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ABSTRACT

Traceability is a key issue to promoting softwaevelopment quality and productivity. It was recagu

as crucial for several software development anchteaance activities. Despite their importance,etadd-

ity links are often sacrificed during software awan due to market pressure. In this work we pres@a
approach to recover them between the design aniniblementation. Our approach recover traces basing
on properties’ similarities, it exploits string edistance, maximum matching, and Ant Colony Optani
tion. Evaluations show promising results of thiskvo

Keywords: Traceability, Object-Oriented Programming, SoftwdEolution, Program Understanding,
Software Maintenance, UML, Ant Colony Optimization.

ed into software development process and treat
it as a quality factor towards achieving process
improvement. It is the key to locate code areas
that implement a given requirement and vali-
date that a system meets its requirements.
Program comprehension: When maintaining a
legacy system, the first major problem a main-
tainer is facing may be the comprehension of
software system [3]. Trace links can help in
both top-down and bottom-up comprehension.
In the former, traces give hints on where to
look for beacons that either confirm or refute a

1 INTRODUCTION

Software systems are developed step by step
starting from an abstract representation of the sys
tem, arriving to a runnable code ready for deploy-
ment. Throughout this process, artifacts are ctgateiii.
modified, and refined into more detailed artifacts.
This phased nature of the development leaves traces
and traceability among artifacts.

According to IEEE Standard Glossary of Soft-
ware Engineering Terminology [1] traceability is
defined as:

i. The degree to which a relationship can be es-
tablished between two or more products of the
development process, especially products hav-
ing a predecessor—successor or master—
subordinate relationship to one another.
ii. The degree to which each element in a soft-
ware development product establishes its rea-

iv.

hypothesis. In the latter one, traces assist pro-
grammers in the assignment of a concept to a
chunk of code and in the aggregation of chunks
into more abstract concepts.

Rational comprehension: traces help develop-
ers to understand the rationale behind certain
design and implementation aspects of a system.

son for existing. Lack of traceability can lead to less maintaina-
Traceability links are used in many softwareble software and to defects due to inconsisteraries
development tasks, among them we can find: omissions. It is one of the top factors causing de-
i. Change impact analysis: this activity aims tdays in software engineering projects [4]. And it
identify witch artifacts are affected by a pro-causes the software to deviate from the external
posed change. When change starts from thguality attributes such as understandability, reusa
code, traceability links help developer to up-bility, and extendibility [5].
date appropriates high-level artifacts. When  However, traceability links are regularly bro-
change starts from abstract artifacts, traceabiken and sacrificed during software evolution [6].
ity links help developers to manage the change€his is basically due to them updating cost and the
and assessing its cost by propagating its impaotarket pressure. Two solutions are envisaged for
trough lower levels artifacts. this problem: reverse engineering, and trace recov-
ii. Requirement Engineering: Many software enering.
gineering standards (see [2]) emphasize on the Reverse engineering tools can automatically
need of requirements traceability to be includgenerate a design from the code. Obviously the
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generated design will be consistent with the codder to resolve thelraveling Salesman Problem
and traces can be saved during the design recovémMSP. The heuristic was inspired from the behavior
process. But designs produced by users are usuatlfy real world ants. Experiments have shown that
richer than those extracted automatically, sineg th ants can find the shortest path between a food
include context and high level semantic inforsource and their nest.
mation. Therefore it is always better to use human Basically, every ant starts by seeking randomly
produced designs, and maintain them consistenégr a food. Once it's found, the ant returns to the
with the code. nest while laying down pheromone trail. If other
Trace recovering aims to recuperate traces bants find such path of pheromone, they flow it, and
tween artifacts. Manual creation of traceabilitythey reinforce it in the returning if they foundofih
links between requirements and source code is dver time, pheromone starts to evaporate, thus re-
ror-prone, time consuming and complex [7], whiclducing attraction of some trails. The more time an
emphasize the need of automation of this activity. ant takes to travel a path, the more time pheromone
In this paper we present a similarity based tracevaporates, and the path becomes less and less at-
recovering approach. Our approach operates dractive. A short path gets marched over more fre-
UML class diagram and the source-code expressedently, and thus the pheromone density becomes
in java. It associates every design class to afet higher on shorter paths than longer ones.
java classes. We believe that the implementation Ant System was the first ACO algorithm. It
may split and refine a class from the class diagramas presented in [8]. To describe its principle, we
into several java classes. Thus, the recovereddradake as example the traveling salesman problem. In
are one-to-many rather than one-to-one. Ant System every ant tries to construct solution at
In the rest of this paper we will refer to classegach iteration. A valuable solution for TSP is arto
from a Java program asnplementation classes. that visits each city once. T ants having built a
And those form UML class diagram dssign clas- solution in an iteration, update the pheromone val-
ses An implementation class is associated to a detes. Pheromone quantity;; associated to edge
sign class basing on them properties’ similaritieginking city i to j, is updated as a flows:
We distinguish two kinds of properties. Elementary,; « (1 -p) - t; + T, Até 1)
properties (e.g. class name, fields’ names...etc.) Wherep is the evaporation rate; is the num-
aqd reIationship properties (e.0. !nheritance, @SSO0 per of ants, anth,kj is the quantity of pheromone
ation... etc.). Slml_larlty computation for thg formgqed on edgéi, j) by antk:
one is relatively simple; it can be done usingnstri Q/L, ifantk used edge (i, )),
edit distance and a maximum matching algorithmaz; ={
But with relationship properties we found ourselves 0 _otherwise, )
in the need of an assumed mapping to compute WhereQ is a constant, ang is the length of
them. For example, to claim that an implementatiof€ tour constructed by akt
class reflects a design class inheritance, we ghoul ~When ankis in cityi and has so far construct-
at least suppose that the implementation class p&d the partial solutios?, the probability of going
ent is the corresponding of the design class paref CIty] IS g|>/en by:
To find the best mapping we use Ant Colony Opti- {L if c;j € N(sP),

