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ABSTRACT 
 

In this research, we present a hybrid algorithm called Greedy – Particle Swarm Optimization – Genetic 
Algorithm (GPSOGA). This algorithm is based on greedy process, particle swarm optimization, and some 
genetic operators. Greedy algorithm is used as initial population, Particle Swarm Optimization (PSO) as 
main algorithm and Genetic Algorithm (GA) as support algorithm. Multidimensional knapsack problem 0-1 
(MKP 0-1) will be used as test problem. To solve MKP 0-1, GPSOGA divided into 3 variants: GPSOGA 
(1), GPSOGA (2), and GPSOGA (3) based on criteria how they choose an initial solution in each algorithm. 
Then we will see which variant that is better to solve MKP 0-1, in term of the best solution ever known, the 
average of solution in each run, and the average of computational time. After ×20 running program 
individually, we can see that GPSOGA (3) is more suitable than GPSOGA (1) and GPSOGA (2) to solve 
MKP 0-1. Because it can solve the test problem more accurate, and have better average solution except in 
Data 2 and Data 3. We also provide convergence analysis to GPSOGA solution. So, it can be proved that 
GPSOGA solution is always convergent to global optimum and it can’t exceed the exact solution in solving 
MKP 0-1. 

Keywords: Genetic Algorithm, Greedy Algorithm, Multidimensional Knapsack Problem 0-1, Particle 
Swarm Optimization. 

 
1. INTRODUCTION  
 

In 2011, Singh et al [1] introduced binary particle 
swarm optimization with crossover operation to 
solve discrete optimization function. He combines 
the binary particle swarm optimization and genetic 
crossover operator to improve the solution 
diversity. Five different types of binary crossover 
operators are used to binary particle swarm 
optimization to check whether the hybrid algorithm 
works better on benchmark function or not. The 
result shows that proposed algorithm give better 
results for few standard benchmark functions. 

Greedy algorithm is a simple and fast algorithm 
because it only chooses solution which is described 
in greedy criteria. Many paper used greedy as 
combination to their hybrid algorithm in the hope 
the greedy solution can help the hybrid algorithm to 
close to the nearest solution. Mizan et al [2] used 
greedy method to find the nearest cloud storage 
center and recourses in a hybrid cloud. Pramanik et 
al [3] present new hybrid classifier that combines 
the k-Nearest Neighbor (k-NN) and ID3 algorithm. 
In [3], greedy algorithm is used to constructs 

decision trees in a top-down recursive divide and 
conquer manner. Labey and Chence [4] used greedy 
in the first phase to create a feasible solution for bin 
packing problem in their algorithm, called Greedy 
Randomized Adaptive Search Procedure (GRASP). 

The multidimensional knapsack problem 0-1 is 
known as NP-Hard problem [5]. Some research [6-
8] had solved this problem well. But most of them 
didn’t provide convergence analysis for MKP 0-1 
solution that has been obtained. 

In this paper, we propose a hybrid algorithm 
called Greedy-PSO-Genetic Algorithm (GPSOGA) 
based on greedy algorithm and binary PSO with 
crossover operation. We used a different crossover 
technique and add mutation operator to increase the 
diversity probability. The multidimensional 
knapsack problem 0-1 will be used as test problem. 
In solving MKP 0-1, we choose some greedy 
criteria applied to GPSOGA. We want to know 
which criteria is suited to GPSOGA in solving 
MKP 0-1. To make it sure that greedy algorithm has 
effect on GPSOGA, we will also compare with non 
greedy GPSOGA or PSOGA. We also provide 
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convergence analysis to guarantee that GPSOGA 
solution is convergent to solve MKP 0-1. It is 
required to see the behavior of GPSOGA solutions. 

2. GENERAL MODEL OF 
MULTIDIMENSIONAL KNAPSACK 
PROBLEM 0-1, GREEDY ALGORITHM, 
GENETIC ALGORITHM, AND 
PARTICLE SWARM OPTIMIZATION. 

