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ABSTRACT

In this research, we present a hybrid algorithnedalGreedy — Particle Swarm Optimization — Genetic
Algorithm (GPSOGA). This algorithm is based on ghe@rocess, particle swarm optimization, and some
genetic operators. Greedy algorithm is used agmlirpbpulation, Particle Swarm Optimization (PSQ) a
main algorithm and Genetic Algorithm (GA) as suggdgorithm. Multidimensional knapsack problem 0-1
(MKP 0-1) will be used as test problem. To solve MR-1, GPSOGA divided into 3 variants: GPSOGA
(1), GPSOGA (2), and GPSOGA (3) based on critesia they choose an initial solution in each algarith
Then we will see which variant that is better ttvadMKP 0-1, in term of the best solution ever kmowhe
average of solution in each run, and the averageoafputational time. After20x running program
individually, we can see that GPSOGA (3) is moritafle than GPSOGA (1) and GPSOGA (2) to solve
MKP 0-1. Because it can solve the test problem nagmirate, and have better average solution exeept
Data 2 and Data 3. We also provide convergenceysinalo GPSOGA solution. So, it can be proved that
GPSOGA solution is always convergent to globalropth and it can’t exceed the exact solution in sgjvi
MKP 0-1.

Keywords. Genetic Algorithm, Greedy Algorithm, Multidimensional Knapsack Problem 0-1, Particle
Swarm Optimization.

1. INTRODUCTION decision trees in a top-down recursive divide and
conquer manner. Labey and Chence [4] used greedy
In 2011, Singtet al [1] introduced binary particle in the first phase to create a feasible solutiagrbfo
swarm optimization with crossover operation tgacking problem in their algorithm, called Greedy
solve discrete optimization function. He combinefRandomized Adaptive Search Procedure (GRASP).

the binary particle swarm qpt|m|zat|on and gent_anc The multidimensional knapsack problem 0-1 is
crossover operator to improve the solution

. . . . i known as NP-Hard problem [5]. Some research [6-
diversity. Five different types of binary crossover8] had solved this problem well. But most of them
operators are used to binary particle swar

optimization to check whether the hybrid algorithnrggdlﬂtitoﬂr?h\/;?iaiogggggggtcaesnggalySIS for MKP 0-1

works better on benchmark function or not. The
result shows that proposed algorithm give better In this paper, we propose a hybrid algorithm
results for few standard benchmark functions. called Greedy-PSO-Genetic Algorithm (GPSOGA)

iversity  probability. The  multidimensional
napsack problem 0-1 will be used as test problem.
i . In solving MKP 0-1, we choose some greed
close to the nearest solution. Mizanal [2] used criteria agplied to GPSOGA. We want togknovy
greedy method to f'n.d the nearest cloud storagnich criteria is suited to GPSOGA in solving
center and recourses in a hybrid cloud. Pramenik \ 5 0.1 To make it sure that greedy algorithm has

al [3] present new hybrid classifier that combine%ﬁect on GPSOGA, we will also compare with non

the k-Nearest Neighbor (k-NN) and ID3 algorithm, :
In [3], greedy algorithm is used to constructgreedy GPSOGA or PSOGA. We also provide
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combination to their hybrid algorithm in the hop
the greedy solution can help the hybrid algoritiom t
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convergence analysis to guarantee that GPSOGhkocesses in this algorithm: population, selection,
solution is convergent to solve MKP 0-1. It iscrossover, and mutation.
required to see the behavior of GPSOGA solutions

2. GENERAL MODEL OF
MULTIDIMENSIONAL KNAPSACK
PROBLEM 0-1, GREEDY ALGORITHM,
GENETIC ALGORITHM, AND
PARTICLE SWARM OPTIMIZATION.

2.4 Particle Swarm Optimization

Particle Swarm Optimization was introduced by
Eberheart and Kennedy in 1995 [12]. PSO is
inspired by social behavior of bird flocking, anima
hording, or fish schooling to search food in araare
[5]. The potential solutions are called particlack
particle will move depend on its velocity and the
2.1 Multidimensional K napsack Problem 0-1 two best positions known (its own and that of the

The multidimensional knapsack problem 0-1 iswarm) according to the following two equations:
an optimization problem. It can be described as,, ti_
given a set of items that have two attributes, iprof kam
and weights, and a knapsack with some constrainw.'iks
Our objective is to maximize the sum of profit by

O . . o}

choosing items without exceeding the knapsa
constraints. Mathematically, it can be formulated
follows [9]:

W.ViHC I (Phic-Xi ) +Cou 12 (g-Xi)  (E3)
=XV (E4)

an inertia coefficient. (X%, x"), (Vi"™, vi):
sition and velocity of particle k in dimensioati
Imes t+1 and t, respectively. b gb: the best
6bosition obtained by the particle k and the best
position obtained by the swarm in dimension i at
time t, respectively. ¢ ¢: two constants
representing the acceleration coefficients [13]. r
r. random numbers drawn from the interval [0,1]
at time t.