(@)

mization (ACO) [8] [9], a well-known meta- Pii = f

ZcileN(sP)T%'Tll‘j (3)
heuristic that showed its effectiveness in analsgou 0 _ otherwise, )
problems. WhereN(sP) is the set of feasible components;

The rest of this paper is organized as flow: ithat is, edgegi, ) wherel is a city not yet visited
section 2 we briefly present Ant Colony Optimiza-Py antk. The parameters andf control the rela-
tion since it is a key for this work. Than we pretse tive importance of the pheromone versus the heuris-
our approach in section 3. And we evaluate it ifiC informationn;;, which is given by:
section 4. After that, we present some related worky = L (4)

in section 5. A conclusion and future works are \t;\i/jh 4. is the di b iticandi
presented in the section 6. ered;; is the distance between citieand)

2  ANT COLONY OPTIMIZATION
3 RECOVERING TRACES
Ant Colony Optimization (ACO) was intro-

duced by Dorigo, Colori and Maniezzo [8] in or- Recovering traceability between design and

code can be viewed as a construction of a mapping
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between the set of classes in class diagrams and the
set of classes in source code. The mapping is con-
structed basing on the similarities between elements
of each set.

The process of similarities computation and
trace recovery is illustrated by Figure 1. In the rest
of this section we will explain the steps of this pro-
cess.

Java

Program
Parsing and Pre-

processing

Java ASTs
\—> Computing
Similarities

Class
Diagram
ASTs

UML Class
Diagram

Scored
Traces

Figure 1: Trace Recovery Process

3.1 Parsing and Pre-processing

In this step we extract and prepare information
for similarity assessment. This step takes as input a
java program and a UML class diagram; it parses
them using respectively a java parser (e.g. eclipse
JDT parser) and a UML engine (e.g. Papyrus). This
results java ASTs and class diagram ASTs. Then it
prepares those ASTs to computation.

Programming languages mostly don’t allow the
use of whitespaces and punctuation in identifiers.
To represent many words in the same identifier,
java programmers conventionally [10][11] use two
forms: camelCase and separated by underscore.
From the UML side, there is no naming restriction
or convention. This divergence of naming form
complicates the task of names comparing. So we
must normalize all names by transforming them to
a common form. This task is performed as flows:

1. Splitting into separated words the composed
identifiers by wusing an under score or
camelCase separator.

Removing non alphabetical characters
Converting all uppercase latters into lower-
case.

3.2 Computing Similarities

A human can decide if a given class from a
code is the correspondent of a design class basing
on the shared properties between them. For exam-
ple if two classes have the same name, at most the
same fields names, or at most the same methods
names; they are probably classified as mutually

corresponding. We use the same principle to com-
pute the similarity between a design class and an
implementation class, the global similarity is given
by the sum of weighted similarities of their proper-
ties divided by the sum of properties weights:

similarity(d, i) = LZpep wp similarity, (d.)) 5)
Zperwp

Where P is the set of properties that a class can
have, similarity,(d,i) the similarity between the
design class d and the implementation class i in
term of the property p, and w, is the weight of
similarity,,.

We summarize the considered properties in
Table 1. We distinguish two categories of property,
elementary and relationship. We define an elemen-
tary property as a class property that can be de-
scribed without using other classes. In our case we
have three properties in this category; CN, F, and
M.

A relationship property for a given class is a
property that we describe using other classes. In our
case we consider three kinds of properties belong-
ing to this category; inheritance, dependency, and
association.

Table 1: Properties Table

Acronym | Description Category

CN Class name Bl ¢ )
F Fields names ementary — prop
M Methods names erties

I Inheritances . .

