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ABSTRACT 
Association Rule Mining is the process of retrieving frequent patterns that occur in a transaction database. 
Initially used as a market basket analysis solution for retail businesses, it has grown to cover many other 
fields such as medicine [1, 2], traffic estimation [3] and anomaly detection [4, 5]. An association rule has 
two components (antecedent and consequent) which is derived from a pattern (a set of items). However, it 
is not clear when investigating a frequent item set, which items imply the others (i.e., which is antecedent, 
and which is consequent). Therefore, several combinations of items as antecedent and consequent are 
generated. This leads to a huge amount of association rules being output by an algorithm for Association 
Rule Mining. Thus, it is imperative that data miners require some type of measures to evaluate the 
“interestingness” of these rules. There exist in excess of 70 well-known measures and countless other 
manually crafted measures in the literature. In this survey, we systematically discuss the methods which 
users could use to select or aggregate the interestingness measures, applicability of such methods and 
evaluation of the usage of such methods.  

Keywords: Association Rule Mining, Objective Interestingness Measures, Data Mining, Clustering, 
Information Retrieval.  

 
1. INTRODUCTION 
 

One of the many pillars of data mining is 
Association Rule Mining, which is the problem 
where given a database of items and transactions 
(that grouped different items together), the goal is 
to find association rules that associate the items in 
the database. The common example of such 
database is the supermarket database and the goal 
is to find items that are associated among each 
other. Typical association rule mining algorithms 
produce an exhaustive list of rules in the form of 
“Antecedent � Consequent” that exceed a 
predefined popularity threshold. For example, the 
association rule “Egg ^ Milk � Bread” consists of 
the antecedent of “Egg ^ Milk” and the consequent 
of “Bread”. The general interpretation of this rule 
is “customers who had bought Egg and Milk also 
bought Bread”. The aforementioned rule comes 
from the itemset of {Egg, Milk, Bread} that occurs 
frequently in the transaction database. The same 
itemset could evaluate to other rules like “Milk ^ 
Bread � Egg” and “Egg ^ Bread � Milk”. If the 

threshold is set too high, then there would be very 
little to none rules that are useful to the data miner. 
Worse still, popular rules can also be a common-
sense and nothing about it is interesting or helpful. 
Setting the threshold too low would yield too many 
noise in the result (when every single association is 
uncovered by the algorithm). Data miners often set 
these thresholds at the lower end to avoid missing 
out on important rules and utilize measures to 
further reduce the amount of resulting rules. 
Approximately 70 measures have been formulated 
and these measures target different types of rules 
(e.g., popular or surprising-type). With the 
appropriate interestingness measure (IM), users 
can efficiently remove rules that are not worthy for 
them (i.e., not interesting).  

1.1 Interestingness as a Measure to Reduce 
Rule Overload  

The inherent problem of association rule 
mining is that the algorithms generate huge 
amounts of association rules as output. This is 
because each rule is a permutation of the items in a 
frequent itemset and there might be a huge number 
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of frequent itemsets existing in a transaction table 
(depending on the user-defined support threshold).  

 
In order to further filter the amount of 

rules that are produced by the algorithm, users 
could opt to use more complex formulas or 
heuristics to determine whether a rule is interesting 
or not. More interesting rules can be ranked on top 
of other not-so-interesting rules before the 
association rules are presented to the users. 
Filtering and ranking of association rules depend 
largely on the type of association rules a user 
would like to find. The rules can be grouped into 
several types according to the concept of 
interestingness [6]: concise, general, reliable, 
peculiar, novel, surprising, diverse, useful and 
actionable. Any given association rule can belong 
to several types. For example, a general rule is 
often also a concise rule. A peculiar association 
rule can also be a novel rule.  

 
1.2 Objective vs. Subjective IMs  

There are two general categories of 
interestingness measures: Objective 
Interestingness Measures (OIM) and Subjective 
Interestingness Measures (SIM). In [6], the authors 
defined an additional type of interestingness 
measure: Semantic Interestingness Measures. The 
survey [6, 7] defined OIMs as the measures that 
denote the statistical strengths or certain properties 
of the discovered patterns and it is based solely on 
the raw data. For example, the measure Support is 
used to denote the popularity of the association 
rule and this definition remains the same across 
different domains. Furthermore, it is a form of 
statistical strength of the association rule and so, it 
is grouped under OIMs.  

 
Some users prefer to find association 

rules that are surprising or actionable to them. 
Surprising association rules are those that deviate 
from the user's belief. This sort of deviation 
calculation would yield a measure that is 
categorized as a SIM because it is based on the 
concept of comparing association rules with a user 
expectation [7]. Furthermore, the users belief vary 
from one user to another. However, there has been 
some research that attempts to find surprising rules 
through the use of OIMs. One research relies on 
the assumption that the user's belief is the 
association rules with high support and confidence 
values (called common-sense rules) [8]. Thus, the 
separation between OIMs and SIMs are not always 
as clear-cut as by determining the type of rules that 
a user would like to find (e.g., the view that 

discovering surprising rules can be done only 
through SIMs).  

 
Our survey focuses on the state of art of 

practical utilization of OIMs. Our discussion on 
latest methods in the selection of OIMs is 
presented in Section 3.1. Meanwhile, the Section 
3.2 can be loosely categorized as Semantic 
Interestingness Measures. Although methods for 
aggregation include the optimization of the OIM 
such that it increases classification accuracy [9] or 
closeness to user manual ranking [10, 11] 
(categorized as Semantic IMs), there are also 
aggregation methods that use input from the OIM 
properties [12] which do not require input from 
users (hence, categorized as Objective IMs).  
 
1.3 Contributions and Outline of the Survey  

This survey is about the recent 
development in utilizing OIMs available in 
literature and directions that a user can follow to 
maximize the usage of these predefined OIMs. 
Thus, we would not be explaining one by one the 
many measures that are readily available. Readers 
could refer to [6, 7, 13, 14] for such listing.  

 
Our work differs from existing survey [7] 

in the sense that we focused heavily on the 
utilization of existing OIMs (selection and 
aggregation). Although the survey from Geng and 
Hamilton [6] included a small section on OIM 
selection, we extend here their discussion on the 
selection by highlighting improvements over the 
selection methods. In addition, we have included a 
new discussion of the state of art in aggregating 
OIMs which is not found in existing surveys. 
Thus, we discuss critically the progress in the 
selection of the appropriate measures and the 
recent area of combining interestingness measures. 

 
We will first give a basic definition of 

association rules and some basic measures 
(support and confidence) in Section 2. Section 3 
highlights the methods used by data miners to 
apply the OIMs on their dataset while Section 4 
discusses the methods to quantify the benefits of 
the OIM usage and potential challenges. This is an 
important discussion as a user moves away from 
derivation of custom measures towards selection 
and aggregation of measures. Finally, we conclude 
the survey in Section 5. 
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2. DEFINITION  

The transaction table is a table with 
features (as columns) and observations (as rows). 
The values in the transaction table are constrained 
to have only boolean values, e.g., 0 (if the feature 
is not applicable to the observation) or 1 
otherwise. In the context of the previous example, 
the observations are the customers' purchases 
while the features are the items purchased by the 
customer in the supermarket (e.g., milk, bread) 
within one transaction. The goal of association rule 
mining is to mine for rules that associate the items 
in the transaction database. For a transaction table 
with size k X m (k is the number of rows, m is the 
number of columns), we will use the notation Fm 
to identify each feature (column) and ��to denote 
each observation. Conveniently, a value of 1 at ���would denote that a customer bought the item 
Fm in the transaction	��.  