 
2.1 Multidimensional Knapsack Problem 0-1 

The multidimensional knapsack problem 0-1 is 
an optimization problem. It can be described as 
given a set of items that have two attributes, profit 
and weights, and a knapsack with some constraints. 
Our objective is to maximize the sum of profit by 
choosing items without exceeding the knapsack 
constraints. Mathematically, it can be formulated as 
follows [9]: 

Maximize 

∑
=

n

i 1

pixi , i=1,…,n (E1) 

Subject to 

∑∑
= =

m

j

n

i1 1

wijxi ≤ Wj,  (E2) 

xi ∈ {0,1},    j=1,…m 

Where pi is the profit of i-th item, xi is the criteria 
of choosing an item (1, if the item is chosen and 0, 
otherwise), wij is the weight of the i-th item and j-th 
constraint, Wj is the maximum capacity of 
knapsack/constraints, m is the number of 
constraints, n is the number of items. 

2.2 Greedy Algorithm 
Greedy algorithm will take one of feasible 

solutions in each turn and add it to the previous 
solution. In the hope, the last solution will converge 
to global optimum. There are 3 methods in greedy 
algorithm to solve KP 0-1 [10]: 

(1) choose item with the highest profit (p>>) 

(2) choose item with the lowest weight (w>>) 

(3) choose item with the highest ratio (p/w>>) 

2.3 Genetic Algorithm 
Genetic Algorithms were invented by John 

Holland. Holland developed Genetic Algorithms 
with his students and colleagues. This lead to 
Holland's book "Adaption in Natural and Artificial 
Systems" published in 1975 [11]. GA is inspired by 
genetic process in human body and there are four 

processes in this algorithm: population, selection, 
crossover, and mutation. 

2.4 Particle Swarm Optimization 
Particle Swarm Optimization was introduced by 

Eberheart and Kennedy in 1995 [12]. PSO is 
inspired by social behavior of bird flocking, animal 
hording, or fish schooling to search food in an area 
[5]. The potential solutions are called particle. Each 
particle will move depend on its velocity and the 
two best positions known (its own and that of the 
swarm) according to the following two equations: 

vik
t+1=w.vik

t+c1.r1
t.(pbik

t-xik
t)+c2.r2

t.(gbt-xik
t) (E3) 

xik
t+1=xik

t+vik
t+1    (E4) 

w is an inertia coefficient. (xik
t+1, xik

t), (vik
t+1, vik

t): 
position and velocity of particle k in dimension i at 
times t+1 and t, respectively. pbik

t, gbt: the best 
position obtained by the particle k and the best 
position obtained by the swarm in dimension i at 
time t, respectively. c1, c2: two constants 
representing the acceleration coefficients [13]. r1

t, 
r2

t: random numbers drawn from the interval [0,1] 
at time t.  
 
3. BASIC IDEA OF GPSOGA  
 

Every algorithm has strength and weakness. With 
the description in previous section, we know that 
greedy algorithm is a fast algorithm but sometimes 
the greedy solution only approach the global 
solution. PSO is an algorithm that based on the best 
particle in its population. Because in PSO, the other 
particles in the population converge towards the 
best particle’s position. The better particle’s 
position, the faster PSO solves a problem. Genetic 
operators, like crossover and mutation are used to 
vary the solution. So, we put greedy solution to 
PSO initial population in the hope it can make PSO 
population better. Then add some genetic operators 
(crossover and mutation) in the hope it can find 
solution which is too far away from PSO 
population. The flowchart of GPSOGA can be seen 
at Figure 1. 

 
4. APPLICATION OF GPSOGA FOR MKP 

0-1  
 

The step of GPSOGA to solve MKP 0-1 can be 
described as follows: 

Step 1. Input the problem. Input pi, wij, and Wj. 
Step 2. Search the problem solution using greedy 
algorithm. There are 3 methods to get the solution: 
(1) Choose item with the highest profit 

(p1 ≥ p2 ≥ … ≥ pn). This method called 
GPSOGA (1). 
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(2) Choose item with the lowest weight 
(w1 ≤ w2 ≤ … ≤ wn). This method called 
GPSOGA (2). 