A Associations leiliilzzlonshlp prop-
D Dependencies

Since the code is the implementation of the de-
sign, it has more properties than the design. A
property may appear in an implementation class
without appearing in the corresponding design
class. For such case we consider the property as a
detail and its absence in the design don’t affect the
similarity. We will apply this principal in all simi-
larities that we define.

3.2.1 notations

In the rest of this paper, we consider the following
sets:

e S the set of strings

o C the set of classes that may exist in UML class
diagrams.

o A the set of fields that a class ¢ € C may have

e M the set of operations that a class ¢ € C may
have

e Jnhr € C X C the set of inheritance relationships
that may exist in UML class diagrams
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* Depn € Cx C the set of dependence relation-tween nodes. We noté(n) the weight of the edge
ships that may exist in UML class diagrams connected to node after the application of the
« Asso € Cx C the set of association relation-minimum-matching. Ifn have no corresponding,
shi_ps that may exist in UML class diagrams d(n) is 1.nf is given by:
« C the set of classes that may exist in java prox(d. i =
grams ) { IFields(d)] — 3 serieasa) ﬁﬁ;vr;"(;’;? if |Fields(d)| # 0
« A the set of fields that a class C may have 0 otherwise
+ M the set of methods that a class C may have , .
We define the following applications: _ By the same reasoning we puit the similarity
« Fields:CUC — P(A) UP(A) the application M EgriT_Of method names:
that returns for a given class, all of its fieldsié an 'h _d d(Name(m)) £ Meths(d)| £ 0
the power set)_ _ o [Meths(d)| - “Name(m)] [Meths(d)| #
e Meths:Cu C —» P(M) u P(M) the application meMeths(d) .

. . otherwise
that returns for a given class, all of its methods @)

» Suppers:CuUC - P(C) U P(C) the application

that returns for a given class, its supper classes 3.2.3 similarity for relationship properties; I, A,

Suppers(c) and D

_ {{S € C:3 h € Inhr,h = (c,5)} ifceC We found ourselves unable to compute such
{s € C: c inherit directely or indirectly from s} if c € C similarities without assuming an existing mapping,

* Supplrs: C - P(C) the application that returns j.e. we compute relationship similarities basingaon

for a given class, the set of classes on whicteit dmapping between design and implementation clas-

pends. ses. To describe this situation consider the class
Supplrs(c) = {s € C:3d € Depn,d = (c,s)} diagram illustrated by Figure 2, and suppose that

* Assos: C - P(C) the application that returns for we have in the implementation a class defined as

a given class, the set of its associated classes.  “c4 extends c1”. We can’t deduce a heritance
Assos(c) = {s € C:3d € Asso,d = (c,s)} correspondence between Class4 from the class dia-

* Name:CUCUA UAUMUM — S the appli- gram and c4 from the code, unless we assume that
cation that returns for a given artifact its name. cl from the code corresponds to Classl from the
* Type: A - C The application that returns for adesign. So, to decide if there exists a heritamce ¢
given field, the class representing its type. respondence between design and implementation
* used: M - P(C) The application that returns for classes, we must at least suppose a mapping be-
a given method, the set of classes that it usas as tween design supper classes and implementation
parameter or variable type. classes.
In the rest of this paper we consider a mapping
3.2.2 similarity for atomic properties CN, F, map between a set of design clasges C and a
and M set of implementation classgsc C as a set of
Class names have the nature of string in bofairsm € D x 3. A mapping must verify the fol-
design and implementation. So we can use stringwing condition:

edit distance (see [12]) to compute the similarity(d,i) € map A(d,i'") Emap = d #d Ni+ i

between them. Formally we defing, the similari- In the rest of this paper, for a given mapping
ty between a design clagse C and an implemen- map we notemap(d) € C the corresponding of
tation clasg € C in term of class name by: d € C according tanap
Nen(d, ) = 1 — Snamelnane®) (6)
Whered: $? - N is the edit distance between Classt Classs
two strings.
To computens(d,i) the similarity between a .
d € C andi € C in term of fields names, we must at b c
first establish a mapping between fields dfand - o e L =

fields of i. The mapping should minimize the
amount of editing distances between attribute
names. The mapping is calculated by applying a
minimum-matching algorithm (see [13]) in a bipar-
tite graph of which nodes are names of fields ang?
edges are weighted by the editing distances blef\-th

Figure 2: Class Diagram Example

3.1 Inheritance similarity

Inheritance similarity is computed by checking
e design inheritances for a given class are re
-
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flected by its implementing class. All object ottien We define the dependence similarity between a

ed programming languages have inheritance relesign classli and an implementation clagsac-

served keywords (e.g.ektends”in java). So we cording to the assumed mappimgp by:

can check such similarity by parsing the code. Lyepn(d, i, map) =
The inheritance similarity between a desigr{Z¢tdepenttimar) Waepn(©

classd and an implementation classccording to |, """

the assumed mappingap is given by:

Linn(d, i, map) =

{Zeeuiuh(d,i,map)winh(e)

if Supplrs(d) # 0

~ otherwise
Wherep,,,, is the application that returns the

set of matched suppliers. Formally, we define this

(15)

|Suppers(d)| lfSuppers(d) #0 (9) set by
0 otherwise Hdepn(dv i,map) =

Where u;,,, is the application that returns the{s:s € Supplrs(d) Amap(s) € UsdTypes(i)} (16)
set of matched design supper classes. Formally, we UsedTypes returns the set of used types for a
define this set by: given implementation class, formally it is defined

Kinn(d, i, map) =
{s:s € Suppers(d) Amap(d) € Suppers(i)} (20)
And w;,;, is the originality inheritance weight

from a given design class, it is defined by:
1

A
FldSTypes(i) = Umemeths(i) used(m) (17)

3.2.4 mapping construction

Winn(d) = r o 11) Due to the resemblance between the traveling
salesman problem and the construction of a good
mapping between design and implementation, we

3.2.3.2  Associations similarity decide to use Ant Colony Optimization [8]. Table 2

We use the same process to compute the asSyimmarizes the common points between those two

ciation similarity. Generally an association raati problems.

ship is implemented as a class field. Basing os thi. In order to a_pply ACO. on mappin_g ponstruc-
tion we must defineg) the distance heuristic, ardd

principal, we define the association similarity be-

tween a design clagsand an implementation class

i according to the assumed mappinap by:

Lasso (d’ i’ map) =

the length of a solutiom is computed by combin-

n(d,i) =

ing all atomic similarities, it is given by:
Wen Nen(dD)+w 0 (d, D) +Win (i) (18)

ch+(Wf.(l_0IFields(d)\))+(Wm.(l_olMerhods(d)\))

rscos ()] if Assos(d) # 0
0 otherwise
Whereu,,,, is the application that returns the
set of matched design associated classes. Formal
we define this set by:

Hasso(d, 1, map) =
{s:s € Assos(d) Amap(s) € FldsTypes(i)} (23)

FieldsTypes returns the set of fields types for
a given implementation class, formally it is define
by:
FldsTypes(i) = Uferietas( Type(f)

{Zeeuasso(d,i,map) Wasso(e)

Wen,Wr, andw,, are parameters representing
respectively the weights of.,,ns, andn,,. In the
nominator we multiply; by (1 — olFields(@l) o
eliminate its effect whed has no fields. We use
the same mechanism to ignavg, in the denomina-
tor whend has no methods.

(12)

Table 2: Common Points Between TSP And Mapping
Construction
(14)

Travel Selman Problem
A solution is a cerca
" that travel all cities

Mapping construction
A solution is a map-
ping that relies every
design class to ah
implementation class
A solution is constructt A solution is con-
ed component by com-structed component
ponent by component

component is an edgeA component is ar
hat relies two cities edge that relies a de
sign class to an im
plementation class
The quality of a

3.2.3.3  Dependencies similarity

Dependency relationship is described as flows
“A dependency is a relationship that signifies that
single or a set of model elements requires other
model elements for their specification or impleme
tation.” [14]

According to this definition, if a design clags
depends on another claBsThis must be reflected
in the code by a use of the supplier correspondir
class (i.e. the corresponding &) in the corre-
sponding ofa. So, there is two ways to implement 3
dependency relation; as a type of parameter vari
ble, or as a type of local variable in a method: As

*The quality of a com

sociation can also be considered as a specialdfind ponent is ~compute | component Is comp
dependency, but we ignore this case. basing on_t_he dlstanceqouteq ba.s'ng 9"
' between cities atomic  similarities

19
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between the desigh Where bestMap is an initially empty shared
and the implementa- variable. Thestopcondition— in the first line — can
tion class be defined as a number of iterations, the stalility

The qualities of com{ The qualities of com; the results, or a reaching of predefined threshgld
ponents can guide theponents can guide the thebestMap distance.

construction of the bestconstruction of the A valid corresponding — in the fourth line — for
solution solution a design class according to a partial mappitgp
The quality of a solu; The quality of a solu; is an implementation class that never be usedlin al
tion is computed using tion is computed ust ordered pairs belonging taap. The probability of
gualities of all compo4 ing qualities of all] choosingi € 7 as the corresponding of € D ac-
nents (i.e. distances) | components (i.e. sim- cording to the partial mappingap € P(D X 7) is

D

ilarities) given by formula 21
. a., B
Once we construct a mappimgap t_hat maps map % if i € N(7, map),
every design class to an implementation class, wWa =~ =) “<\¢m® s (1)
0 otherwise,

can compute relationship similarities and introduce
them in similarity formula. We define the global
similarity between a design clagsand an imple-