 
Each association rule is made of a set of 

items (hereon referred to as an itemset) and to get 
to the rules, we need to collect the itemsets. One of 
the basic algorithm for association rule mining is 
the Apriori algorithm [15]. It starts by collecting 
single-item itemsets that exceed a certain 
frequency threshold of transactions. In the 
supermarket example, these are the items that were 
bought frequently. This frequency threshold is 
called the Support value. It is the ratio between the 
number of observations that contain the itemset 
(|A|) and the total observations (N) in the database.  

 ������� 	 	 |�|
�

              (1) 

 
From the single-item itemset, the 

algorithm expands to two-item itemsets and so 
forth until the current length itemset cannot be 
expanded without having the support value fall 
below the threshold. This search and expand is 
feasible because of the anti-monotonicity property 
of the support value of the itemsets. This property 
dictates that the support of an itemset is less than 
or equal to the support values of any of its subsets. 
Thus, an itemset may be frequent only if its 
subsets are frequent. The set of itemsets that 

exceeded the frequency threshold is called the 
frequent itemsets. In reverse, the transactions that 
contain an itemset are called transactions that 
“cover” the itemset.   

 
Upon retrieving the frequent itemsets 

from the transactional database, association rules 
are generated by permutating the items in the 
itemsets. From each itemset, a subset will go into 
the antecedent set while the others, into the 
consequent set. We refer to those sets as sub-
itemsets of an itemset. In this paper, the 
association rules will be represensented by the 
form “A � B”, with the sub-itemset A denoting 
the antecedent set and the sub-itemset B denoting 
the consequent set. This would generate a huge 
combination of rules and to control the outcome 
size of the algorithm, another measure is used. 
This measure is called the Confidence (Equation 
2). The confidence is interpreted as the probability 
that “A � B” occurs if A has already occurred.  

 


���
����� 	 	 ����	
���
�
����	
����

      (2) 

 
From a mathematical perspective, each 

association rule is represented as a contingency 
table (cf. Table 1). The contingency table contains 
the cardinalities of each sub-itemset and 
combination sub-itemsets in the association rule. 
In other words, it shows how many transactions 
contain both the antecedent and consequent 
component (cell ���), how many transactions 
contain the antecedent (cell ��), how many 
transactions contain the antecedent but not the 
consequent (cell ����) and how many transactions 
that do not contain both antecedent and consequent 
(cell �������).  

Table 1:The format of a contingency table (subscript 
“a” being the antecedent while “b” is the consequent) 

 Cons, �  Cons, ��  

Ante, � ��� ����  �� 
Ante, �� ���� ������� ��� 

 �� ���  Total, � 
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Table 2: Methods toward selecting the appropriate OIM. 

Selection 
Style 

Definition and 
Qualifying Step  

Analysis Step  Implementation  

Custom  Dataset properties  If the OIM produces values consistent 
with the defined properties then it is 
selected.  

[2, 31] 

OIM Mathematical 
Properties  

User chooses which to use based on 
context. 

[22, 28] 

Decision aids  OIM Mathematical 
Properties  

Decision aids  [21, 32]  

User labeled rules  Learning algorithms to predict 
selection  

[10] 

Empirical OIM output values  Clustering  [26, 34, 35, 36 
, 37, 38, 39]  

OIM output values  Classification accuracy  [3] 

User ranked sampled 
rules  

Ranking correlations  [17] 

 
Various formulas as surveyed and studied 

in [2, 7, 6, 16, 17, 18, 19, 20] combine the 
contingency table cell values to produce a final 
value that quantifies the interestingness. Two basic 
interestingness formulas are the Support and 
Confidence (as introduced above). In the context of 
the contingency table, the formula for Support is 
the ratio between the contingency table cell ��� 
and the cell Grand-Total. The value of Confidence 
is obtained by dividing the contingency table cell ��� by cell ��.  
 

3. UTILIZING OIM  

Mechanisms are required to filter out 
possibly irrelevant rules in the face of huge amounts 
of data and huge amounts of association rules 
mined. The survey in [6] noted that the roles of 
OIMs in association rule mining consists of: 

1. pruning search space so as to enable 
efficient rule mining [28, 29, 30]  

2. rule ranking, and  
3. post-processing to uncover only interesting 

rules.  

Despite the roles, the primary methods 
employed for using OIMs are the selection of OIM 
and the aggregation of OIMs. They will be 
discussed in turn in the subsequent sub sections.  

 
 

3.1 Selection of OIMs 
Users are left to decide on which OIMs to 

use based on their experience and assumption about 
the association rules that they would like to find. 
The general process for selecting an appropriate 
interesting measure is broken down into three steps: 

1. Defining required properties and its weight 
(importance). The properties could either 
be the properties of the dataset, properties 
of the interestingness measure itself (cf. 
Table 3, 4, 5) or even the values produced 
by the OIM in test dataset.  

2. Quantifying the similarity and differences 
between properties and OIMs. OIMs that 
have the same properties are considered 
redundant (using one is approximately the 
same as using all) and can be removed.  

3. Analyze/Tradeoff OIMs with those 
properties. OIM that fits the tradeoff or 
preference is selected. 

Based on the three-step process above, we 
can group the OIM selection methods into three 
groups: custom, decision aids, and empirical 
methods based on the data they required and 
automation level. Custom and decision aid 
approaches require data that is not found in the 
database. This information includes user's goal and 
mathematical properties of the OIM. These 
approaches also require significant investment in 
terms of user efforts. On the other hand, empirical 
methods are defined as requiring only the database 
and the interestingness values produced by the 
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OIM. It also requires the least amount of user 
intervention among the three approaches to OIM 
selection. Table 2 summarizes the state-of-the-art 
according to the three selection styles and three-
step process. The three methods will be discussed 
in the next subsections and analyzed at the end of 
this section.  
 
3.1.1 Custom inspection approach to selection  

The most straightforward but resource intensive 
method is by manually inspecting the OIM 
properties. In selecting the best measure to evaluate 
correlations between Chinese medicine syndrome 
elements and symptoms, Zhang [2] defined a set of 
three custom properties (based on dataset) that they 
desire the OIM to account for when calculating the 
interestingness of the association rules. The 
properties are based on their application domain 
and are listed below: 

• If two syndrome elements are completely 
different, then the difference between them 
should be large.  

• If two syndrome elements are the same 
then the distance between them are small.  

• If two syndrome elements are the same 
then the distance between them across 
different (but the same application 
domain) datasets should be similar.  

In other words, the author in [2] tried to 
choose an interestingness measure that fits the 
property in his dataset. He ran calculations using 60 
OIMs to see which OIM satisfy their desired 
properties. This arrangement enabled them to trim 
down the choices from 60 OIMs to only three 
OIMs. Then the final OIM chosen was the one with 
the lowest computational complexity.  

 
In a separate research, Wu et al. [14] used 

the manual selection method to reduce their option 
of 35 OIMs to 13 OIMs. Their defined properties 
are:  

• Uniqueness: An interestingness measure 
assigns one score to an itemset.  

• Extensibility: An interestingness measure 
must be able to provide scores for multi-
itemsets. Multi-itemsets are itemsets that 
have more than one component in the 
antecedent and the consequent.   

• Antimonotonicity: An interestingness 
measure must be able to provide scores in 
such a way that a pattern is considered 

interesting only if all its sub-patterns are 
interesting. 

 
As in the work of Vaillant et al. [31], the 

authors proposed choosing an OIM based on the 
property of how an OIM value changes with 
additional counter-examples in the association rule 
(sensitivity against new counter examples). In a 
market basket analysis example, the counter 
example for the association rule “Cereals � Milk” 
would be rules that has the same antecedent but 
differing consequent (like “Cereals � Bread”). 
Recall that in a contingency table context, the 
amount of counter example that an association rule 
has is shown in the cell	����. In this case, the 
authors defined interestingness as a decreasing 
function of counter-example additions and used 
first and second derivatives to model the sensitivity 
(rate of change against addition of counter 
examples) of ten OIMs. They selected an OIM that 
assigned less interestingness to association rules 
that have a large number of counter examples.   