Maximize

-

1
=

piXi, i=1,...,n (ED)

Subject to 3. BASIC IDEA OF GPSOGA

Every algorithm has strength and weakness. With
the description in previous section, we know that
greedy algorithm is a fast algorithm but sometimes
the greedy solution only approach the global
solution. PSO is an algorithm that based on thé bes
d?article in its population. Because in PSO, theeoth
particles in the population converge towards the
best particle’s position. The better particle’s
0[Position, the faster PSO solves a problem. Genetic
constraints, n is the number of items. operators, I|ke_ crossover and mutation are gsed to

vary the solution. So, we put greedy solution to
2.2 Greedy Algorithm PSO initial population in the hope it can make PSO

Greedy algorithm will take one of feasiblepopulation better. Then add some genetic operators
solutions in each turn and add it to the previougrossover and mutation) in the hope it can find
solution. In the hope, the last solution will corye solution which is too far away from PSO
to global optimum. There are 3 methods in greedyopulation. The flowchart of GPSOGA can be seen

WijX; < Wj' (E2)

NgE

n
i=1

J

(!
[y

XiD{O,l},

Where pis the profit of i-th item, xis the criteria
of choosing an item (1, if the item is chosen and
otherwise), Wy is the weight of the i-th item and j-th
constraint, W is the maximum capacity of
knapsack/constraints, m is the number

j=1,...m

algorithm to solve KP 0-1 [10]:

(1) choose item with the highest profit (p>>)
(2) choose item with the lowest weight (w>>)
(3) choose item with the highest ratio (p/w>>)

2.3 Genetic Algorithm
Genetic Algorithms were

at Figure 1.

4. APPLICATION OF GPSOGA FOR MKP
0-1

The step of GPSOGA to solve MKP 0-1 can be
described as follows:

invented by John

Holland. Holland developed Genetic AlgorithmsStep 1. Input the problem. Inpyt py;, and W.
with his students and colleagues. This lead tgt€P 2. Search the problem solution using greedy

Holland's book "Adaption in Natural and Artificial

Systems" published in 1975 [11]. GA is inspired by(1) Choose
genetic process in human body and there are four

algorithm. There are 3 methods to get the solution:
item with the highest profit
(p1=p2=...2p,). This method called
GPSOGA (1).
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(2) Choose item with the lowest weight
(W SW,<...<W,). This method called
GPSOGA (2).
(3) Choose item item with the largest ratio. Here : : : Greedy
we sum the Weight of each items : Search solution using greedy algorithn) =p Algorithm
WigHWigt... +W;= 6 v
then we get p8=n, it is called ratio. After Input greedy solution to
that we sort the ratiog 1= 7,>...2 n, This PSO’s initial population \
method called GPSOGA (3). ‘
From that method, we know that GPSOGA has 3 v
variants, that is, GPSOGA (1), GPSOGA (2), and PSO initialization > |
GPSOGA (3). Then we should choose one of them. v |
Each method may have different result because it c . .
. L7 L . alculate the fitness function I
has different criteria to choose an initial solatio
After that we put the items into the knapsack as v |
order until the boundary problems are met. We get Determine pbest and gbest |
_[1,if thei-th item is chosen (E5) v
" ]0,otherwise. | Update velocity and position | I
Step 3. Determine the initial parameter of PSO: v \
XifaVik, W, C1,Co,11,F2,maxiter, where k=1,...,u and u is Crossover 3 2
the population size. The value is randomly Genetic I o
generated by the rules, v ( Operato
X =x;=greedy solution | Mutation |— |
1,rand(0,1% 0.5
Xi(e1)= 01205 o 4 (E6) |
0,otherwise No I
. Condition is met ?
and genetic parameterandg. |
Step 4. Calculate the fitness function, |
@ Xk ) Hie(w;i, X ) £ W5
Fi(pi, Xi)= (R D AT Tk . (E7) The solution is
0,otherwise oo |
0 l
Where, k(p;, Xi)= Z piXik and Enc )
=
Hi(wij, Xi)= Zz Wij Xk« Figure 1: The Flowchart Of GPSOGA
st 5 D-_tll = best d abest At fi Step 6. Update the veIOC|tyv
ep e erm'ne p es an g es II’SI;V t+l_W V|k +C1 rl (phk 'X|k )+Cz r2 (ghlt'xikt) (ElO)
pbest=x’, then it will be updated as follows: . ) i o
" Then, the position x using sigmoid limiting
Ph, = %l (X ™) 2 R (B pby) (E8) transformation S(v*),
pby ", otherwise. S(utY= 1
1 +
While gbest=zeros(sizg(}), it will updated as 1+evi”
follows: t+1
" . : S L (E11)
gh, 1= pby K (A pby ) = K (R .gby) (E9) 0,otherwise.
gh;", otherwise Step 7. Crossover and Mutation. The crossover
technique is uniform gbest crossover:
t+1
Xikt+1: Xik t , rand(O,l-)s a (Elz)
gh;', otherwise.