(3) Choose item item with the largest ratio. Here 
we sum the weight of each items : 

wi1+wi2+…+wij=θ i 
then we get  pi/θ i=η , it is called ratio. After 
that we sort the ratio, η 1 ≥ η 2 ≥ … ≥ η n. This 
method called GPSOGA (3). 

From that method, we know that GPSOGA has 3 
variants, that is, GPSOGA (1), GPSOGA (2), and 
GPSOGA (3). Then we should choose one of them. 
Each method may have different result because it 
has different criteria to choose an initial solution. 
After that we put the items into the knapsack as 
order until the boundary problems are met. We get 

xi=




otherwise. 0,

chosen  is  itemth  -i   theif 1,
  (E5) 

Step 3. Determine the initial parameter of PSO: 
xik,vik,w,c1,c2,r1,r2,maxiter, where k=1,…,u and u is 
the population size. The value is randomly 
generated by the rules, 

xi1=xi=greedy solution 

xi(k-1)=


 ≥

otherwise0,

0.5rand(0,1) 1,
,   k=2,…,u   (E6) 

and genetic parameter,α andβ . 
Step 4. Calculate the fitness function, 

Fk(pi, xik)=




 ≤

otherwise 0,

W)x,(wH  ),x,(pF jikijkikik  (E7) 

Where, Fk(pi, xik)= ∑
=

n

i 1

pixik and  

Hk(wij,xik)= ∑∑
= =

m

j

n

i1 1

wijxik. 

Step 5. Determine pbest and gbest. At first, 
pbest=xik

1, then it will be updated as follows: 

Pbik
t+1=




 ≥+

otherwise. ,pb

)pb,(pF)x,(pF ,x

ik

t
ikik

1t
ikikik

t
 (E8) 

While gbest=zeros(size(xi1)), it will updated as 
follows: 

gbi1
t+1=




 ≥++

otherwise ,gb

)gb,(pF)pb,(pF,pb
t

i1

t
i1ik

1t
ikik

1t
ik  (E9) 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1: The Flowchart Of GPSOGA 

Step 6. Update the velocity v, 
vik

t+1=w.vik
t+c1.r1

t.(pbik
t-xik

t)+c2.r2
t.(gbi1

t-xik
t)   (E10) 

Then, the position x using sigmoid limiting 
transformation S(vik

t+1), 

S(vik
t+1)= 1t

ikv-e1

1
+

+
 

xik
t+1=




 ≥ +

otherwise. 0,

)S(vrand(0,1) 1, 1t
ik   (E11) 

Step 7. Crossover and Mutation. The crossover 
technique is uniform gbest crossover: 

xik
t+1=




 ≤+

otherwise.

rand(0,1)

 ,gb

 ,x
t

i1

1t
ik α

 (E12) 

Where α  is the crossover rate. The value of α  is 
between 0-100%. 
 
 

Search solution using greedy algorithm 

Problem 

Input greedy solution to 
PSO’s initial population 

 

Yes 

No  

PSO initialization 

Condition is met ? 
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The solution is 
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Operato
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Then the mutation process is 

xik
t+1=




 ≤

+

+

otherwise. ,x

rand(0,1) ,x
1t

ik

1t
ik β

   (E13) 

Where 1t
ikx +  is the binary invers of xik

t+1 and β  is 

the probability of mutation process happen. 
Step 8. Repeat step 4-7 until maxiter condition is 

satisfied. The global solution of GPSOGA is gbest 
in the last iteration. 
 
5. EXPERIMENTAL RESULT  
 

The data test is taken from ORLib [14]. The data 
test is called mknap1.txt which can be seen from 
Table 1. 

Table 1: The Data Test. 

Data 
Test 

Items Constraints 
Exact 

Solution 
Data 1 6 10 3800 
Data 2 10 10 8706.1 
Data 3 15 10 4015 
Data 4 20 10 6120 
Data 5 28 10 12400 
Data 6 39 5 10618 
Data 7 50 5 16537 

 
The parameter can be seen from Table 2. 

Table 2: The Parameter Of Algorithms. 