 
Wu, Chen and Han [28] suggested that the 

null invariance property is of high importance for 
large datasets. The null invariance property of an 
association rule means that its interestingness score 
is not affected by association rules that do not share 
any components at all. For example, the 
interestingness of the association rule “Beer � 
Diapers” should not be affected by association rules 
like “Apple � Orange” (which shares no similar 
components). In relation to the contingency table 
sense, the interestingness value should not be 
affected by the values in the cell Nab. This property 
is important in their application context because 
they were looking for rare association rules 
(interesting rules but occurring rarely in the 
dataset).  

 
As a summary of this section, the custom 

inspection methodology mentioned suffers from the 
lack of formalism and this deters it from being used 
widely across different application areas. All 
properties need to be defined, evaluated and 
compared for tradeoffs by the user. 
 
3.1.2 Decision aids approach to selection  
Since there exists several defined properties and 
users are required to find one OIM that satisfies the 
most optimal amount of properties (with respect to 
certain weights of importance for each property), 
the problem of selecting an OIM can be framed as 
an optimization problem. In the field of 
optimization, users can look towards decision aids 
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as a method to formalize the properties of OIMs 
and systematically choose the appropriate/optimal 
OIM.  

 
The difference between decision aids and 

manual inspection is the assistance provided by the 
system to make it easier to select an OIM that is 
optimal according to the user-required properties. 
The first discussion in this section deals with the 
visualizations while the next discusses research 
focused on providing checks on user requirements 
(making sure that it is consistent). User requirement 
consistency checking is important because some 
properties contradict with each other. Assigning the 
same importance weight to two contradicting 
properties would yield a sub-optimal selection 
result.  

 
The first work discussed here is by Lenca 

et al. [21], which defined eight properties (refer 
Table 3) for assessing and selecting the appropriate 
OIM using Multi Criteria Decision Aid (MCDA). 
The properties are then populated with values for 
each OIM on whether it satisfies the properties. 
Users can also assign weights to the properties to 
indicate the importance of such properties to be 
fulfilled by OIMs. Upon collection of such 
information, the decision aid then performs the 
following steps:  

1. Pair wise comparison of all OIMs 
according to each defined properties. Each 
comparison results in a preference of one 
OIM (with respect to one property) over 
the other OIM. The preference has values 
between 0 (not-preferred) and 1 
(preferred).  

2. Aggregate the preference value of each 
property for each pair of OIM into a single 
preference value for each pair of OIM.  

3. The aggregated values are used to build 
outranking flows for each OIM.  

4. The outranking flows are then used to 
build a partial and complete ranking of the 
OIMs.  

5. The ranking is visualized on a GAIA 
plane. 

Figure 1 shows a GAIA plane. It is used to 
determine how one OIM is related to another OIM 
with regard to the properties defined. In that figure, 
the square-plots denote the properties while the 
triangular-plots denote the OIMs being 
investigated. The lines from the origin to the 
square-plots indicate directionality of the 
properties. The length of those lines indicates 

whether the property is a discriminating factor (it 
separates clearly between those OIMs which fulfill 
and do not fulfill the property).  

 

 
 

Figure 1: Decision aid visualization using the GAIA 
plane [21]. 

If two square-plots/properties are plotted 
in the same direction from the origin, then the 
properties are considered similar. This can be seen 
from the g2 and g3 properties in the top-left 
quadrant of the figure. Similarly, if two square-
plots/properties are plotted such that they have 
opposite directions, then the properties are 
negatively correlated (example, g5 - bottom left 
quadrant and g8 - upper right quadrant). However, 
if two squareplots properties are plotted 
orthogonally, they are considered as independant to 
each other. An example of independant properties 
would be between g2 (in top left quadrant) and g8 
(top right quadrant).  

 
In relation to the triangular-plots/OIMs, 

OIMs that are plotted in the same direction as the 
square-plot are considered to fulfill that property. 
From the figure 1, we can observe that OIM 1 and 
OIM 2 have the properties g2 and g3. This is the 
opposite of the OIM 7 which has property g4. After 
the properties and OIMs relationship are visualized 
to show similarity, independence or 
complementary, the user can choose the appropriate 
OIM. This is done by observing the π-plot. The 
longer the π-plot (in this case it is on the x-axis) 
indicates a strong decision power and the OIMs 
lying close to direction indicated by π-plot would 
provide the best optimal OIM based on the 
properties. If the π-plot is short, then the most 
optimal OIM would lie very close to the origin of 
the chart. In Figure 1, the most optimal OIMs can 
be found along the negative x-axis, which is OIM 8.  

 
The main drawback of such decision aid is 

the required resources to operate them. Despite the 
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visualization capability, this method requires an 
MCDA expert to explain how the method works 
and the meaning of the results from the decision 
aid, plus a domain expert capable of knowing 
which criteria to put more importance on. Without a 
careful expert, users may assign equally important 
weights to conflicting properties. This could result 
in suboptimal selections of the OIM.  

 
A more recent development is the work of 

[32] which addressed the danger of conflicting 
weight assignment by users. This is based on a 
decision aid method named Analytic Hierarchy 
Process (AHP). The authors proposed that a good 
selection process requires:  

• accounting for user requirements.   
• avoiding inconsistencies in user decision.  
• adaptable to changing user requirements.  
• invariant to number of rules. 

Thus, they focused on eliminating user 
inconsistencies in weight setting to improve the 
selection process. In the AHP system, they 
combined the properties from Table 3 with the 
properties listed in Table 4 as their criteria for 
selecting an OIM. The AHP method follows the 
same process as the decision aid used by [21]. 
However, there exists several differences between 
the work of [21] and the AHP:  

1. The OIM can only take a boolean value for 
each property (1 for fulfilling the property, 
0 otherwise).  

2. For property comparison: AHP only does 
chain-wise comparison of properties while 
[21] performs a full pair wise comparison.  

3. Consistency of user weights are being 
checked (and adjusted if inconsistent) in 
AHP but other decision aid allows 
arbitrary weights.  

4. There are no visualization involved in 
AHP, the most optimal OIM is chosen 
with the highest weighted score. 

In the AHP, individual weights 
(��,��, …��) are assigned for a property list of ��, ��, … �� by the user. A ratio �� is defined as the 
ratio between the weight of the current property 
(��) and the weight of the next property (����). 
The last ratio for the last property (��) is taken as 
the ratio between the last property �� and the first 
property,	��. A perfect consistency is achieved if 
the product of all ratio (R) equals to 1. The authors 
noted that a consistency of up to 90% is acceptable. 

Otherwise, the user is notified of the inconsistency 
or an adjusted weight is recalculated for the 
properties.  

 
To bridge the gap between domain expert 

requirements and OIM selection, researchers tried 
meta-learning methods to model the domain 
expert's knowledge and predict whether a rule with 
its values of OIMs will be deemed interesting by 
the domain user. Abe et al. [10] proposed a rule 
evaluation support system that learns to predict the 
OIM that a domain expert would select. In addition 
to calculating the OIM values for all mined rules, 
the system required a domain expert to label the 
mined association rules with a three-point 
preference scheme: Interesting, Not Interesting, 
Not-Understandable. The same study [10] applied 
five different learning algorithms from the Weka 
tool: C4.5 decision tree, neural network, SVM, 
classification through linear regressions and One-R. 
They reported a learning curve prediction accuracy 
of over 80% after using more than 20% training 
samples. 
 
3.1.3 Empirical approaches to selection  
The empirical approaches of brute force and 
clustering eliminate most of the requirement for a 
domain expert participation in OIM selection. In 
proposing the selection of an appropriate OIM for 
mining classification rules in traffic prediction 
application, the authors in [3] used ten different 
OIMs to predict their traffic dataset and proposed 
the best one that had the highest accuracy. So, the 
one with the highest accuracy on the previous day 
is then chosen to be the OIM used to predict traffic 
on the current day.   

