
Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

522

 HYBRID GREEDY – PARTICLE SWARM OPTIMIZATION –
GENETIC ALGORITHM AND ITS CONVERGENCE TO

SOLVE MULTIDIMENSIONAL KNAPSACK PROBLEM 0-1

1FIDIA DENY TISNA A., 2SOBRI ABUSINI, 3ARI ANDARI
1P.G. Student, Department of Mathematics, Brawijaya University, Indonesia

2,3Lecturer, Department of Mathematics, Brawijaya University, Indonesia
E-mail: 1anjaoye@yahoo.com, 2sobri@ub.ac.id, 3ari_mat@ub.ac.id.

ABSTRACT

In this research, we present a hybrid algorithm called Greedy – Particle Swarm Optimization – Genetic
Algorithm (GPSOGA). This algorithm is based on greedy process, particle swarm optimization, and some
genetic operators. Greedy algorithm is used as initial population, Particle Swarm Optimization (PSO) as
main algorithm and Genetic Algorithm (GA) as support algorithm. Multidimensional knapsack problem 0-1
(MKP 0-1) will be used as test problem. To solve MKP 0-1, GPSOGA divided into 3 variants: GPSOGA
(1), GPSOGA (2), and GPSOGA (3) based on criteria how they choose an initial solution in each algorithm.
Then we will see which variant that is better to solve MKP 0-1, in term of the best solution ever known, the
average of solution in each run, and the average of computational time. After ×20 running program
individually, we can see that GPSOGA (3) is more suitable than GPSOGA (1) and GPSOGA (2) to solve
MKP 0-1. Because it can solve the test problem more accurate, and have better average solution except in
Data 2 and Data 3. We also provide convergence analysis to GPSOGA solution. So, it can be proved that
GPSOGA solution is always convergent to global optimum and it can’t exceed the exact solution in solving
MKP 0-1.

Keywords: Genetic Algorithm, Greedy Algorithm, Multidimensional Knapsack Problem 0-1, Particle
Swarm Optimization.

1. INTRODUCTION

In 2011, Singh et al [1] introduced binary particle
swarm optimization with crossover operation to
solve discrete optimization function. He combines
the binary particle swarm optimization and genetic
crossover operator to improve the solution
diversity. Five different types of binary crossover
operators are used to binary particle swarm
optimization to check whether the hybrid algorithm
works better on benchmark function or not. The
result shows that proposed algorithm give better
results for few standard benchmark functions.

Greedy algorithm is a simple and fast algorithm
because it only chooses solution which is described
in greedy criteria. Many paper used greedy as
combination to their hybrid algorithm in the hope
the greedy solution can help the hybrid algorithm to
close to the nearest solution. Mizan et al [2] used
greedy method to find the nearest cloud storage
center and recourses in a hybrid cloud. Pramanik et
al [3] present new hybrid classifier that combines
the k-Nearest Neighbor (k-NN) and ID3 algorithm.
In [3], greedy algorithm is used to constructs

decision trees in a top-down recursive divide and
conquer manner. Labey and Chence [4] used greedy
in the first phase to create a feasible solution for bin
packing problem in their algorithm, called Greedy
Randomized Adaptive Search Procedure (GRASP).

The multidimensional knapsack problem 0-1 is
known as NP-Hard problem [5]. Some research [6-
8] had solved this problem well. But most of them
didn’t provide convergence analysis for MKP 0-1
solution that has been obtained.

In this paper, we propose a hybrid algorithm
called Greedy-PSO-Genetic Algorithm (GPSOGA)
based on greedy algorithm and binary PSO with
crossover operation. We used a different crossover
technique and add mutation operator to increase the
diversity probability. The multidimensional
knapsack problem 0-1 will be used as test problem.
In solving MKP 0-1, we choose some greedy
criteria applied to GPSOGA. We want to know
which criteria is suited to GPSOGA in solving
MKP 0-1. To make it sure that greedy algorithm has
effect on GPSOGA, we will also compare with non
greedy GPSOGA or PSOGA. We also provide

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

523

convergence analysis to guarantee that GPSOGA
solution is convergent to solve MKP 0-1. It is
required to see the behavior of GPSOGA solutions.