Algorithm Parameter 
PSOGA c1=c2=2 

inertia value (w)=1 
crossover rate (α )=0.333 
mutation rate (β )=0.05 

GPSOGA (1) 
GPSOGA (2) 
GPSOGA (3) 

 
We used population size=30 and maximum 

iteration (maxiter)=100 to save computational time. 
Then we will compare each type of GPSOGA and 
PSOGA which is can be described as GPSOGA 
without greedy algorithm, in term of, the best 
solution ever known, the average of solution in 
each run, and the average of computational time. 
After 20× running program individually using 
Matlab, running on Core2Duo 2.0GHz and 2GB of 
RAM, we get 

 
 
 
 
 
 

 Table 3: The Best Solution Ever Known. 

Algorithm 
Data 

PSOGA 
GPSOGA 

(1) (2) (3) 
Data 1 3800 3800 3800 3800 
Data 2 8706.1 8706.1 8706.1 8706.1 
Data 3 4015 4015 4015 4015 
Data 4 6120 6120 6120 6120 
Data 5 12400 12390 12400 12400 
Data 6 10559 10537 10584 10588 
Data 7 16440 16374 16405 16456 

 
Table 3 shows the best solution ever known. In 

other words, it can be used to measure the accuracy 
of algorithm. The bigger value of the solution, the 
closer it to exact number. The bold printed values 
show that the algorithm succeed to get the exact 
number and the underlined values show that they 
can’t get the exact solution, but they are the best 
value ever obtained compared to others. It can be 
seen that GPSOGA (3) get the best solution ever 
known bigger than GPSOGA (1), GPSOGA (2), 
and PSOGA in Data 6 and Data 7.  

Table 4: The Average Solution In Each Run. 

Algorithm 
Data 

PSOGA 
GPSOGA 

(1) (2) (3) 
Data 1 3800 3800 3800 3800 
Data 2 8537.2 8706.1 8540 8558.4 
Data 3 4013.5 4014.5 4010.5 4011 
Data 4 6069.5 6087.5 6104.5 6105 
Data 5 12307 12282 12308 12400 
Data 6 10453 10317 10433 10459 
Data 7 16147 16145 16164 16282 

 
Table 4 shows the average solution in each run 

after 20× running program. It can be seen that 
GPSOGA (3) get the average solution better than 
the others in Data 4, Data 5, Data 6, and Data 7 and 
GPSOGA (1) get the better solution in Data 2 and 
Data 3. It means, GPSOGA (3) solutions  close to 
exact solution than the others in each run in Data 4, 
Data 5, Data 6, and Data 7 and GPSOGA (1) 
solutions close to exact solution in Data 2 and Data 
3.  

Table 5: The Average Computational Time In Each Run. 

Algorithm 
Data 

PSOGA 
GPSOGA 

(1) (2) (3) 
Data 1 0.2753 0.2084 0.2103 0.0976 
Data 2 5.3709 1.757 5.1412 4.6434 
Data 3 6.2512 3.8438 5.5971 7.6046 
Data 4 16.0192 14.2113 16.3888 18.2794 
Data 5 27.7416 30.7081 29.1501 0.4211 
Data 6 42.9359 44.1045 44.5462 43.9084 
Data 7 55.509 60.0246 56.5617 59.5934 
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Table 5 shows the average computational time in 
each run (in seconds). It can be seen that  GPSOGA 
(1) can solve faster in Data 2, Data 3, and Data 4. 
Although, the difference between algorithms are 
less than 5 seconds except in Data 5. In Data 5, 
GPSOGA (3) can solve faster because it get exact 
solution in its initial population. In other words, the 
greedy solution get the exact solution in GPSOGA 
(3) initial population. This is what we hope from 
the hybrid algorithm. 
 
6. THE CONVERGENCE OF GPSOGA TO 

SOLVE MKP 0-1  
 

The convergence of GPSOGA can be seen from 
the series of its solution in each iteration. 
Numerically, it can’t be guaranteed that the solution 
will stop at any value. Therefore, we need an 
analytic process to guarantee that the solution will 
stop at certain value. Some of real analysis 
definition [15] will be used to guarantee that the 
GPSOGA solution is convergent. 