Where a is the crossover rate. The value @fis
between 0-100%.
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Then the mutation process is Table 3: The Best Solution Ever Known.
- t+1 P
X ", rand(0,1 Algorithm GPSOGA
Xikt+1: ik ( )5 IB (E13) gData PSOGA (1) (2) (3)
x; 1 otherwise.
L Data 1 3800 3800 3800 3800
Where X, '*! is the binary invers of "™ and g is Data 2 8706.1 | 8706.1 | 8706.1 | 8706.1
Data 3 4015 4015 4015 4015

the probability of mutation process happen.

Step 8. Repeat step 4-7 until maxiter condition fis Data 4 6120 6120 6120 6120
satisfied. The global solution of GPSOGA is gbest Data 5 12400 | 12390] 12400 | 12400
in the | .t iterati Data 6 10559 10537 10584 10588
In the fast iteration. Data 7 16440| 16374 16405 _ 16456

S. EXPERIMENTAL RESULT Table 3 shows the best solution ever known. In

The data test is taken from ORLib [14]. The datgther words, it can be used to measure the accuracy

test is called mknapl.txt which can be seen fro falgo_rlthm. The bigger value of the s_olutlon, the
Table 1. closer it to exact number. The bold printed values

show that the algorithm succeed to get the exact
number and the underlined values show that they

Table 1: The Data Test. .
can't get the exact solution, but they are the best

Data | | oms | constraints _EX@ct value ever obtained compared to others. It can be
Test Solution seen that GPSOGA (3) get the best solution ever
Data 1 6 10 3800 known bigger than GPSOGA (1), GPSOGA (2),
Data 2 10 10 8706.1 and PSOGA in Data 6 and Data 7.
Data 3 15 10 4015
Data 4 20 10 6120 Table 4: The Average Solution In Each Run.
Data 5 28 10 12400 _
Data 6 39 5 10618 Algorithm PSOGA GPSOGA
Data 7 50 5 16537 Data 1) (2) 3
Data 1 3800 3800 3800 3800
Data 2 8537.2 8706.1 8540 8558.4
The parameter can be seen from Table 2. Data 3 20135 40145 20105 2011
. . Data 4 6069.5 6087.5 6104.5 6105
Table 2: The Parameter Of Algorithms. Data 5 12307 12282 12308 12400
Algorithm Parameter Data 6 10453| 10317] 10433 _ 10459
PSOGA G=C,=2 Data 7 16147 16145 16164 16282
GPSOGA (1) inertia value (w)=1
GPSOGA (2) | crossover rated )=0.333 Table 4 shows the average solution in each run
GPSOGA (3) mutation rate (3)=0.05 after 20xrunning program. It can be seen that

GPSOGA (3) get the average solution better than
We used population size=30 and maximunihe others in Data 4, Data 5, Data 6, and Datad7 an

iteration (maxiter)=100 to save computational timeGPSOGA (1) get the better solution in Data 2 and
Then we will compare each type of GPSOGA anéata 3. It means, GPSOGA (3) solutions close to
PSOGA which is can be described as GPSOG@Xact solution than the others in each run in Bata
without greedy algorithm, in term of, the bestbata 5, Data 6, and Data 7 and GPSOGA (1)
solution ever known, the average of solution irfolutions close to exact solution in Data 2 andaDat
each run, and the average of computational timé:

After 20xrunning program individually using _ _

Matlab, running on Core2Duo 2.0GHz and 2GB ofTable 5: The Average Computational Time In Each Run.

