Wikipedia-based
Explicit Semantic Analysis. In IJCAI, 7,
(2007, January), pp. 1606-1611.

[27] McMillan C., Poshyvanyk D., & Revelle M.:
Combining textual and structural analysis of

software artifacts for traceability link recov-
ery. In Traceability in Emerging Forms of
Software Engineering, 2009. TEFSE'09. ICSE
Workshop on, (2009, May), pp. 41-48.

[28] Buckner J., Buchta J., Petrenko M., & Rajlich
V.:. JRipples: A tool for program comprehen-
sion during incremental change. In Program
Comprehension, 2005. IWPC 2005. Proceed-
ings. 13th International Workshop on, (2005,
May), pp. 149-152.

[29] Panichella A., McMillan C., Moritz E., Palmi-
eri D., Oliveto R., Poshyvanyk D., & De Lu-
cia A.: When and how using structural infor-
mation to improve IR-based traceability re-
covery. In Software Maintenance and Reengi-
neering (CSMR), 2013 17th European Con-
ference on , (2013, March), pp. 199-208.

[30] Antoniol G., Potrich A., Tonella P., & Fiutem
R.: Evolving object oriented design to im-
prove code traceability. In. Proceedings. Sev-
enth International Workshop on Program
Comprehension (1999), pp. 151-160.

[31] Antoniol G., Canfora G., Casazza G., & De
Lucia A.: Maintaining traceability links dur-
ing object-oriented software evolution. Soft-
ware: Practice and Experience, Vol. 31, No. 4,
(2001), pp. 331-355.

[32] Antoniol G., Caprile B., Potrich A., & Tonella
P.: Design-code traceability for object-
oriented systems. Annals of Software Engi-
neering, Vol. 9. No. 1-2, (2000): 35-58.

[33] Van Opzeeland D. J., Lange C. F., &
Chaudron M. R.: Quantitative techniques for
the assessment of correspondence between
UML designs and implementations. In 9th
ECOOP Workshop on Quantitative Ap-
proaches in Object-Oriented Software Engi-
neering, (2005)

[34] Antoniol G., Caprile B., Potrich A., & Tonella
P.: Design-code traceability recovery: select-
ing the basic linkage properties. Science of
Computer Programming, Vol. 40, No. 2,
(2001), pp. 213-234.