2. GENERAL MODEL OF
MULTIDIMENSIONAL KNAPSACK
PROBLEM 0-1, GREEDY ALGORITHM,
GENETIC ALGORITHM, AND
PARTICLE SWARM OPTIMIZATION.

2.1 Multidimensional Knapsack Problem 0-1

The multidimensional knapsack problem 0-1 is
an optimization problem. It can be described as
given a set of items that have two attributes, profit
and weights, and a knapsack with some constraints.
Our objective is to maximize the sum of profit by
choosing items without exceeding the knapsack
constraints. Mathematically, it can be formulated as
follows [9]:

Maximize

∑
=

n

i 1

pixi , i=1,…,n (E1)

Subject to

∑∑
= =

m

j

n

i1 1

wijxi ≤ Wj, (E2)

xi ∈ {0,1}, j=1,…m

Where pi is the profit of i-th item, xi is the criteria
of choosing an item (1, if the item is chosen and 0,
otherwise), wij is the weight of the i-th item and j-th
constraint, Wj is the maximum capacity of
knapsack/constraints, m is the number of
constraints, n is the number of items.

2.2 Greedy Algorithm
Greedy algorithm will take one of feasible

solutions in each turn and add it to the previous
solution. In the hope, the last solution will converge
to global optimum. There are 3 methods in greedy
algorithm to solve KP 0-1 [10]:

(1) choose item with the highest profit (p>>)

(2) choose item with the lowest weight (w>>)

(3) choose item with the highest ratio (p/w>>)

2.3 Genetic Algorithm
Genetic Algorithms were invented by John

Holland. Holland developed Genetic Algorithms
with his students and colleagues. This lead to
Holland's book "Adaption in Natural and Artificial
Systems" published in 1975 [11]. GA is inspired by
genetic process in human body and there are four

processes in this algorithm: population, selection,
crossover, and mutation.

2.4 Particle Swarm Optimization
Particle Swarm Optimization was introduced by

Eberheart and Kennedy in 1995 [12]. PSO is
inspired by social behavior of bird flocking, animal
hording, or fish schooling to search food in an area
[5]. The potential solutions are called particle. Each
particle will move depend on its velocity and the
two best positions known (its own and that of the
swarm) according to the following two equations:

vik
t+1=w.vik

t+c1.r1
t.(pbik

t-xik
t)+c2.r2

t.(gbt-xik
t) (E3)

xik
t+1=xik

t+vik
t+1 (E4)

w is an inertia coefficient. (xik
t+1, xik

t), (vik
t+1, vik

t):
position and velocity of particle k in dimension i at
times t+1 and t, respectively. pbik

t, gbt: the best
position obtained by the particle k and the best
position obtained by the swarm in dimension i at
time t, respectively. c1, c2: two constants
representing the acceleration coefficients [13]. r1

t,
r2

t: random numbers drawn from the interval [0,1]
at time t.

3. BASIC IDEA OF GPSOGA

Every algorithm has strength and weakness. With
the description in previous section, we know that
greedy algorithm is a fast algorithm but sometimes
the greedy solution only approach the global
solution. PSO is an algorithm that based on the best
particle in its population. Because in PSO, the other
particles in the population converge towards the
best particle’s position. The better particle’s
position, the faster PSO solves a problem. Genetic
operators, like crossover and mutation are used to
vary the solution. So, we put greedy solution to
PSO initial population in the hope it can make PSO
population better. Then add some genetic operators
(crossover and mutation) in the hope it can find
solution which is too far away from PSO
population. The flowchart of GPSOGA can be seen
at Figure 1.

4. APPLICATION OF GPSOGA FOR MKP

0-1

The step of GPSOGA to solve MKP 0-1 can be
described as follows:

Step 1. Input the problem. Input pi, wij, and Wj.
Step 2. Search the problem solution using greedy
algorithm. There are 3 methods to get the solution:
(1) Choose item with the highest profit

(p1 ≥ p2 ≥ … ≥ pn). This method called
GPSOGA (1).