RAM, we get Algorithm | ey GPSOGA
Data (2) 2) 3)
Data 1 0.2753 0.2084 0.2103 0.0976
Data 2 5.3709 1.75Y 5.1412 4.6434
Data 3 6.2512 3.8438 5.5971 7.6044

Data 4 16.0192| 14.2113 16.3888| 18.2794
Data 5 27.7416| 30.7081 29.1501 _ 0.4211
Data 6 42.9359| 44.1045| 44.5462 43.9084
Data 7 55.509| 60.0244 _ 56.561]759.5934
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Table 5 shows the average computational time ibet M is called the maximum profit of knapsack
each run (in seconds). It can be seen that GPSOGgthout worrying the constraints. So, |\E p
(1) can solve faster in Data 2, Data 3, and Data 4. ) ] )
Although, the difference between algorithms ar&'here p is the set of profit on each item. Now, we
less than 5 seconds except in Data 5. In Data ignore the index i because it has no effect on this
GPSOGA (3) can solve faster because it get exaltoof, but one of the most influential is the index
solution in its initial population. In other worde ~Pecause it shows a different individual. From Step
greedy solution get the exact solution in GPSOGA- the fitness value of MKP 0-1 can be rewritten as

(3) initial population. This is what we hope from m
the hybrid algorithm. XL < W
f(xk): szk';W]xk =Y (E14)

6. THE CONVERGENCE OF GPSOGA TO

0,otherwise.
SOLVE MKP0-1

Where x = the k-th solution, k=1,...,u
The convergence of GPSOGA can be seen from

the series of its solution in each iteration. w; = the j-th weight set
N_umerically, it can't be guaranteed that the soluti W, = the j-th constraint
will stop at any value. Therefore, we need an

analytic process to guarantee that the solutioh wik™ . . . -
stop at certain value. Some of real analysi WiXic< W is the sum of j-th weight multiplied

definition [15] will be used to guarantee that the!

GPSOGA solution is convergent. by the k-th solution less than equal to the j-th
constraint. For each k=1,....u, we have
DEFINITION 6.1 P={f(x1),f(X2),....f(x,)}. P is called set of fitness
LetSOO , S said function. Because M is the maximum profit of
knapsack problem, then we can conclude that
(a) Bounded above, iflc00 [x<a,0x0S.  f(x)<M,O0k=1,...,u. It means, if

ub={a00|x<a,0x0OS} is called upper spa=argmax(f(x)k=1,...,u), we also say tha,s
bound S, if UB is an upper bound of S but nds the maximum solution of population in one
number less than UB is, then UB is aiteration, f($.a) <M. Any real number is greater
supremum of S, and we write UB = Sup S. than equal to f(g.) is upper bound of P. f£s) is
upper bound of P but no number less thag.f{on

(b) Bounded below, ifDGDD_ [xzf,0x0S. upper bound of P, then {(s) is a supremum of P
lb={ 00 |x=pB,0x0S} is called lower (P1)
bound S, if LB is a lower bound of S but no
number greater than LB is, then LB is a

infimum of S, and we write LB = Inf S

For the lower bound, assume that there are no item
selected or {0}, then the profit is
m= = .0=0 (minimum profit). From
(c) Bounded, if a nonempty set has a unique z P% z P (minimum - profit
supremum and a unique infimum, andEquation (E14), for each k=1,...,u, we have

LB < UB. P={f(x4),f(x2),...,f(x,)}. Because m is the minimum
profit of knapsack problem, then we can conclude
DEFINITION 6.2 that m<f(xy),0k=1,...,u. It means, Iif
Let D OO so that D contain interval | and Smn=argmin(f(x)|k=1,...,u), we also say that;sis
D - Ois a function, then f said the minimum solution of population in one
iteration, e f(smin). Any real number is less than
(1) Nondecreasing on | if 260l X<X2 equal to f(§) is lower bound of P. f(s,) is lower
= f(x1) < f(x2) and bound of P but no number greater than,ffson
(2) Nonincreasing on | if x601, X<x lower t()g;;ld of P, then f(g) is a infimum of P

= f(xq) = f(Xy).

“The series of GPSOGA solution in solving MKP
0-1 are convergent if the sequence of GPSOG
fitness function is nondecreasing and bounded*

From (P1) and (P2) we analyze the GPSOGA
Eolutions in one iteration, but it is also validr fo
each iteration because the processes to update the
GPSOGA solution are the same in each iteration.
From (P1) and (P2), we can see that the fithess
function of GPSOGA solutions have supremum
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and infimum in one iteration and it is the same for
each iteration. So, we can say the fitness function
of GPSOGA solutions is bounded in each iteration
and it is kept in interval [0,M] by Equation (E14). *%¢
Although the infimum and supremum may be g 3%4f
different in each iteration ......... (P3)

3800.8

3800.2

@
&
=3
S

Next, we will see the solution of GPSOGA in one
run. Here, we are focused on the maximum solutiorg
(Smay iN €ach iteration. From (P3), we can conclude” ¥
Snaxd [O,M]. If S={S1,S,...,Snaxited IS the set of 3799.41

or Fitness Value

3799.8

GPSOGA solution in each iteration, whegessa. 379921
(it is called the maximum solution of GPSOGA in AR
t-th iteration), then &[0,M], Ot=1,...,maxiter. Heration

Corresponding to gbest in Step 5, it can be Figure2: The Result of GPSOGA (3) for DATA 1

rewritten as
8750

Su= St‘fl'f(stﬂ)- 2 f(st) (E15) 8700 AR

St , otherwise. gesol
Where s= gh,' = the solution of t-th iteration and £ .