N(J, map) is the set of valid implementing
classes according to the partial mappingp, it is

mentation clasg or the score of the trace fradito ~ d€fined by: ,

i ding to the assumed mappingp by: N@map) = {i € J:¥(d,k) € map = k # i} (22)
2(35?"?;@ o _When.the program regches the seventh line, a
Wy (A D Wiy Linn(dimap) +Wasso Lasso(dimap) +Waepn Ldepn (@ imap) valid solution (i.e. a mapping) should be construct
wi+(winp:(1-0ISUPPErs@I) -+ (wegop(1-01A5305DN)) (g (1-0lSuPPIrs(@)) ed. The pheromone updating policy is based on the

(19)

quality of the solution. We define the new phero-
Wherewy, ,Winp, Wass0, aNdWyg,, are parame-

mone value betweedt € D andi € 7 according to

ters. . the solutionnap € P(D x 7) by:
Now we can assess the global quality of theg;av -

mapping. The quality (length in TSP) of a mappini (1=p) 14 +Q xL(Cmap)  if(d,i) € map

map that maps a set of design clas®eto a set of _ (23)
implementation classes is given by: A=p)ta otherwise,
L(D, map) = Ldebdmap@map) (20) Where p is the evaporation rate&) is a con-

IDI

stant, 74 is the amount of pheromone that repre-

After defining all the needed similarities, wegents the attraction of choosings the correspond-
can apply ACO meta-heuristic on the problem Ofng ofd

mapping construction. In our approach, ants seek

for the best mapping by constructing mappings angl s 5 tr5ce scoring

assessing them qualities. The construction of @ prrom 4 theoretical perspective, traces exist be-

mapping IS a progressive task.; i's .done componegfeen every design class and every implementation
by component. A component is péif,i) € Cx C  ¢j3s5. But some are relevant and others aren’t. We
indicating that the design cladsis implemented in  score each trace by its relevance degree. The rele-
the code as. To construct a mapping betweenyance degree of a trace is given by formula (19)

D c CandjcC, ants flow the algorithm in Fig- using the best mapping constructed previously by

ure 3. ACO.

1 while (stop condition not reached) 3.3 Trace Filtering

2 map = enmpty set ) .

3  for each d in D In this step we use a threshold to accept or re-

4 choose i a valid corresponding of d from J  ject traces. The decision is taken by comparing

2 Si"e (d,0) into map traces scores to a threshold. The threshold can be
ro ) selected by the user or computed automatically us-

7  update pheromone basing on map .

8 if (distance(map) > distance(bestMap)) ing Zhao method [15]- If we a_pply Zhao me_thOd on

9  bestMap = map our work, we can automatically determine the

18 i threshold for each design clagdy sorting its trac-

11 end while es in descending order according to their scores.

Then we compute the differences between each two
Figure 3: Mapping construction algorithm successive scores, and we identify the two traces

20
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having the greatest distance. The seoud the up- mation retrieval effectivenesRecallandPrecision

per one is used as a threshold. All traces thaetra[17]. Precessiormeasures the fraction of relevance

d having score greater than or equaletavill be  of the returned results to the need informatiga-

considered as accepted traces. call measures the fraction of the relevant results
It's worth noting that our approach may accepthat are retrieved.

for the same design class many corresponding im- Formally precision and recall are defined as:

plementation classes. Two interpretations are pos- .. |relevant(d) N matched(d)|
precision(d) =

sible for such case, the former is that the design |matched(d)|
class is refined into many implementation classes;

the latter is that the scores are to contiguous for |relevant(d) N matched (d)|
automatic filtering and they require human inter-  recall(d) = Irelevant(@)]
vention.

4 CASE STUDY 4.3 Results

4.1 Subi To illustrate the gain that relationships bring, wem-
' ubject pare the results of our approach with those giverfido-

We use as subject of our experiment an ATMmuyia (18) that combines all atomic similarities bla4,
system. A well-known example in object oriented

development. We got the design and the Java im-
plementation from [16] it's a pedagogic example Table 5, and
that aims to teach the object oriented paradigm.

Due to its pedagogic purpose, the design of oWt
subject fits perfectly with its implementation. 8o

Table 6 represent respectively the returned re-
s for the predefined thresholds 0.70 and 0.50
and for the automatic threshold. In every one of
hﬁlose tablesClassescolumn represents the design

. classes of our subject, It contains all classe$ tha
J8&ist in class diagrams of ATM system;column

code. The modification is basically a tranSIatiorl:ombines all atomic similarities: Antl column

from English to French. This may accrue in thefepresents the results returned by our approach.
case where programmers are originally franco-

phone. Tablle 3 represents stati§tics about the ATM Table 4: Results For The Threshold 0.70
system design and implementation.