 
In selecting the right interestingness 

measures, Tan et al. [17] proposed a method that 
selects the interestingness measure based on 
relative rankings provided by an expert user. The 
user is presented with a sample of twenty rules to 
manually rank based on user-perceived 
interestingness. Upon receiving the feedback, the 
system then calculates the correlation between the 
user-rank and the ranking produced by the OIMs. 
The system then selects the OIM that has the least 
amount of ranking conflict with the user-rank.  

 
Besides brute force and user feedback 

based empirical selection, users can also perform 
clustering as a method to choose the appropriate 
OIM. The basic idea in using the clustering 
approach to find the appropriate OIM is that OIMs 
that are clustered together have the same attributes. 
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The attributes could be that they fulfill similar type 
of properties or that they produce similar results for 
the same association rule. The set of similar OIMs 
are considered as redundant. On the other hand, 
dissimilarity between sets of OIMs denote that they 
are complementary of each other (sets) and using 
one of it means trading off the properties of other 
clusters (sets). After redundant OIMs are removed 
from consideration, users can choose a 
representative from the cluster of OIM that fits their 
goals. The clustering-themed OIM selection 
approach can be split into two different directions 
[6]: property-based clustering and experimental-
based clustering. 

 
As the name implies, property-based 

clustering is the approach where users defined a set 
of properties, then fills up the OIM-Property matrix 
with the appropriate values and finally, clusters the 
OIMs according to such matrix. Grissa et al. [36] 
performed studies of grouping OIMs using 
clustering methods of K-means and AHC. The 
properties that they used to evaluate 61 OIMs are 
the combination of those from Table 3, 4 and 5. 
After the 61 OIMs are clustered, the clusters are 
verified for their validity. The validity is manually 
checked using a visualization tool.   

 
A cluster is considered valid if the cluster 

members fulfilled many of the same properties that 
OIMs in other clusters do not. So, users would need 
to navigate around the cluster members to check the 
closeness of the cluster members in the 
visualization tool. Although the paper [36] focused 
more on verifying clusters obtained by clustering 
61 OIMs against 19 properties, it also highlights the 
option of performing K-means and Agglomerative 
Hierarchical Clustering (AHC) on the OIM-
property matrix. Hence it is included in this survey. 
Users following such approach could adjust 
clustering parameters to obtain “more valid” 
clusters and then choose the appropriate OIM from 
the valid clusters.  

 
A recent development in property-based 

clustering involves the use of Boolean Factor 
Analysis (BFA) to decompose the IM-Property 
matrix into important factors (properties) was 
proposed in [39]. This method is similar to 
principle component analysis but is performed on 
binary (boolean) data instead. 21 properties are 
reused from Table 3, 4 and 5. The 21 properties are 
then supplemented with their negations to form a 
list of 41 properties. All the properties can take a 
value of 1 (fulfill property) or 0 otherwise. 62 

OIMs were evaluated using the 41 properties 
mentioned in the preceding paragraph. This resulted 
in an OIM-property matrix. To reduce the amount 
of properties to be evaluated, the authors performed 
the boolean factor analysis to reduce the amount of 
properties that needs to be used. This is akin to 
feature selection where we select only features (in 
this case, the properties) that account for the most 
variance in the OIM-Property matrix. The authors 
managed to reduce the property space to only 28 
factors that covers more than 95% of the variance 
in the matrix. Note that a factor could contain more 
than one property.  

 
With such composition, the authors 

elaborated that each factor can be considered as a 
cluster. In addition, because an OIM can reside in 
more than one factor, this means that the factors 
deduced can form overlapping clusters. This is the 
advantage of their method because the authors 
claim that OIMs should not be clustered into 
mutually exclusive clusters (where each member 
belongs only to one cluster). Their work is in 
contrast to empirical approaches towards selection 
of OIM using clustering methods such as K-means 
and AHC in [36] which could only extract mutually 
exclusive clusters (no object/OIM is a member of 
more than one cluster).  

 
Experimental-based clustering uses the 

interestingness values produced by respective OIMs 
as the clustering dimensions. In other words, 
instead of taking the OIM-property matrix as input, 
it takes the Association Rule-OIM value matrix as 
input for clustering. OIMs that produce either the 
same interestingness values/rankings for same rules 
are clustered together. Comparing interestingness 
rankings is a relaxed version from comparing 
interestingness values for different OIMs because 
although two OIMs could have different value 
ranges (e.g., 0 to 1 or 0 to 1), they can still rank two 
association rules in the same way. Experimental-
based clustering include clustering based on 
Pearson's Correlation Coefficient [34], the ARQAT 
tool [35] that utilizes AHC and correlations to 
cluster rules based on their final values and 
combining property-based with experimental-based 
clustering [36].  

 
The experimentation method reveals 

which OIMs are correlated, which OIMs are not 
and which OIMs negatively correlate with each 
other. Correlated OIMs are considered as 
redundant. This is similar to property based 
selections but without the need to define and 
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maintain a list of properties. For correlations, the 
options commonly used are the Pearson's Product 
Moment Correlation Coefficient, Spearman's Rho 
and Kendall's Tau. The most common correlation 
measure is the Pearson's Product Moment 
Correlation Coefficient (PPMCC, denoted as r) 
[40], which has a range of possible values from -1 
(negatively correlated) to 1 (positively correlated). 
A value of 0 means that the two variables under 
investigation are independent of each other (not 
correlated). Correlation between OIMs can also be 
calculated through the similarity of the association 
rule rankings produced by any two OIMs. Two of 
the popular rank-based similarity measures are 
namely: Spearman's and Kendall's Tau.  
 
3.1.4 Analysis of OIM selection methods  
In this section, we have highlighted the methods to 
choose an appropriate OIM from a pool of 
approximately 70 OIMs that is available in the 
literature. The methods differ in the amount of 
human interaction required and how well the 
selection fit the situation. At the high end of human 
interaction, researchers can opt to do manual 
research on the desired properties and match it to 
the properties that OIMs have. This is limited by 
the resource required to undertake such surveys and 
the users own understanding of the dataset. The 
benefit obtained from investing such resources is 
that the user understands why a rule is rank higher 
and that results are predictable.  

 
While having required high amount of user 

intervention in the process of selecting a suitable 
OIM, the manual inspection and decision aid 
approaches have the advantage of its complexity is 
independent of the data size. These approaches take 
almost the same effort because the properties 
defined are valid for thousand-row database and 
also large million-row databases. This point is 
important as some selection approaches are further 
complicated by the number of rules present (or the 
size of the database). This is true for experimental 
clustering based selection methods.  

 
At the medium to low end of human 

interaction, users can choose to perform selection 
based on experimentation. Tan et al. [17] proposed 
to use a rule sampling method to extract only rules 
with the most ranking conflict for the user to 
manually rank or annotate. The best OIM that fits 
the manual ranking is selected as the appropriate 
OIM. Without such sampling method, experimental 
clustering require more computational resources as 
more association rules are considered.  

Users must be aware that the success of 
uncovering valid correlations from the experimental 
data (association rule-OIM value matrix) depends 
on the size of the data. It is highly possible that a 
small dataset would yield false correlations 
between OIMs. However, a valid (real) correlation 
might not be useful because in experimental 
clustering two OIMs that are positively correlated 
are redundant in the particular dataset and can be 
reduced to using only one of them. Thus, it is 
important to note that while experimental clustering 
eliminates some human intervention in selecting an 
OIM, it needs to be performed per dataset basis. 
Property-based clustering requires higher human 
intervention, but it is more usable (without 
alteration if the users required-properties remain the 
same) across different datasets.   
 