DEFINITION 6.1 

Let S ℜ⊂  , S said 

(a) Bounded above, if ℜ∈∃α  ∋ x α≤ , ∀ x∈ S. 
ub={ ℜ∈α |x α≤ , ∀ x∈ S} is called upper 
bound S, if UB is an upper bound of S but no 
number less than UB is, then UB is a 
supremum of S , and we write UB = Sup S. 

(b) Bounded below, if ℜ∈∃β  ∋ x β≥ , ∀ x∈ S. 
lb={ ℜ∈β |x β≥ , ∀ x∈ S} is called lower 
bound S, if LB is a lower bound of S but no 
number greater than LB is, then LB is a 
infimum of S , and we write LB = Inf S 

(c) Bounded, if a nonempty set has a unique 
supremum and a unique infimum, and 
LB ≤ UB. 

DEFINITION 6.2 

Let D ℜ⊂  so that D contain interval I and 
f:D ℜ→ is a function, then f said 

(1) Nondecreasing on I if x1,x2∈ I, x1<x2 
⇒ f(x1) ≤ f(x2) and 

(2) Nonincreasing on I if x1,x2∈ I, x1<x2 
⇒ f(x1) ≥ f(x2). 

“The series of GPSOGA solution in solving MKP 
0-1 are convergent if the sequence of GPSOGA 
fitness function is nondecreasing and bounded“ 

Let M is called the maximum profit of knapsack 

without worrying the constraints. So, M=∑ p 

where p  is the set of profit on each item. Now, we 
ignore the index i because it has no effect on this 
proof, but one of the most influential is the index k 
because it shows a different individual. From Step 
4, the fitness value of MKP 0-1 can be rewritten as 

f(xk)=









≤∑ ∑

=

otherwise. 0,

Wxw ,px
m

1j

jkjk  (E14) 

Where xk = the k-th solution, k=1,…,u 

wj = the j-th weight set 

Wj = the j-th constraint 

∑
=

m

j 1

wjxk ≤ Wj is the sum of j-th weight multiplied 

by the k-th solution less than equal to the j-th 
constraint. For each k=1,…,u, we have 
P={f(x1),f(x2),…,f(xu)}. P is called set of fitness 
function. Because M is the maximum profit of 
knapsack problem, then we can conclude that 
f(xk) ≤ M, ∀ k=1,…,u. It means, if 
smax=argmax(f(xk)|k=1,…,u), we also say that smax 
is the maximum solution of population in one 
iteration, f(smax) ≤ M. Any real number is greater 
than equal to f(smax) is upper bound of P.  f(smax) is 
upper bound of P but no number less than f(smax) on 
upper bound of P, then f(smax) is a supremum of P 
………(P1) 

For the lower bound, assume that there are no item 
selected or xk={0}, then the profit is 

m=∑ pxk=∑ p.0=0 (minimum profit). From 

Equation (E14), for each k=1,…,u, we have 
P={f(x1),f(x2),…,f(xu)}. Because m is the minimum 
profit of knapsack problem, then we can conclude 
that m≤ f(xk), ∀ k=1,…,u. It means, if 
smin=argmin(f(xk)|k=1,…,u), we also say that smin is 
the minimum solution of population in one 
iteration, m≤ f(smin). Any real number is less than 
equal to f(smin) is lower bound of P.  f(smin) is lower 
bound of P but no number greater than f(smin) on 
lower bound of P, then f(smin) is a infimum of P 
………(P2) 

From (P1) and (P2) we analyze the GPSOGA 
solutions in one iteration, but it is also valid for 
each iteration because the processes to update the 
GPSOGA solution are the same in each iteration. 
From (P1) and (P2), we can see that the fitness 
function of GPSOGA solutions have supremum 
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and infimum in one iteration and it is the same for 
each iteration. So, we can say the fitness function 
of GPSOGA solutions is bounded in each iteration 
and it is kept in interval [0,M] by Equation (E14). 
Although the infimum and supremum may be 
different in each iteration ………(P3) 