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

524

(2) Choose item with the lowest weight
(w1 ≤ w2 ≤ … ≤ wn). This method called
GPSOGA (2).

(3) Choose item item with the largest ratio. Here
we sum the weight of each items :

wi1+wi2+…+wij=θ i
then we get pi/θ i=η , it is called ratio. After
that we sort the ratio, η 1 ≥ η 2 ≥ … ≥ η n. This
method called GPSOGA (3).

From that method, we know that GPSOGA has 3
variants, that is, GPSOGA (1), GPSOGA (2), and
GPSOGA (3). Then we should choose one of them.
Each method may have different result because it
has different criteria to choose an initial solution.
After that we put the items into the knapsack as
order until the boundary problems are met. We get

xi=

otherwise. 0,

chosen is itemth -i theif 1,
 (E5)

Step 3. Determine the initial parameter of PSO:
xik,vik,w,c1,c2,r1,r2,maxiter, where k=1,…,u and u is
the population size. The value is randomly
generated by the rules,

xi1=xi=greedy solution

xi(k-1)=

 ≥

otherwise0,

0.5rand(0,1) 1,
, k=2,…,u (E6)

and genetic parameter,α andβ .
Step 4. Calculate the fitness function,

Fk(pi, xik)=

 ≤

otherwise 0,

W)x,(wH),x,(pF jikijkikik (E7)

Where, Fk(pi, xik)= ∑
=

n

i 1

pixik and

Hk(wij,xik)= ∑∑
= =

m

j

n

i1 1

wijxik.

Step 5. Determine pbest and gbest. At first,
pbest=xik

1, then it will be updated as follows:

Pbik
t+1=

 ≥+

otherwise. ,pb

)pb,(pF)x,(pF ,x

ik

t
ikik

1t
ikikik

t
 (E8)

While gbest=zeros(size(xi1)), it will updated as
follows:

gbi1
t+1=

 ≥++

otherwise ,gb

)gb,(pF)pb,(pF,pb
t

i1

t
i1ik

1t
ikik

1t
ik (E9)

Figure 1: The Flowchart Of GPSOGA

Step 6. Update the velocity v,
vik

t+1=w.vik
t+c1.r1

t.(pbik
t-xik

t)+c2.r2
t.(gbi1

t-xik
t) (E10)

Then, the position x using sigmoid limiting
transformation S(vik

t+1),

S(vik
t+1)= 1t

ikv-e1

1
+

+

xik
t+1=

 ≥ +

otherwise. 0,

)S(vrand(0,1) 1, 1t
ik (E11)

Step 7. Crossover and Mutation. The crossover
technique is uniform gbest crossover:

xik
t+1=

 ≤+

otherwise.

rand(0,1)

 ,gb

 ,x
t

i1

1t
ik α

 (E12)

Where α is the crossover rate. The value of α is
between 0-100%.

Search solution using greedy algorithm

Problem

Input greedy solution to
PSO’s initial population

Yes

No

PSO initialization

Condition is met ?

Calculate the fitness function

End

The solution is
gbest

Determine pbest and gbest

Update velocity and position

Crossover

Mutation

Greedy
Algorithm

Genetic
Operato

rs

P
S
O

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

525

Then the mutation process is

xik
t+1=

 ≤

+

+

otherwise. ,x

rand(0,1) ,x
1t

ik

1t
ik β

 (E13)

Where 1t
ikx + is the binary invers of xik

t+1 and β is

the probability of mutation process happen.
Step 8. Repeat step 4-7 until maxiter condition is

satisfied. The global solution of GPSOGA is gbest
in the last iteration.

5. EXPERIMENTAL RESULT

The data test is taken from ORLib [14]. The data
test is called mknap1.txt which can be seen from
Table 1.

Table 1: The Data Test.

Data
Test

Items Constraints
Exact

Solution
Data 1 6 10 3800
Data 2 10 10 8706.1
Data 3 15 10 4015
Data 4 20 10 6120
Data 5 28 10 12400
Data 6 39 5 10618
Data 7 50 5 16537

The parameter can be seen from Table 2.

Table 2: The Parameter Of Algorithms.