Recall Precision
Classes 3 T
Table 3: ATM statistics 1 1
Money 1 1 1 1
- Balances 0 0 - -
A_rt|fact type Occurrence count ATM 0 0 _ _

& | Line of code 2418 Log 0 0 . -

€ | Constructors 39 Cash Dispenser 0 0 - -

g g Fields 174 Message 1 0 1 -

9 § Methods 151 Envelope Acceptor 1 1 11

= Card Reader 1 0 1 -

E E?ckages 25 Network ToBank 1 0 1 -

asses Status 1 1 1 1
Classes 22 Customer Console 1 1 1 1
< | Fields 108 Receipt 0 0 - -

2 | Operations 97 Transaction 1 0 1 -

w . .

& [ Associations 17 Card 1 1 11
nheriances | 4 RecsptPimer 1 1 05 1
Dependencies 17 Session 1 0 1 -

Withdrawal 1 0 1 -

; Inquiry 0 0 - -

4.2 Metrics Transfer 1 0 1 -

_ Deposit 1 0 1 -

To measure the quality of results we use theaccount Information 1 1 1 1

two most frequent and basic measures for infor-Total 0.72 0.36 094 1
-
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Table 5: Results For The Threshold 0.50

4.4 Discussion

From Table 4 we could see that when we use theepred
fined threshold 0.7@ method (i.e. the one based on
atomic similarities) retrieves more traces than apr

Recall Precision proach. Our approach seems very weak since iteeds
Classes N L N L only 36% of traces. Comparing towitch retrieves 72%
Money 1 1 1 1 of traces we can claim that relationships similiast
Balances 0 0 - - decrease the quality of results when we use 0.20 as
ATM 1 1 1 1 threshold. This can be interpreted in two wayssig
Log ) 1 1 0.5 1 disadvantage of introducing relationship similagsi ii)
fﬂizzaggpenser 10 10 1 1 or as a decreasing of similarities when we consreééa-
Envelope Acceptor 1 1 0.33 1 tionships. According to the second mterprt_atatwa,
Card Reader 1 1 1 1 suppose that we can get better results using smalle
Network ToBank 1 0 1 - threshold and that's what leads as to results of
Status 1 1 0.25 0.25
Customer Console 1 1 1 1
$ri1cneslgf:tion 11 % i - Table 5. We will discuss results of this last one
Card 1 1 1 1 after talking about_ therecision As Table 4 re-
Receipt Printer 1 1 033 1 ports, the two considered methods give a high level
Operator Panel 1 1 1 1 of precision. Results of method are 94% precise
Session 1 0 05 - and those of our approach are 100% precise. The
Withdrawall 1 0 1 - perfect precision of our approach when we use the
Inquiry 0 0 - - threshold 0.70 is not very significant becauset®f i
Transfer 1 0 1 - low recall.
Deposit 1 0 1 -
Account Information 1 1 0.09 0.09 In
Total 0.86 0.54 0.5 048

Table 6: Results For Zhao Threshold Table 5 we can see that when we use of thresh-

Classes Recall Precision  old 0.50both of methods return a better recall.
7 L Ui L method retrieves 86% of traces and our approach
Money 11 1 1 retrieves 54% of traces. Despite the improvement
2?_"\7“‘395 11 1 i 1 of our approach’s recall (i.e. from 36% to 54%), it
remains useless. The least we can say, 54% is in-
Log 1 1 05 1 - . .
. significant comparing to 86% retrieved hymeth-
Cash Dispenser 11 1 1 e . .
Message 1 1 1 1 od. From the precision point of view, metho_d
Envelope Acceptor 11 1 1 returns also better results than ouysmethod is
Card Reader 11 1 1 precise at 50% and our approach is at 48%. But for
Network ToBank 11 1 1 both methods, returning results precise at almost
Status 11 1 1 50% is not useful as an automated trace recovering
Customer Console 11 1 1 technique.
$e°e'pt _ 11 i i 1 Choosing the right threshold is a challenge. We
C?rgsacnon 11 1 1 can see that for both methods, if we increase the
. : threshold, we gain more precision but we lose some
Receipt Printer 11 1 1 : ) .
Operator Panel 11 1 1 recall. And if we _d(_acrease it, we gain more rec_aII_
Session 11 1 1 and we lose precision. The reason is that the simi-
Withdrawal 1 1 1 1 larity between a design class and its relevantecorr
Inquiry 1 1 0.16 0.25 sponding implementation class change from a class
Transfer 11 1 1 to another. This is confirmed by Figure 4 which
Deposit . 11 1 1 represents similarities between design classes and
Account Information 1 1 1 1 there relevant correspondents. From Figure 4 we
Total 1 1 0.78 0.88
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can see that there is no good common threshold.
Even if we choose the average, we will get bad re-
sults because of the important similarity variance.
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Figure 4: Similarities Between Design Classes Ahdré 5 @
Relevant Correspondents
I our approach
Due to the bad quality that we got when we usechoom iBsaREEES N method
thresholds, we must specify a threshold for easigde | our approach’s threshold
class. So we use Zhao method to assess the righth n method's threshold
old.