The major benefit of experimentation 
(clustering and correlations) is that it could reduce 
the amount of OIMs to consider (within each 
dataset) without human intervention. However, it 
still depends on human selection or some 
automated assumption to select which one to use 
among the few representative OIMs. In addition, 
correlations coefficient like Kendall's Tau are 
computationally expensive.  

 
As a last note in this section, the current 

studies [17, 27, 33] have noted that no OIMs 
perform better consistently across different 
datasets. This is possibly due to the changing 
distribution in the dataset and suggested that the 
selection should be done at regular intervals. In 
addition, to better gauge the benefit of OIM 
utilization, users should provide more information 
about the distribution of association rules alongside 
their experimentation. An interestingness value is 
an interplay of operands and most OIMs proposed 
used the contingency table cells as operands in their 
equation. Thus, if the distribution of contingency 
tables within the examined ruleset is the same, the 
categorization of OIMs will inevitably be the same. 
This is more obvious in a temporal dataset because 
if the selection is done within short periods of time, 
the distribution of contingency table (and hence 
operands) will not differ much to make an impact in 
the OIM selection. 
 
3.2 Aggregation of OIMs  

Apart from choosing which OIM to use, 
some users followed the path of aggregating the 
values of multiple OIMs into a single 
interestingness value. Aggregation of multiple 
OIMs also include mining rules that satisfy multiple 
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OIMs simultaneously [28, 29, 30, 41, 42, 43, 44, 
45] and using evolutionary algorithms to derive 
their own optimal formula [10, 11, 46]. In a 
comparison study conducted by Abe and Tsumoto 
[1], the authors used Principle Component Analysis 
(PCA) to retrieve seven groups of measures 
accounting for 92% variability in the dataset and 
showed that by combining their surveyed 39 
measures (with the PCA component as the weight) 
yields comparable results (in prediction accuracy) 
against choosing the one best OIM by domain 
expert. Thus, OIM aggregation is also an appealing 
method for utilizing OIMs.  

 
3.2.1 Combining values from different OIMs   
In general, combining values of different OIMs 
involve the derivation of a proper weightage 
function to aggregate the values of various OIMs 
into one single interestingness value. In this section, 
we will discuss two methods in which a weightage 
function could be defined: normalizing function 
and optimization function. The former involves 
normalizing the interestingness values while the 
latter explores genetic algorithm for providing a 
weightage function.  

 
Nguyen Le et al. [12] proposed the usage 

of Choquet integral to aggregate the values of 
different OIMs together into single interestingness 
value. Recall from earlier section that the set of 
similar OIMs which were redundant can be 
removed and those which are not correlated (plus 
negatively correlated) represents a set of alternative 
OIMs to choose from. Other than choosing OIMs, 
we can use the all the OIMs. Although we include 
the OIMs, we use weights to ensure that the effect 
of the redundant OIMs are not significant (as 
compared to contributions of other negatively 
correlated OIMs) to the single interestingness 
value. This way the final result is as though we 
selected on OIM to use, but minus the manual labor 
of selection. 

 
As a formal definition to the Choquet 

integral, consider every OIM to be used by the user 
(labeled �� to ��) will produce interestingness 
values (��, ��, … , ��) for every association rule. 
The system would sort the OIMs such that the 
condition �� � ���� � ���� � ⋯	� 	�� is fulfilled. 
With this definition, the Choquet Integral is defined 
as: 


����, ��, … , ��� 	  ��!"���� # "������$
�

���

 

(3) 

In the Equation 3, �� is the sorted set of all 
OIMs used ���, ��, … ,���, Si is the sorted subset �� that spans %�� , ����, … ,��& and "���� is the 
subset-weight for the sorted subset of OIM values ��. The single value of interestingness (Cµ 
(��, ��, … , ��)) is in fact the summation of all the 
sorted interestingness values (�� , ����, … , ��) 
weighted respectively by the difference in subset-
weights of two different sorted subsets. The first is 
the sorted subset starting with ������ while the 
second sorted subset begins with ����������. 
Equation 4 illustrates the subset-weight for a subset 
containing two OIMs (e.g., Mx and My). In this 
case, Si is a set containing only two members '�� , ��(. 

 "���� 	 	)�*+"����, ",��-.																	#	�1 # ��)
�+"����, ",��-.             (4) 

From the Equation 4 above, we can see 
that with respect to equal singleton weight 
("����or ",��- = 1), the subset weight ("���� = r) 
is actually the correlation coefficient between ��and ��. To quantify the correlation between 
OIMs, the authors used the Pearson's correlation 
coefficient. Due to the fact that users can consider 
more than two OIMs to be used in their system, 
Equation 4 is expanded to Equation 5 to cover 
subsets that contain more than two OIMs. In 
Equation 5, 0̅ is the mean Pearson’s correlation 
coefficient of the measures in set �� and S is the 
subset of �� that spans %�� , ����, … ,��&.  
"���� 	 	max

�∈��

!"���\���$ # �1 # 0̅�"���� 
 (5)  

 
The Choquet integral's behavior is such 

that for those subsets of OIMs that are correlated 
with each other, the weights assigned to them are 
done in such a way that it reduces their overall 
effect. For example, if OIM 1 and OIM 2 are 
correlated, the Choquet integral will assign weights 
that will make the aggregation of the values (OIM 1 
+ OIM 2) smaller than the actual summation of 
OIM 1 and OIM 2. However, for the subset of 
OIMs that contains non-correlated OIMs, the 
Choquet Integral would assign the weights such 
that the aggregation of their values is equal to its 
maximal member. Likewise, for subsets of OIMs 
that are negatively correlated, the aggregated values 
would be more than the mere summation of their 
values. 
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If all the OIMs are noncorrelated to each 
other, the Choquet Integral will produce the same 
value as the weighted mean of all the OIMs. But if 
all OIMs are negative correlated to each other but 
still assigns high interestingness to an association 
rule, the association rule is said to have the highest 
possible interestingness. In essence, similar OIMs 
have less effect on the outcome of the aggregated 
interestingness, non-correlated OIMs have neutral 
effect and negatively correlated (complementary) 
OIMs have larger effect on the aggregated 
interestingness.  

 
In general, all the OIMs are just a 

combination of variables using mathematical 
operators. Through experience, researchers 
formulate such combinations so that the rules that 
they wanted would have a higher value (and 
subsequently being ranked higher among other 
association rules). This is especially true where 
there are ample evaluation/training association rules 
like those in predictive or classification application 
contexts. Those evaluation mechanisms allow an 
automated optimization approach towards assigning 
individual weights to each OIM.  

 
Genetic Network Programming (GNP) [9] 

algorithm can be used to find an optimal equation 
to aggregate several OIMs [46]. The algorithm 
would derive an equation (GNP EQ) that combine 
the values of several OIMs into one interestingness 
value (GNP EQ(6�)) for each association rule (6�). 
The association rules are then ranked by their GNP 
EQ(6�) interestingness and the rules with high-
scores are used for classification. The GNP EQ that 
provided the highest classification accuracy is 
considered the best.  

 
The GNP algorithm starts with a small 

population of random solutions (called Genetic 
Networks, GNs) and evolves them to converge on a 
final optimal equation. So, each GN in the 
population is a candidate to be the best GNP EQ. 
Each GN has a networked structure consisting of 
three different types of nodes (Start-Node, 
Judgment-Node and Processing Node). Within each 
GN, the Start-Node is where equation combination 
starts and Judgment-Node controls the flow of 
combination (whether Processing-Node A links to 
Processing-Node B or to Processing-Node C). The 
connections between the nodes are also randomly 
assigned at first but the Start Node is always the 
entry point.  