Algorithm Parameter
PSOGA c1=c2=2

inertia value (w)=1
crossover rate (α)=0.333
mutation rate (β)=0.05

GPSOGA (1)
GPSOGA (2)
GPSOGA (3)

We used population size=30 and maximum

iteration (maxiter)=100 to save computational time.
Then we will compare each type of GPSOGA and
PSOGA which is can be described as GPSOGA
without greedy algorithm, in term of, the best
solution ever known, the average of solution in
each run, and the average of computational time.
After 20× running program individually using
Matlab, running on Core2Duo 2.0GHz and 2GB of
RAM, we get

 Table 3: The Best Solution Ever Known.

Algorithm
Data

PSOGA
GPSOGA

(1) (2) (3)
Data 1 3800 3800 3800 3800
Data 2 8706.1 8706.1 8706.1 8706.1
Data 3 4015 4015 4015 4015
Data 4 6120 6120 6120 6120
Data 5 12400 12390 12400 12400
Data 6 10559 10537 10584 10588
Data 7 16440 16374 16405 16456

Table 3 shows the best solution ever known. In

other words, it can be used to measure the accuracy
of algorithm. The bigger value of the solution, the
closer it to exact number. The bold printed values
show that the algorithm succeed to get the exact
number and the underlined values show that they
can’t get the exact solution, but they are the best
value ever obtained compared to others. It can be
seen that GPSOGA (3) get the best solution ever
known bigger than GPSOGA (1), GPSOGA (2),
and PSOGA in Data 6 and Data 7.

Table 4: The Average Solution In Each Run.

Algorithm
Data

PSOGA
GPSOGA

(1) (2) (3)
Data 1 3800 3800 3800 3800
Data 2 8537.2 8706.1 8540 8558.4
Data 3 4013.5 4014.5 4010.5 4011
Data 4 6069.5 6087.5 6104.5 6105
Data 5 12307 12282 12308 12400
Data 6 10453 10317 10433 10459
Data 7 16147 16145 16164 16282

Table 4 shows the average solution in each run

after 20× running program. It can be seen that
GPSOGA (3) get the average solution better than
the others in Data 4, Data 5, Data 6, and Data 7 and
GPSOGA (1) get the better solution in Data 2 and
Data 3. It means, GPSOGA (3) solutions close to
exact solution than the others in each run in Data 4,
Data 5, Data 6, and Data 7 and GPSOGA (1)
solutions close to exact solution in Data 2 and Data
3.

Table 5: The Average Computational Time In Each Run.

Algorithm
Data

PSOGA
GPSOGA

(1) (2) (3)
Data 1 0.2753 0.2084 0.2103 0.0976
Data 2 5.3709 1.757 5.1412 4.6434
Data 3 6.2512 3.8438 5.5971 7.6046
Data 4 16.0192 14.2113 16.3888 18.2794
Data 5 27.7416 30.7081 29.1501 0.4211
Data 6 42.9359 44.1045 44.5462 43.9084
Data 7 55.509 60.0246 56.5617 59.5934

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

526

Table 5 shows the average computational time in
each run (in seconds). It can be seen that GPSOGA
(1) can solve faster in Data 2, Data 3, and Data 4.
Although, the difference between algorithms are
less than 5 seconds except in Data 5. In Data 5,
GPSOGA (3) can solve faster because it get exact
solution in its initial population. In other words, the
greedy solution get the exact solution in GPSOGA
(3) initial population. This is what we hope from
the hybrid algorithm.

6. THE CONVERGENCE OF GPSOGA TO

SOLVE MKP 0-1

The convergence of GPSOGA can be seen from
the series of its solution in each iteration.
Numerically, it can’t be guaranteed that the solution
will stop at any value. Therefore, we need an
analytic process to guarantee that the solution will
stop at certain value. Some of real analysis
definition [15] will be used to guarantee that the
GPSOGA solution is convergent.

DEFINITION 6.1

Let S ℜ⊂ , S said

(a) Bounded above, if ℜ∈∃α ∋ x α≤ , ∀ x∈ S.
ub={ ℜ∈α |x α≤ , ∀ x∈ S} is called upper
bound S, if UB is an upper bound of S but no
number less than UB is, then UB is a
supremum of S , and we write UB = Sup S.