Table 6 represents the gotten results using an
automatic threshold assessment. From that table we
can see that both of methods got a perfect recall Figure 5: Traces' Scores For Inquiry Class
(i.e. 100%). In term of precision, results of opr a
proach are precise at 88%, and those ofiethod
are at 78%. We could claim that our approach is
precise tham method, and relationships help us to Figure 6: Traces' Scores For Log Class
eliminate false positive traces.

From

Table 6 we could see that our approach reduée RELATED WORKS
false positives traces in the casd.ofj and the case
of Inquiry. To details the effectiveness of our ap- A lot of papers treat the problem of trace re-
proach in the case ¢riquiry andLog. We drive the covering. The iterative nature of software develop-
histograms of Figure 5 and Figure 6. They represement breeds lot of kinds of traces. In the literatu
the traces’ scores and Zhao thresholds respectivedgveral works were proposed to recover those traces
for Inquiry and forLog. by focusing on specific kinds. We identify two
main categories of trace recovery approaches.
07 Those basing on Information Retrieval (IR) tech-
06w SEEBEEESEEREEEERE] SEREREEEEREREERERE nics, and those how are basing on properties’ simi-
04 larities.

5.1 IR based Approaches

In [18] authorgecover traces between free text
documents and source code. They exploit the idea
of language model, i.e. a stochastic model that as-
signs a probability value to every string of words
taken from a prescribed vocabulary. Language
models are estimated from the documents, one for
each document or identifiable section. Then they
apply Bayesian classification to score the sequence
"""" our approach’s threshold of mnemonics extracted from a selected area of
n method's threshold code against the language models. A high score
indicates a high probability that a particular se-
quence of mnemonics drives from the document or
document’s section that generated the language
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model. In the context of information retrieval,g¢hi adapted to free text. It's worth noting that those
approach is classified as a probabilistic approach. approaches suffer from the same problems of IR,
Then Antoniol et al. [19] exploit VSM (Vector i.e. polysemy (different meanings for the same
Space Model) to recover traceability links betweemord) and synonymy (same meaning for different
source code and free text. The request for a givewords). The LSI technique was proposed to over-
class is composed of identifiers belonging to thatome these failings, but it is unable in front @f s
class. And similarity between the request and theations where the artifacts are written using diffe
document is computed by cosine. ent lexicons. Which is very probable in software
In [20] authors compare the probabilistic mod-development since several developers gets involved
el presented in [18] and the vector space mod@ai this task.
presented in [19]. The results show that the former
:gggﬁlal:d rgr(zesctilgi Ok;]e.tter than the latter in term 0%.2 Properties’ Similarities based Approaches
De Lucia [21], [22]propose an approach based ~ Antoniol et al. [30], [31] recover traces be-
on LSI (Latent Semantic Indexing) to recover tracedveen design and code using the edit distance com-
between different kinds of artifacts (e.g. requirePutation and the maximum match algorithm. Global
ment, design, test case, and code). The approacl’ﬁi@"afity between two artifacts is computed basing
implemented in a system named ADAMS. on the resemblance of their names, their fields
Wang et al. [23knhance the LSI method to re-Names, and their methods names and signatures.
cover more relevant traces between high level doc- Then Antoniol et al. [32] extend the work in
uments and source code. The paper presents fdgP] by introducing relationship and dictionnary
enhancements: source code clustering, identifi§milarities. This work differs from ours since it
classifying, similarity thesaurus, and hierarchicabses relationships to check the quality of traditgbi
structure enhancement. rather than using them in the construction of sace
De Lucia et al. [24] propose an approach to .ln [33] authorS aSS-eS the S|m||a.r|ty b.etWeen a
help developers to maintain source code identifieidesign artifact and an implementation artifact bas-
and comments consistent with high-level artifactdNg on three kinds of similarities: classifiers resn
The approach use LS| to assess the similarity b&etric profiles, and packages. _
tween low-level and high-level artifacts. It was-im  Classes in design and in implementation share
plemented in an eclipse plug-in named COCONUTOt of properties. Which properties are more rele-
In addition to similarity computation, the tool sug vant to trace recovering is the subject of the re-
gests identifiers obtained by extracting n-gram§earch presented by Antoniol et al. [34]. In that
form the high-level documents. work, different combinations where analyzed. All
Another IR based approach was proposed i€ gotten results suggest that the best performing
[25]. In that work, authors use semantic relategne§ombinations are those with an explicit representa-
to recover traceability links between free-text -doction of the class name, while very poor performanc-
uments and source-code. Authors use a Wikipedi§S are associated to methods based on the relations
based semantic relatedness measure, namely ©{-2 class with the other classes.
plicit Semantic Analysis (ESA) [26] as SR retrieval It is worth noting that this work use relation-
technique. ships in a different manner than us. They transform
Textual and structural information are com-t to a class attributes of type string. If, forexple,
bined in [27] to recover traceability links. Autisor ClassA generalizes clads, the attribute'generaliz-
use LSI to recovedocument-to-sourcéraces, and €S->B"is attached to clags, and the attributéex-
JRipples [28] to recovesourceto-source traces. tends->Ais attached to clags This is not the best
Then they inferdocument-to-documerttaces bas- Way to exploit relationships in trace recovery csin
ing on the previous results. Although such a combgll relationships having the same type will have th
nation increase the recovered links, it has an infame common prefix (e.g “generalize->"), which
portant disadvantage. False positive links recaverdlisturbs the similarity. To illustrate this casake
by IR will significantly pollute the results by iaf- the example ofdeneralize->pen”and“generalize-
ring false positive links. To overcome this draw->cat’, the similarity between those two strings
back, an approach was recently proposed in [Zd])’asing on edit dis.tance is at 90%, which is fahh|g
basically the improvement consists of validating IREf than the reality. Another disadvantage of this
recovered links before inferring new ones. method is that the similarity depends only on the
IR based approaches don’t exploit the structu?ames of the classes.
al aspect of the code and the design. They arerrath
6 CONCLUSION
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[4] Borg M.: IR-based Traceability Recovery as a
Traceability links helps in terms of quality and Plugin—An Industrial Case Study. In Proceed-
productivity. They are generally involved in severa ings of the Fourth BCS-IRSG conference on