Next, we will see the solution of GPSOGA in one 
run. Here, we are focused on the maximum solution 
(smax) in each iteration. From (P3), we can conclude 
smax∈ [0,M]. If S={s1,s2,…,smaxiter} is the set of 
GPSOGA solution in each iteration, where st=smax

t 
(it is called the maximum solution of GPSOGA in 
t-th iteration), then st∈ [0,M], ∀ t=1,…,maxiter. 
Corresponding to gbest in Step 5, it can be 
rewritten as  

st+1=


 ≥++

otherwise. ,s

)f(s)f(s,s

t

t1t1t    (E15) 

Where st = gbi1
t = the solution of t-th iteration and 

f(st) = F(pi,gbi1
t) = ∑ p.st = the fitness value of t-

th iteration, t=1,…,maxiter. Consequently by (E15), 
for each s1,s2,…,smaxiter∈ S, index 1<2<…<maxiter 
⇒ f(s1) ≤ f(s2) ≤ … ≤ f(smaxiter). It means that the 
sequence of fitness function is nondecreasing on S 
…………(P4) 

From (P4) we know that f(s1) is the minimum 
number of S and f(smaxiter) is the maximum number 
of S. By using some variables in (P1) and (P2), we 
can write again, 

1) m≤  f(s1). Any real number is less than equal 
to f(s1) is lower bound of S.  f(s1) is lower 
bound of S but no number greater than f(s1) 
on lower bound of S, then f(s1) is a infimum 
of S.  

2) f(smaxiter) ≤ M. Any real number is greater than 
equal to f(smaxiter) is upper bound of S. 
f(smaxiter) is upper bound of S but no number 
less than f(smaxiter) on upper bound of S, then 
f(smaxiter) is a supremum of S.  

3) S has supremum and infimum, then S is 
bounded ………(P5)  

From (P4) and (P5) we can conclude that the series 
of fitness function S are nondecreasing and 
bounded.. 

Here is, the illustration of GPSOGA convergence 
theory by solving MKP 0-1 test data with GPSOGA 
(3) in 1×  running program. And it will be the same 
with the other GPSOGA, the difference is the 
fitness values in each iteration. 
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Figure 2: The Result of GPSOGA (3) for DATA 1 
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Figure 3: The Result of GPSOGA (3) for DATA 2 
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Figure 4: The Result of GPSOGA (3) for DATA 3 
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Figure 5: The Result of GPSOGA (3) for DATA 4 

0 10 20 30 40 50 60 70 80 90 100
1.2399

1.2399

1.2399

1.24

1.24

1.24

1.24

1.24

1.2401

1.2401

1.2401
x 10

4

P
ro

fit
 o

r 
F

itn
es

s 
V

al
ue

Iteration
 

Figure 6: The Result of GPSOGA (3) for DATA 5 
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Figure 7: The Result of GPSOGA (3) for DATA 6 

0 10 20 30 40 50 60 70 80 90 100
1.58

1.59

1.6

1.61

1.62

1.63

1.64
x 10

4

P
ro

fit
 o

r 
F

itn
es

s 
V

al
ue

Iteration
 

Figure 8: The Result of GPSOGA (3) for DATA 7 
 
7. CONCLUSION  
 

In this paper, we present a hybrid algorithm 
called GPSOGA. To solve MKP 0-1, GPSOGA is 
divided into 3 variants: GPSOGA (1), GPSOGA 
(2), and GPSOGA (3). The experiment shows that 
GPSOGA (3) can get more accurate result in term 
of the best solution ever known than GPSOGA (1), 
GPSOGA (2), and PSOGA. In term of the average 
of solution in each run, GPSOGA (1) has better 
results in Data 2 and Data 3, then GPSOGA (3) has 
better results in Data 4, Data 5, Data 6, and Data 7. 
And the solution of GPSOGA in solving MKP 0-1 
is guaranteed convergent.  