(b) Bounded below, if ℜ∈∃β ∋ x β≥ , ∀ x∈ S.
lb={ ℜ∈β |x β≥ , ∀ x∈ S} is called lower
bound S, if LB is a lower bound of S but no
number greater than LB is, then LB is a
infimum of S , and we write LB = Inf S

(c) Bounded, if a nonempty set has a unique
supremum and a unique infimum, and
LB ≤ UB.

DEFINITION 6.2

Let D ℜ⊂ so that D contain interval I and
f:D ℜ→ is a function, then f said

(1) Nondecreasing on I if x1,x2∈ I, x1<x2
⇒ f(x1) ≤ f(x2) and

(2) Nonincreasing on I if x1,x2∈ I, x1<x2
⇒ f(x1) ≥ f(x2).

“The series of GPSOGA solution in solving MKP
0-1 are convergent if the sequence of GPSOGA
fitness function is nondecreasing and bounded“

Let M is called the maximum profit of knapsack

without worrying the constraints. So, M=∑ p

where p is the set of profit on each item. Now, we
ignore the index i because it has no effect on this
proof, but one of the most influential is the index k
because it shows a different individual. From Step
4, the fitness value of MKP 0-1 can be rewritten as

f(xk)=

≤∑ ∑

=

otherwise. 0,

Wxw ,px
m

1j

jkjk (E14)

Where xk = the k-th solution, k=1,…,u

wj = the j-th weight set

Wj = the j-th constraint

∑
=

m

j 1

wjxk ≤ Wj is the sum of j-th weight multiplied

by the k-th solution less than equal to the j-th
constraint. For each k=1,…,u, we have
P={f(x1),f(x2),…,f(xu)}. P is called set of fitness
function. Because M is the maximum profit of
knapsack problem, then we can conclude that
f(xk) ≤ M, ∀ k=1,…,u. It means, if
smax=argmax(f(xk)|k=1,…,u), we also say that smax
is the maximum solution of population in one
iteration, f(smax) ≤ M. Any real number is greater
than equal to f(smax) is upper bound of P. f(smax) is
upper bound of P but no number less than f(smax) on
upper bound of P, then f(smax) is a supremum of P
………(P1)

For the lower bound, assume that there are no item
selected or xk={0}, then the profit is

m=∑ pxk=∑ p.0=0 (minimum profit). From

Equation (E14), for each k=1,…,u, we have
P={f(x1),f(x2),…,f(xu)}. Because m is the minimum
profit of knapsack problem, then we can conclude
that m≤ f(xk), ∀ k=1,…,u. It means, if
smin=argmin(f(xk)|k=1,…,u), we also say that smin is
the minimum solution of population in one
iteration, m≤ f(smin). Any real number is less than
equal to f(smin) is lower bound of P. f(smin) is lower
bound of P but no number greater than f(smin) on
lower bound of P, then f(smin) is a infimum of P
………(P2)

From (P1) and (P2) we analyze the GPSOGA
solutions in one iteration, but it is also valid for
each iteration because the processes to update the
GPSOGA solution are the same in each iteration.
From (P1) and (P2), we can see that the fitness
function of GPSOGA solutions have supremum

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

527

and infimum in one iteration and it is the same for
each iteration. So, we can say the fitness function
of GPSOGA solutions is bounded in each iteration
and it is kept in interval [0,M] by Equation (E14).
Although the infimum and supremum may be
different in each iteration ………(P3)

Next, we will see the solution of GPSOGA in one
run. Here, we are focused on the maximum solution
(smax) in each iteration. From (P3), we can conclude
smax∈ [0,M]. If S={s1,s2,…,smaxiter} is the set of
GPSOGA solution in each iteration, where st=smax

t
(it is called the maximum solution of GPSOGA in
t-th iteration), then st∈ [0,M], ∀ t=1,…,maxiter.
Corresponding to gbest in Step 5, it can be
rewritten as

st+1=

 ≥++

otherwise. ,s

)f(s)f(s,s

t

t1t1t (E15)