activities of software development, and especially Future Directions in Information Access.
in maintenance. But market and delays pressures (2011), pp. 14-17
force developers to sacrifice them. The purpose §5] Shatnawi R., Alzu'bi A.: A Verification of the
this work is to recover traces between design and Correspondence between Design and Imple-
implementation. mentation Quality Attributes Using a Hierar-
This work describes a similarity based ap- chal Quality Model. IAENG International
proach to recover traceability links between UML Journal of Computer Science, Vol. 38, No. 3,
design classes and java classes. The similarity is (2011), pp. 225-233.
computed basing on properties resemblance. TW6] Hammad M., Collard M. L., & Maletic J. I.:
categories of properties are considered: elementary  Automatically identifying changes that impact
properties and relationship properties. Resemblance code-to-design traceability during evolution.
for the former is assessed using string edit digtan Software Quality Journal, Vol. 19, No. 1,
and a maximum matching algorithm. To compute (2011), pp. 35-64.
the similarity in term of a relationship propertye [7] Delater A., Narayan N., & Paech B.: Tracing
must assume a mapping between the design and the Requirements and Source Code during Soft-
code. The mapping is constructed using an ACO  ware Development. In ICSEA 2012, The Sev-
algorithm. enth International Conference on Software
The originality of this work consists in the ex- Engineering Advances, (2012), pp. 274-282.
ploitation of relationships. When computing simi-[8] Dorigo M., Maniezzo V., Colorni A., & Ma-
larity in terms of a relationship, we consider the niezzo V.:Positive feedback as a search strat-
nature of the relationship, and all the property of egy. (Tech. Rep. 91-016). Milan, Iltaly:
the class that is at the other end of the relatigns Politecnico di Milano, Dipartimento di
According to the evaluation result, we can see that Elettronica, (1991).
this approach seems promising. Experimentatiof®] Colorni A., Dorigo M., & Maniezzo V.: Dis-
shows that, when we use Zhao threshold, relation- tributed optimization by ant colonies. In Pro-
ships improve to 10% the precision while keeping ceedings of the first European conference on
the same recall. Evaluation shows also that our ap- atrtificial life, (1991), pp. 134-142.
proach gives bad results when using a predefinddlO]: IBM, “Java naming conventions,” available at
threshold. Thus we strongly recommend the use of  http://www.ibm.com/developerworks/library/
Zhao threshold to filter traces. ws-tip-namingconv.html (last visited on
The case study subject is not large enough to  24/08/13)
evaluate this work, but the lack of suitable sutsiec [11]: Oracle, “Code Conventions for the Java Pro-
on the internet has forced us to take such a aecisi gramming Language,” available at
In future work we will extend our approach to cov- http://www.oracle.com/technetwork/java/code
er other programing languages and diagrams. An  conv-138413.html (last visited on 24/08/13)
evaluation on larger subjects is also planned arjd2] Gusfield D.: Algorithms on strings, trees and

will be the subject of future works. It is worththo sequences: computer science and computa-
ing that this work is part of a large change impact  tional biology. Cambridge University Press.
analysis project. (1997)
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