2 85501
f(s) = F(p.ghy) = z p.s = the fitness value of t- z ss00l
th iteration, t=1,...,maxiter. Consequently by (E15), B a0l
for each §s,...,Snaxiter’d S, iNndex 1<2<...<maxiter .
= f(s) <f(s2) < ... < f(Smaxite). It Means that the sl
sequence of fitness function is nondecreasing on S
8300 L L L L L L L L L
............ (P4) 0 10 20 30 40 50 60 70 80 90 100
Iteration

From (P4) we know that (5 is the minimum Figure 3: The Result of GPSOGA (3) for DATA 2

number of S and f(Sxie) IS the maximum number
of S. By using some variables in (P1) and (P2), we
can write again, 4000

3980+

4020

1) m< f(sy). Any real number is less than equal
to f(s) is lower bound of S. f(is lower
bound of S but no number greater than)f(s
on lower bound of S, then fsis a infimum
of S.

3960

3940

3920+

3900 -

Profit or Fitness Value

2) f(Smaxie) <M. Any real number is greater than | ,,..

equal to f(saxte) iS upper bound of S. il
f(Smaxited iS Upper bound of S but no number .
less than f(gxitey) ON uUpper bound of S, then  *®% 1 20 3 # s @ 7 & s 10
f(Smaxite) 1S @ supremum of S. eraton

3840

o ] Figure 4: The Result of GPSOGA (3) for DATA 3
3) S has supremum and infimum, then S is

bounded ......... (P5)

From (P4) and (P5) we can conclude that the series
of fitness function S are nondecreasing and
bounded..

Here is, the illustration of GPSOGA convergence
theory by solving MKP 0-1 test data with GPSOGA
(3) in 1x running program. And it will be the same
with the other GPSOGA, the difference is the
fitness values in each iteration.
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6070 -
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6050 -

Profit or Fitness Value

6040 -

6030 bk

6020 -

6010 btk— ! ! | ' '
0 10 20 30 40 50 60
Iteration

L L
70 80

L
90 100

Figure 5: The Result of GPSOGA (3) for DATA 4

x 10"
1.2401 .

1.2401+
1.2401+
1.241
1.241

1.24

1.241

Profit or Fitness Value

1.24r

1.2399

1.2399

1.2399 L L L L L L L L
0

10 20 30 40 50 60 70 80

Iteration

90 100

Figure 6: The Result of GPSOGA (3) for DATA S

x 10"
1.06

T T
PRI
1.051 b
1.04f
[
S
T 103 4
»
8
£ 1.02
w
5}
E 1.01r *
o Rl
1+
0.99
0.98 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100

Iteration

Figure 7: The Result of GPSOGA (3) for DATA 6
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Profit or Fitness Value
P P
o )
= R

=
)

1.59+

1.58

. . . . . . . . .
10 20 30 40 50 60 70 80 90 100
Iteration

Figure 8: The Result of GPSOGA (3) for DATA 7

7. CONCLUSION

In this paper, we present a hybrid algorithm
called GPSOGA. To solve MKP 0-1, GPSOGA is
divided into 3 variants: GPSOGA (1), GPSOGA
(2), and GPSOGA (3). The experiment shows that
GPSOGA (3) can get more accurate result in term
of the best solution ever known than GPSOGA (1),
GPSOGA (2), and PSOGA. In term of the average
of solution in each run, GPSOGA (1) has better
results in Data 2 and Data 3, then GPSOGA (3) has
better results in Data 4, Data 5, Data 6, and Data
And the solution of GPSOGA in solving MKP 0-1
is guaranteed convergent.

Though, we say the proposed algorithm is used
to solve small MKP 0-1. Hence, further comparison
is needed in a large problem. Compared to other
algorithm in past 5 years, this algorithm is gtttk
of accuracy. It needs to find another greedy dster
so it can get the initial solution better and sifiypl
PSO and GA process so it can save computational
time. The last, the convergence analysis is only
applied to solve MKP 0-1. So, the global
convergence of GPSOGA needs to provide.
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