Where st = gbi1
t = the solution of t-th iteration and

f(st) = F(pi,gbi1
t) = ∑ p.st = the fitness value of t-

th iteration, t=1,…,maxiter. Consequently by (E15),
for each s1,s2,…,smaxiter∈ S, index 1<2<…<maxiter
⇒ f(s1) ≤ f(s2) ≤ … ≤ f(smaxiter). It means that the
sequence of fitness function is nondecreasing on S
…………(P4)

From (P4) we know that f(s1) is the minimum
number of S and f(smaxiter) is the maximum number
of S. By using some variables in (P1) and (P2), we
can write again,

1) m≤ f(s1). Any real number is less than equal
to f(s1) is lower bound of S. f(s1) is lower
bound of S but no number greater than f(s1)
on lower bound of S, then f(s1) is a infimum
of S.

2) f(smaxiter) ≤ M. Any real number is greater than
equal to f(smaxiter) is upper bound of S.
f(smaxiter) is upper bound of S but no number
less than f(smaxiter) on upper bound of S, then
f(smaxiter) is a supremum of S.

3) S has supremum and infimum, then S is
bounded ………(P5)

From (P4) and (P5) we can conclude that the series
of fitness function S are nondecreasing and
bounded..

Here is, the illustration of GPSOGA convergence
theory by solving MKP 0-1 test data with GPSOGA
(3) in 1× running program. And it will be the same
with the other GPSOGA, the difference is the
fitness values in each iteration.

0 10 20 30 40 50 60 70 80 90 100
3799

3799.2

3799.4

3799.6

3799.8

3800

3800.2

3800.4

3800.6

3800.8

3801

P
ro

fit
 o

r
F

itn
es

s
V

al
ue

Iteration
Figure 2: The Result of GPSOGA (3) for DATA 1

0 10 20 30 40 50 60 70 80 90 100
8300

8350

8400

8450

8500

8550

8600

8650

8700

8750

P
ro

fit
 o

r
F

itn
es

s
V

al
ue

Iteration
Figure 3: The Result of GPSOGA (3) for DATA 2

0 10 20 30 40 50 60 70 80 90 100
3820

3840

3860

3880

3900

3920

3940

3960

3980

4000

4020

P
ro

fit
 o

r
F

itn
es

s
V

al
ue

Iteration
Figure 4: The Result of GPSOGA (3) for DATA 3

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

528

0 10 20 30 40 50 60 70 80 90 100
6010

6020

6030

6040

6050

6060

6070

6080

6090

6100

6110
P

ro
fit

 o
r

F
itn

es
s

V
al

ue

Iteration
Figure 5: The Result of GPSOGA (3) for DATA 4

0 10 20 30 40 50 60 70 80 90 100
1.2399

1.2399

1.2399

1.24

1.24

1.24

1.24

1.24

1.2401

1.2401

1.2401
x 10

4

P
ro

fit
 o

r
F

itn
es

s
V

al
ue

Iteration

Figure 6: The Result of GPSOGA (3) for DATA 5

0 10 20 30 40 50 60 70 80 90 100
0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06
x 10

4

P
ro

fit
 o

r
F

itn
es

s
V

al
ue

Iteration

Figure 7: The Result of GPSOGA (3) for DATA 6

0 10 20 30 40 50 60 70 80 90 100
1.58

1.59

1.6

1.61

1.62

1.63

1.64
x 10

4

P
ro

fit
 o

r
F

itn
es

s
V

al
ue

Iteration

Figure 8: The Result of GPSOGA (3) for DATA 7

7. CONCLUSION

In this paper, we present a hybrid algorithm
called GPSOGA. To solve MKP 0-1, GPSOGA is
divided into 3 variants: GPSOGA (1), GPSOGA
(2), and GPSOGA (3). The experiment shows that
GPSOGA (3) can get more accurate result in term
of the best solution ever known than GPSOGA (1),
GPSOGA (2), and PSOGA. In term of the average
of solution in each run, GPSOGA (1) has better
results in Data 2 and Data 3, then GPSOGA (3) has
better results in Data 4, Data 5, Data 6, and Data 7.
And the solution of GPSOGA in solving MKP 0-1
is guaranteed convergent.

