
Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

672

COST EFFECTIVE POLY VERNAM CIPHER WITH CACHE
OPTIMIZATION

1SUNDRAM PRABHADEVI, 2RAHUL DE, 2PRATIK SHAH

1 Associate Professor, Department of Computer Science and Engineering, Nandha Engineering College,
India

2 School of Computer Science and Engineering , Vellore Institute of Technology, India
E-mail: 1s.prabhadevi@gmail.com, 2rahul080327@gmail.com

ABSTRACT

Our digital world provides a means to access mammoths of data and services. Such a huge responsibility
and task does not come without disadvantages, the most important of which is security and consistency of
data and the maintenance of privacy. The science of cryptology has provided us with many means to
minimize this disadvantage. This paper attempts to provide another such means to minimize that
disadvantage. In this article we present a symmetric key algorithm targeting to improve the problems
related to key stream generation. The security of the keystream generation of the proposed algorithm is
based on Rijndael forward s – box which is manifest of closure property. The key is a set of matrices along
with a tuple of coordinates, noted during the process of encryption. Cache optimization technique used
eliminates the disk I/O and ensures maximum memory utilization. The performance of cache, hence the
algorithm is dependent on the processor used. This algorithm is especially applicable to networks where
fast and secure encryption is and decryption of data is critical.

Keywords: Poly Alphabetic, Vernam Cipher, Key Generation, Symmetric Cryptography, Cache
Optimization

1. INTRODUCTION

The importance of encryption became critical after
telegraph, especially radio telegraph, was invented.
Long distance communication allows information
being intercepted much easier than ever. To protect
the confidentiality of information, encryption is
widely used in military, intelligence and diplomatic
services.
Generally speaking, symmetric cryptosystems are
divided into two types: block ciphers and stream
ciphers. A block cipher breaks the plaintext M =
(m1, m2, …, ml) into a number of message blocks
with the same length and transforms them to the
cipher text C = (c1, c2, …, cn) via an encryption
function controlled by a secret key k. Stream
ciphers encrypt bits individually. This is achieved
by adding a bit from a key stream to a plaintext bit.
There are synchronous stream ciphers where the
key stream depends only on the key and
asynchronous ones where the key stream also
depends on the cipher text. If the dotted line in Fig.
1 is present, the stream cipher is an asynchronous
one.
Stream ciphers tend to be small and fast, they are
particularly relevant for applications with little
computational resources, e.g., for cell phones or

other small embedded devices. A prominent
example for a stream cipher is the A5/1 cipher,
which is part of the GSM mobile phone standard
and is used for voice encryption.

Stream ciphers may be faster or have a smaller
implementation footprint than comparable block
ciphers. They operate more naturally on data of
short, variable or unknown length. Finally, the
keystream generation is completely independent of
the plaintext data, and so it may be computed in
parallel with or in advance of the data stream. In
general, it is also useful for system designers to
have a reasonable selection of different encryption

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

673

algorithms to choose between, as this makes it
possible both to select precise performance
tradeoffs suitable for a specific application.