 

The Processing Node holds the most data 
among the three nodes. Its attributes are a weight 
value (range of 0 to 1), OIM options (either Support 
or Confidence), Operator options (addition, 
subtraction, multiplication, division, square, square 
root, maximum, minimum and absolute). Those 
attributes will form sub-equations that will be 
stored in each processing node. So, in general, each 
GN is a network of sub-equations (Processing 
Node) and the algorithm evolves these GNs until 
they are fit above certain threshold. Figure 2 depicts 
a simple GN with two Judgment-Node (J1 and J2) 
and two Processing-Node (P1 and P2). Intuitively,S 
is the Start-Node. The attributes of a Processing-
Node are symbolized with Wp (weights), Mq 
(OIMs), or (operators) and es (sub-equations).  

 

Figure 2: Structure of a Genetic Network and 
Processing-Node attributes [46]. 

In the start, several GNs are randomly 
chosen to form the initial population. Then the 
algorithm seeks to find out which GN has the best 
fitness. The fitness is evaluated as a function of the 
classification accuracy of the top association rules 
ranked by the GNP EQ. The fit GNs are selected 
for reproduction through genetic operators. The 
operators are as follows:   

• Cossover: A connection in two preselected 
GNs are switched.  

• Connection-Mutation: A connection 
within a GN is switched.  

• Node-Content-Mutation: The contents of 
the processing node are changed. This 
could be that the sub-equation is changed, 
or just the weight is changed or the options 
for the sub-equation attributes are changed 
(e.g., removing the division operator).  
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The population gets evolved from 
generation to generation until an optimal solution 
with minimum specified fitness is found. The 
optimal solution is the equation that will be used to 
aggregate OIM values into one single 
interestingness value. The initial prototype reported 
in [46] only allows six possible combinations of 
Support and Confidence through the addition, 
subtraction, multiplication and division operators. 
An example of the resultant fit equation is “0.11 ∙������� # 0.6 ∙ 
���
�����”.  
 
3.2.2 Meta-learning approach to combining 

multiple OIMs  
Delpisheh and Zhang [11] used neural network with 
back propagation to select a combination of 
multiple OIMs that would rank the rules as closely 
as possible to the training set ranked by domain 
experts. The domain experts would evaluate several 
association rules (6�) and give them an 
interestingness value (������6��). This will form 
the training set of which the neural network will use 
to learn to model the data.  Using the same neural 
network, we would then input the values of unseen 
observations (in this context, the interestingness 
values of an association rule, without a predefined 
ideal value given by the domain expert) and at the 
end of the network, we will obtain one single 
interestingness value that is the most optimal (with 
respect to the training examples).  
 
3.2.3 Finding optimal values for OIMs  
In Section 3.1, we have discussed that many OIMs 
share the same mathematical properties and 
produce similar interestingness values for the same 
association rule. Thus, it is also possible that users 
can mine association rules that satisfy multiple 
OIMs. This is the area of optimal rule mining and 
we elaborate these methods as an option towards 
combining multiple OIMs. However, these methods 
are delimited by the nature of the OIM. In other 
words, the OIMs combined usually have their 
properties formalized and proven to be similar 
using mathematical process.  

 
In [28, 29, 42], the authors proved that 

mathematical lower bounds exist for certain group 
of OIMs and proposed that mining within such 
lower bounds will satisfy other related OIMs as 
well. Table 6 lists the null-invariant OIM 
investigated in [28]. The authors went on to prove 
that a total-order (Equation 6) exists between the 
five measures in Table 6.  

 

Table 6: Null-invariant OIMs investigated in [28] 

Name  Formula  
AllConf (X i) )
�,���|��, ���|��- 

Coherence’(Xi) 1!���|�� � < ���|�� � # 1$ 
Cos(Xi) =���|�� > ���|�� 
Kulc(X i) ���|�� < ���|��2  

MaxConf(Xi)  )�*,���|��, ���|��- 
 
This implies that given a threshold on a 

high-order measure (e.g., Kulc), the association 
rules filtered by the Kulc measure would be a 
superset of those produced by a lower-order 
measure (e.g., Cosine or Cos).  

 
MaxConfKulcCosCoherenceAllConf ≤≤≤≤ '

    (6) 
 
Partial orders can also be defined to mine 

association rules that satisfy many interestingness 
measures [42]. The authors defined two partial 
orders: ≤sc and ≤s¬c that are based on the Support 
(Supp(Xi)) and Confidence (Conf(Xi)) 
interestingness values for an association rule (Xi).  
 
For any two association rule 6�and 6�, 6�	 @"# 6� 
if and only if:  

• Supp(X1) ≤ Supp(X2) ^ Conf(X1) > 
Conf(X2)  

• Supp(X1) < Supp(X2) ^ Conf(X1)  ≥ 
Conf(X2) 

On the other hand, X1 <s¬c X2 if and only if:  

• Supp(X1) ≤ Supp(X2) ^ Conf(X1) < 
Conf(X2)  

• Supp(X1) < Supp(X2) ^ Conf(X1) ≤ 
Conf(X2) 

For both partial orders, X1 =sc X2 
(respectively also X1 =s¬c X2) is true only if X1 and 
X2 have the same Support and Confidence 
interestingness value. If one were to plot the 
Support and Confidence values for all the 
association rules (Xi) on a Confidence-vs-Support 
chart, the set of association rules that fulfill the 
partial order ≤sc will form the upper border while 
the set of association rules that fulfill the partial 
order ≤s¬c will form the lower border. Figure 3 
illustrates this concept. With these partial orders, 
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the authors have shown than mining association 
rules using the upper border (using partial order 
≤sc) would yield association rules that satisfy the 
OIM list of conviction, lift, Laplace, gain and the 
Piatetsky-Shapiro. Mining the lower border would 
produce association rules that satisfy the measures 
highlight in the previous sentence plus the entropy 
gain, Gini Index and Chi-Square values.  
 

 
Figure 3: The set of association rules fulfilling the partial 

orders (≤sc and ≤s¬c) forming the upper and lower 
boundaries [42]. 

Hébert and Cremilleux unified 17 OIMs 
through the usage of three parameters [41]: minimal 
antecedent frequency (cell Na in contingency table, 
denoted as γ), maximal consequent frequency (cell 
Nb in contingency table, η) and maximal counter-
example frequency (cell Nab in contingency table, 
δ). The authors have shown that by expressing the 
17 OIMs in terms of the three parameters, one can 
observe that the interaction between the three 
parameters in each OIM is the same (just the 
magnitude of interaction different). Users can 
assign values to the parameters (γ, η, δ) and 
calculate the corresponding lower bounds for each 
OIM. The OIM's original formula and its lower 
bound are illustrated in Table 7. Hence, it is 
possible to simultaneously optimize all 17 OIMs 
according to a lower bound. In other words, any 
association rules will satisfy the minimum 
interestingness (the lower bound) in all 17 OIMs if 
it has the following contingency table cell values:  

1. �� A 	B 
2. �� � 	η 
3. ��� � 	D   

 
Evolutionary algorithms are also used to 

mine rules that satisfy multiple OIMs. They are the 
class of algorithms modeled over nature. We will 
elaborate on a variant of evolutionary algorithms as 
a foundation to this section: Genetic Algorithm 
(GA). The GA is an algorithm that is modeled 
using natural evolution of genes. GA solves an 
optimization problem by having a set of early 
solution possibilities (encoded as genes) and 

evolving them into a more optimal population. An 
optimal solution is the one having the best fitness 
determined through the fitness function. The 
evolution is done through processes of mutation, 
inheritance and crossover. There is also a selection 
step mimicking the natural selection process to 
choose the genes qualified for breeding.   