Though, we say the proposed algorithm is used
to solve small MKP 0-1. Hence, further comparison
is needed in a large problem. Compared to other
algorithm in past 5 years, this algorithm is still lack
of accuracy. It needs to find another greedy criteria
so it can get the initial solution better and simplify
PSO and GA process so it can save computational
time. The last, the convergence analysis is only
applied to solve MKP 0-1. So, the global
convergence of GPSOGA needs to provide.

REFRENCES:

[1] Singh, Deepak., Singh, Vikas., and Ansari,

Uzma., “Binary Particle Swarm Optimization
with Crossover Operation For Discrete
Optimization”, International Journal of
Computer Applications (Vol. 28 No. 11),
August, 2011, pp. 15-20.

[2] Mizan, Tasquia., Al Masud, Shah Murtaza
Rasyid., And Latip, Rohaya., “Modified Bee
Life Algorithm for Job Scheduling”,
International Journal of Engineering and
Technology (Vol. 2 No. 6), June, 2012, pp.
974-979.

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

529

[3] Pramanik, Shovon K., Pramanik, Subrata.,
Pramanik, Bimal K., Molla, M.K Islam., and
Hamid, Md. Ekramul., “Hybrid Classification
Algorithm for Knowledge Acquisition of
Biomedical Data”, International Journal of
Advanced Science and Technology (Vol. 44),
July, 2012, pp. 99-112.

[4] Layeb, Abdesslem., and Chence, Sara., “A
Novel GRASP Algorithm for Solving the Bin
Packing Problem”, I.J. Information
Engineering and Electronic Business, 2012,
pp. 8-14.

[5] Abdelhalim, M.B., and Habib, S.E., “Particle
Swarm Optimization for HW/SW
Partitioning”, Particle Swarm Optimization, In-
Tech Publisher, 2009, pp. 49-76.

[6] Ling, Wang., Xiuting, Wang., Jingqi, Fuu., and
Lanlan, Zen., “A Novel Probability Binary
Particle Swarm Optimization Algorithm and Its
Application”, Journal Of Software (Vol. 3 No.
9), December, 2008, pp. 28-35.

[7] Zhibao, Mian., “Meta-heuristics for
Multidimensional Knapsack Problems”,
IPCSIT (Vol. 39), 2012.

[8] Deane, Jason., and Agarwal, Anurag., “Neural,
Genetic, And Neurogenetic Approaches For
Solving The 0-1 Multidimensional Knapsack
Problem”, International Journal of
Management & Information Systems (Vol. 17
No. 1), 2013, pp. 43-54.

[9] Varnamkhasti, M. Jalali., “Overview of the
Algorithms for Solving the Multidimensional
Knapsack Problems”, Advanced Studies in
Biology (Vol. 4 No. 1), 2012, pp. 37-47.

[10] Hristakeva, Maya., and Dipti Shresta.,
“Different Approach to Solve The 0-1
Knapsack Problem”, Midwest Instruction and
Computing Symposium, 2005.

[11] Khurana, Narnita., Rathi, Anju., and P.S,
Akshatha., “Genetic Algorithm: A Search of
Complex Spaces”, International Journal of
Engineering and Technology (Vol. 2 No. 6),
June, 2012, pp. 13-17.

[12] Dorigo, M., “Particle Swarm Optimization”,
www.schoolarpedia.com, revision #52052,
2008.

[13] Labed, Said., Gherboudj, Amira., and Chiki,
Salim., “A Modified Hybrid Particle Swarm
Optimization For Solving The Traveling
Salesman Problem”, Journal of Theoretical
and Applied Information Technology (Vol. 39
No. 3), 15 May 2012, pp. 132-138.

[14] http://people.brunel.ac.uk/~mastjjb/jeb/orlib/
files/mknap1.txt.

[15] Trench, Willian F., “Introduction To Real
Analysis”, Library of Congress Cataloging-in-
Publication Data, April, 2010.