Though, we say the proposed algorithm is used 
to solve small MKP 0-1. Hence, further comparison 
is needed in a large problem. Compared to other 
algorithm in past 5 years, this algorithm is still lack 
of accuracy. It needs to find another greedy criteria 
so it can get the initial solution better and simplify 
PSO and GA process so it can save computational 
time. The last, the convergence analysis is only 
applied to solve MKP 0-1. So, the global 
convergence of GPSOGA needs to provide. 

 
REFRENCES:  
 
[1] Singh, Deepak., Singh, Vikas., and Ansari, 

Uzma., “Binary Particle Swarm Optimization 
with Crossover Operation For Discrete 
Optimization”, International Journal of 
Computer Applications (Vol. 28 No. 11), 
August, 2011, pp. 15-20.  

[2] Mizan, Tasquia., Al Masud, Shah Murtaza 
Rasyid., And Latip, Rohaya., “Modified Bee 
Life Algorithm for Job Scheduling”, 
International Journal of Engineering and 
Technology (Vol. 2 No. 6), June, 2012, pp. 
974-979. 



Journal of Theoretical and Applied Information Technology 
 31st  December 2013. Vol. 58 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
529 

 

[3] Pramanik, Shovon K., Pramanik, Subrata., 
Pramanik, Bimal K., Molla, M.K Islam., and 
Hamid, Md. Ekramul., “Hybrid Classification 
Algorithm for Knowledge Acquisition of 
Biomedical Data”, International Journal of 
Advanced Science and Technology (Vol. 44), 
July, 2012, pp. 99-112. 

[4] Layeb, Abdesslem., and Chence, Sara., “A 
Novel GRASP Algorithm for Solving the Bin 
Packing Problem”, I.J. Information 
Engineering and Electronic Business, 2012, 
pp. 8-14. 

[5] Abdelhalim, M.B., and Habib, S.E., “Particle 
Swarm Optimization for HW/SW 
Partitioning”, Particle Swarm Optimization, In-
Tech Publisher, 2009, pp. 49-76. 

[6] Ling, Wang., Xiuting, Wang., Jingqi, Fuu., and 
Lanlan, Zen., “A Novel Probability Binary 
Particle Swarm Optimization Algorithm and Its 
Application”, Journal Of Software (Vol. 3 No. 
9), December, 2008, pp. 28-35. 

[7] Zhibao, Mian., “Meta-heuristics for 
Multidimensional Knapsack Problems”, 
IPCSIT (Vol. 39), 2012. 

[8] Deane, Jason., and Agarwal, Anurag., “Neural, 
Genetic, And Neurogenetic Approaches For 
Solving The 0-1 Multidimensional Knapsack 
Problem”, International Journal of 
Management & Information Systems (Vol. 17 
No. 1), 2013, pp. 43-54. 

[9] Varnamkhasti, M. Jalali., “Overview of the 
Algorithms for Solving the Multidimensional 
Knapsack Problems”, Advanced Studies in 
Biology (Vol. 4 No. 1), 2012, pp. 37-47. 

[10] Hristakeva, Maya., and Dipti Shresta., 
“Different Approach to Solve The 0-1 
Knapsack Problem”, Midwest Instruction and 
Computing Symposium, 2005. 

[11] Khurana, Narnita., Rathi, Anju., and P.S, 
Akshatha., “Genetic Algorithm: A Search of 
Complex Spaces”, International Journal of 
Engineering and Technology (Vol. 2 No. 6), 
June, 2012, pp. 13-17. 

[12] Dorigo, M., “Particle Swarm Optimization”, 
www.schoolarpedia.com, revision #52052, 
2008. 

[13] Labed, Said., Gherboudj, Amira., and Chiki, 
Salim., “A Modified Hybrid Particle Swarm 
Optimization For Solving The Traveling 
Salesman Problem”, Journal of Theoretical 
and Applied Information Technology (Vol. 39 
No. 3), 15 May 2012, pp. 132-138. 

[14] http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ 
files/mknap1.txt. 

[15] Trench, Willian F., “Introduction To Real 
Analysis”, Library of Congress Cataloging-in-
Publication Data, April, 2010. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