 
Those processes (also known as genetic 

operators) are performed in cycles and at the end of 
each cycle, the fitness function is used to check the 
optimality of the population. If the population is 
less than optimal, the cycle continues on. Thus the 
two most important aspects/parameters to consider 
when comprehending an implementation of GA 
are:  

1. The encoding used for the genes.  
2. The genetic operators. 

 
Francisci and Collard [43] employed 

multi-objective evolutionary approach to mine rules 
that have the optimal combination of OIMs. In their 
GA implementation, each association rule 6� is 
encoded in the Michigan approach. The genetic 
operators used are crossover and tournament 
selection. The crossover process grows association 
rules into larger (or smaller rules) by adjunction (or 
deletion). In effect, the system starts with single 
item rules (rules with only antecedent) and grows 
them until the population achieves a certain fitness 
level. An optimal population would contain 
association rules (6�) that has the most optimal 
combination of OIM values.   

 
The fitness function is defined as follows: 

We have a list of OIMs labeled from ��, ��, … ,�� 
which provide interestingness values (Equation 7) 
to association rules labeled from 6�, 6�, … , 6�.  
 E� 	 ,���6��,���6��, … ,���6��-         (7) 
 

The fitness (also known as the Pareto 
Frontier) is called a non-dominated vector and is 
defined in Equation 7 where F, G	 ∈ %1,2, …)& are 
indices to denote each OIM in the set of OIMs. It 
illustrates that the association rule 6� is more 
optimal than 6$ and hence, 6� is more interesting 
that association rule 6$. In the context of Equation 
8, one can say that the association rule 6� 
dominates  6$.  
 ∀F:�%,6�- A �%,6$-, ∃G:��,6�- L ��,6$- 

(8) 
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Other researches that used GA in 
association rule mining includes Anand, Vaid and 
Singh [45]. Their implementation was set to 
optimize only four OIMs: comprehensibility, 
support, confidence and cosine. Martinez-
Ballesteros and Riquelme [44] offers enhancement 
in the GA optimization process by first extracting 
only a subset of OIMs. Four groups of OIMs are 
selected through PCA process in which one OIM 
(with the highest eigenvalue) is selected as the 
representative of each group. This offers a view 
into OIMs that have different perspectives (because 
the selected OIMs represent OIMs with differing 
properties). As an extension to evolutionary 
algorithms satisfying multiple OIMs, Nandhini et 
al. [47] used Particle Swarm Optimization (PSO) to 
estimate the optimal threshold for Support and 
Confidence before using it to mine association 
rules.  

 
Similar to the non-dominated (optimal) set 

of association rules defined in Equation 7, Bouker 
et al. [48] proposed an algorithm to find the set of 
optimal association rules. To find a set of non-
dominated association rules, one would need to 
compare each association rule with every other 
association rule. This would be time-consuming 
even if it is possible. Thus, the authors 
approximated the comparison by designing the 
algorithm such that, when it checks for each rule 
for dominance, it only checks the similarity 
between a candidate rule 6� and a super rule which 
dominates all other rules. This is in contrast to the 
taxing process of doing pair-wise comparison for 
all possible pairs of association rules. They assume 
the existence of a super association rule and any 
association rule (6�) that is similar to the super rule 
is granted dominance status. This super rule also 
has the maximal values for all OIMs 
(��, ��, … ,��). The measure to calculate the 
similarity between two rules, �
),6�, 6$- is 
illustrated in Equation 9.  
 

�
),6�, 6$- 	 M |�&,6�-N #�&,6$-N |
�

���

O ∙ ) � 
(9) 

 
Note that since each OIM had its own 

range of possible values, it is important to 
normalize the interestingness values before running 
the Equation 9. Hence normalized OIM values are 
labeled as �&�6�N .  
 
 

3.2.4 Analysis of OIM aggregation   
Aggregation of OIMs allows users to specify 
weights for a particular OIM. This is an advantage 
over the OIM selection method because even if 
there are approximately 70 OIMs available in the 
literature, it is not possible for them to fit human 
interest accurately. Aggregation provides a 
refinement to the existing OIM so that it fits a user 
interest better. On the contrary, OIM aggregation as 
can be seen from the literature could result in 
expressions that cannot be comprehended by the 
user. For example, in the work of Yang et al. [46], a 
resultant expression of “0.11 ∙ ������� # 0.6 ∙
���
�����” will not make such sense to a user 
especially when the expression changes from time 
to time to fit the prediction accuracy goal.  

 
For short term exploratory projects, there 

is no benefit to train a learning algorithm. This 
highlights the drawback of a learning system: it 
needs to be trained. Investigations further into the 
viability of meta-learning as an OIM selection 
methodology can be done by integrating sampling 
methods (e.g., in [17]). This way the learning curve 
could be improved faster and less effort is required 
by the user to annotate their preference. 

 
The derivation of custom expressions 

(although done autonomously by optimization 
algorithms) could be undermined by the fact that 
the eligible operands also included the 
approximately 70 measures available in the 
literature and this amount of options would lead to 
a combinatorial explosion. However, the derivation 
can be made tractable if:  

• the operand is limited to only contingency 
table cells.   

• feature elimination algorithms be run to 
retrieve only significant operands, 
specifically those that contribute highly to 
the variability across different association 
rules mined [44].  

 
4. EVALUATION OF OIM USAGE  

Selecting an appropriate OIM required the 
capability to categorize an OIM. In turn, the 
categorization depends on the method of how 
similarity between OIMs is calculated. The paper 
[49] highlights the four potential pitfalls in the 
effort of categorization of OIMs: rule bias, data 
bias, expert bias and search bias that users should 
be concerned about. The first bias (rule bias) refers 
to the rule-set being mined where different sets of 
rules would yield different correlations between 
OIMs. This would not be an issue if the user uses 
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basic form of algorithms like Apriori [15] and FP-
Growth [23].  

 
Users should be careful if they use the 

optimal variant algorithms like [28, 41, 42, 43, 44, 
45]. The second bias (data bias) could occur 
because different datasets from the same domain 
could yield different correlations between OIMs 
(even after mitigating the rule-bias). Users 
investigating or utilizing OIMs should also be 
aware of the expert and search biases. Suzuki in 
[49] defined expert bias as the condition where 
different domain experts will have different 
opinions. In relation to the selection or aggregation 
that is based on user inputs, the result would highly 
dependent on which user was the one who provided 
the expert opinion. The search bias refers to the 
methods used in correlating OIMs. As illustrated in 
preceding sections, researchers could use clustering 
(property-based or experimental-based), MCDA, 
PCA or correlation coefficients (Pearson's 
Coefficient, Spearman's Rho, Kendall's Tau). All 
the preceding methods would produce differing 
correlations depending on the input.   

 
The author [49] proposed that varying the 

datasets and methods of experiment would enable 
mitigation of those four biases. As an example, 
Vaillant et al. [33] used experimental clusterings of 
20 OIMs across ten datasets to verify the properties 
they defined for their property-based clustering. 
Abe and Tsumoto [1] experimented with 32 UCI 
datasets to verify their grouping of OIMs by 
underlying theories (e.g., probabilistic, statistical, 
information and relative-based OIMs). Jalali-Heravi 
and Zaïane [27] performed their study across 20 
UCI datasets. This highlights the importance of 
setting up the appropriate architecture to support so 
much validation across different methods and 
datasets in both selection and aggregation of OIMs.  

 
Similar to the usage of OIMs which should 

be tailored to each domain, the methods for 
evaluating the success of using OIMs are also 
tailored to their application context. The methods to 
evaluate the effectiveness of the OIM usage used 
within the literature surveyed includes classification 
accuracy [3, 24, 27], verified by expert user [1, 50], 
reduction in rule count [27], against other measures 
or methods [25, 33, 51] and against content-based 
similarity [14]. The last method of evaluation is 
applicable when there is content information 
available. An example of content information is a 
database for product information which stores 
product attributes like the category of the product 

(food, clothes, stationeries) or the ingredients of the 
products (or materials of non-food products). From 
such info, we could deduce similarity between 
items (apple is more like an orange than a T-shirt) 
and use this to compare between the associations 
made by the association rule. In addition, the 
content similarity can also be used to model user 
expectations so that the association rule mining can 
uncover surprising rules.  

 
5. CONCLUSION    

Basic algorithms in association rule 
mining produce an exhaustive list of rules that 
satisfy the Support-Confidence thresholds. Given 
this fact, the amount of rules generated are often too 
large to be processed by a user and too redundant 
that it becomes noise for automated processing. 
There is a need to manage this rule overload. One 
of the methods is through the usage of Objective 
Interestingness Measures (OIMs) and there exist 
approximately 70 OIMs available to be used. Thus, 
the question of reducing rule overload becomes a 
problem of utilizing the appropriate filters (OIMs). 
In this paper, we have analyzed recent 
developments in determining interestingness and 
methods available to use the OIMs. We split the 
usage into two: OIM selection and OIM 
aggregation. After systematic examination of both 
methods (refer Section 3.1.4 and 3.2.4 
respectively), we conclude that OIM selection 
provides comprehensible results at the expense of 
human resources while OIM aggregation is better at 
fulfilling goals set with reduced human intervention 
albeit the low result-comprehensibility and high 
computational expenses.  

 
With regard to the fact that each OIM 

represents a point of view on the data, we noted that 
these two usages should be used together in an 
association rule mining process. The selection 
methods allow users to filter out redundant OIMs to 
arrive at a smaller set of OIMs and the aggregation 
method can be used to integrate user-preference 
weights to combine the values from this smaller set 
of OIMs. This arrangement will ensure that users do 
not end up optimizing redundant OIMs that are 
already correlated. In addition, the selection process 
or rule sampling can be used to speed up the 
aggregation process due to the smaller set of OIMs. 
This is especially true if a computationally 
expensive correlation coefficient (like the Kendall’s 
Tau) or aggregation method (genetic algorithms) is 
used.  
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At present, OIMs are better used in 
filtering association rules so that it is more 
manageable for both users and computers. This is 
inline with the work of [50] in evaluating the 
correlations between OIM-measured rules and 
human interest-measured rules. The study was done 
using eight datasets and 11 OIMs. Their result was 
that ranking of rules by OIMs only correlate with 
the expert user for only 35% of the time. However, 
with the advent of OIM aggregation, the gap 
between OIM and human interest could be further 
reduced. This could be achieved by trading off the 
comprehensibility of the aggregated expressions 
and if there is a specific goal to optimize (e.g., in 
classification problems) that allows the whole 
process to be automated.   
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Table 3: Criteria/Properties For Evaluating OIM [21]  

Property  Description  Possible Values  

g1 – Treatment of 
antecedent and 
consequent  

How the OIM evaluates “A�B” and “B�”?  Symmetric / 
Asymmetric  

g2 – Decrease with Nb  Is the interestingness calculated by a particular 
OIM a decreasing function of Nb? 

Y / N  

g3 – Independence 
value  

Is the value of interestingness of an association 
rule is a constant or variable when the 
antecedent is independent (probabilistically) of 
the consequent.  

Constant / Variable  

g4 – Logical rule value  Is the value of interestingness of an association 
rule is a constant or variable when there are no 
counter examples to the rule.  

Constant / Variable  

g5 – Sensitivity 
towards counter 
example  

How much will the interestingness value change 
when small addition of counter examples?  

Change Type 
(Convex, Linear, 

Concave)  

g6 – Sensitivity 
towards total records  

How will the interestingness value change when 
more rules are added?  

Increase / Invariant  

g7 – Ease of threshold 
determination  

How easy is it to set a threshold for the value of 
the OIM to filter association rules?  

Easy / Hard  

g8 – Intelligibility of 
the OIM  

How easily the semantics of the OIM be 
understood?  

A / B / C  

 

Table 4: Additional Criteria/Properties Used By [32] For Evaluating OIM.  

Property  Description  Possible 
Values  

Treatment of counter 
example   

Interestingness stays constant when there exists no 
counter example for the association rule.  

1 / 0  

Response to row or 
column permutation  

Interestingness values changes its sign when either 
one of the row and column of the contingency table 
are permuted. 

1 / 0  

Response to both row 
and column permutation  

Interestingness values sign remain unchanged if both 
the row and column of the contingency table are 
permuted.  

1 / 0  

Null invariance  Interestingness value must be null invariant. In the 
contingency table context, the cell Nab does not have 
an effect on the interestingness. 

1 / 0  
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Table 5: Criteria/Properties For Evaluating OIM [36].   

Property  Description  

Invariance in quantity 
expansion  

The interestingness value produced by the OIM should not change 
when the cells Nab, Nab are expanded by constant K1 and cells Nab, 
Nab by constant K2.  

Asymmetric in conclusion 
negation  

The interestingness is different for a rule A� B and its counter 
example A�B  

Attraction case between A 
and B  

A and B are said to be an attraction case if the joint probability of A 
and B is more than the product of their individual probability.  

Repulsion case between A 
and B  

Repulsion of A and B occurs when the joint probability of A and B is 
less than the product of their individual probability.  

Relationship between 
A�B and Ā�B  

An OIM with this property must hold true for the interestingness of 
Ā�B is the negation (opposite) of the interestingness A�B.  

Relationship between 
A�B and A�B  

An OIM with this property must hold true for the interestingness of 
Ā�B is the negation (opposite) of the interestingness A�B.  

Relationship between 
A�B and A�B  

An OIM with this property must hold true for the interestingness of 
Ā�B is the negation (opposite) of the interestingness A�B.  

Descriptive statistical 
measure  

A descriptive OIM is invariant if the data is dilated by a constant K. 
Otherwise, it is a statistical measure.  

Antecedent size is fixed 
or random  

The antecedent size is uncertain when the OIM is based on 
probabilistic models.  
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Table 7: OIM Formulas And Lower Bounds In Terms Of Γ, ∆, Η [41]. The Original Form Are Written With 

Contingency Table Notation From Section 1. 

OIM  Formula  Lower Bounds  

Support  ����  
B # D�  

Confidence  �����  1 # DB 
Sensitivity  �����  

B # D
η  

Specificity  1 # �� # ���� # ��  1 # D
N� η  

Success Rate  � # �� # �� < 2����  1 < B # 2D # η
�  

Lift  � ∙ ����� ∙ ��  P1 # DBQ ∙ �η  

Rule Interest  ��� # �� ∙ ���  B # D # B ∙ η�  

Laplace (K=2)  ��� < 1�� < 2  
B # D < 1B < 2  

Odds Ratio  ����� # ��� #
� # �� # �� < ����� #���  M B # Dη �γ�δ

O ∙ M� # η �δ

D O 
Growth Rate  P ����� # ���Q ∙ P

� # ���� Q PB # DD Q ∙ R
� # η

η S 
Sebag & 
Schoenauer  

����� # ��� 
B # DD  

Jaccard  ����� < �� # ��� 
B # D
η �δ

 

Conviction  P� # ��� Q ∙ P ���� # ���Q R� # η
� S ∙ TBDU 

Θ-coefficient  � ∙ ��� #�� ∙ ��
=�� ∙ �� ∙ �� # ��� ∙ ��� # �� B ∙ T� # η U # D ∙ �	

VB ∙ �� # B� ∙ η ∙ TN� η U 
Added Value   ����� #

���  PB # DB Q ∙ R
η
�S 

Certainty Factor  ��� ∙ � # �� ∙ ���� ∙ �� # ���  B ∙ T� # η U # D ∙ �
B ∙ T� # η U  

Information Gain  log P����� ∙
���Q log RB # DB ∙ �η S 

 