2. RELATED WORK

2.1 One-time Pad and Stream Ciphers
The one-time pad, also called Vernam's cipher
(Vernam, 1926), was invented by Vernam in 1917.
The bit-wise one-time pad is easy to illustrate. A
one-time key is randomly generated and it is as
long as the message. The key is XOR-ed with the
plaintext for encryption, and the key is XOR-ed
with the cipher text for decryption.
The one-time pad is the only encryption algorithm
that is unconditionally secure. The perfect secrecy
of one-time pad was proved by Shannon (1949).
Although the one-time pad is perfectly secure, it is
inconvenient to use in many applications due to the
constraints that the key is too long and each key can
be used only once. A strong synchronous stream
cipher is a good replacement for the one-time pad.
A stream cipher can be used to generate many key
streams from the same key and different
initialization vectors, and then each keystream can
be used to encrypt a message.
Stream Ciphers
RC4, also known as ARC4 or ARCFOUR is a
stream cipher developed by Ron Rivest in 1987.
The most widely used stream cipher around is, by
far, RC4, is extremely fast in software and can be
implemented in just a few lines of code. This cipher
is used to provide security in the popular protocols
such as the TLS (Transport Layer Security) and
WEP. This cipher is highly simplistic and uses two
major phases. The first is the key scheduling
algorithm and the second is the pseudo random key
generation. The two phases are used to generate the
encrypted stream of bits which is then used to
encrypt the incoming stream of input.
There are many such stream ciphers as the HC-128
(Wu, 2008), supporting 128-bit keys, Rabbit
(Boesgaard et al., 2008), supporting 128-bit keys,
Salsa20/12 (Bernstein, 2008), supporting 128 and
256-bit keys, SOSEMANUK (Berbain et al., 2008),
supporting 128-256 bit keys, Trivium (Canniere and
Preneel, 2008),supporting 80-bit keys, Grain v1 Hell
et al., 2008), supporting 80-bit keys, MICKEY v2
(Babbage and Dodd, 2008), supporting 80-bit keys.
RC4 but the main problem faced by all of the
existing stream ciphers today is the fact that the key
stream generated is not unique enough when the
cipher tries to match the input data stream with the
key stream.

RC4 specially has a key generation weakness,
which is exploitable as is evident from (Daemen
and Rijmen, 2002). RC4 being a part of the
standard SSL encryption standard must be as safe
as possible. Also the fact that all the stream ciphers
are somewhat based on the Fiestel networks which
though makes it faster but at the same time reduces
their randomness and makes the entire process kind
of predictable. Such a weakness is not an option in
highly secure networks.

3. PROPOSED WORK

The proposed work, Poly Vernam cipher greatly
increases the randomness by employing a variety of
methods such as the Vernam ciphers, Poly
alphabetic Substitutions (Alberti, 1997),
Substitution-Permutation Networks (Melville,
2012) and the well-known Rijndael S-Boxes to
permute the key. The key itself is securely
generated and made as random as possible. We
used the Rjindael S-box (Daemen and Rijmen,
2002), which mathematically guarantees a closure
property, and the fact that even after the
transformation proposed by us the closure property
is still maintained. Cryptanalysis of Rjindael S-box
in an overdefined system of algebraic equations
with probability 1 (Courtois, N. and J. Pieprzyk,
2002) is practically impossible in high speed
networks. Statistically speaking a stream cipher is
that not only optimizes memory and cache usage
but also produces key stream, which is equal to the
data stream thus ensuring a character-to-character
mapping which is random in nature. The algorithm
targets the nodes of the network it is operating on
and the fact that there can be nodes of varied
architecture and processing powers, which are
inter-linked. This algorithm takes into account the
amount of processing power and memory available
at every node thereby ensuring seamless operation,
which is both compatible and efficient enough. We
also have proposed a variable buffer size as an
input to the cipher, which is non-existing in the
current system. This is the key factor, which
enables the algorithm to adapt to the under-lying
hardware. Real life networks consist of stand-alone
nodes, which not necessarily have the necessary
resources to run a generalized network stream
cipher because of the fact that all the current
ciphers and socket level security system use a fixed
resource-consuming algorithm and depend on
various pre-requisites, which might not be
available, and hence our solution is better than ones
before. Our algorithm uses custom Huffman based
encoding to reduce the output size and actually

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

674

takes into account that the real life data can be
repetitive in nature and tried to identify such
repetitions and reduce the load on the network.
Decryption is straightforward and the key and data
can be sent via different paths.

4. DESIGN OF POLY VERNAM CIPHER

The algorithm works on the individual byte level
that is operates on 8 bits of data (0 - 255) range.
The algorithm operates in the following rounds:
Key Generation Round

• A 256 * 256 matrix is generated where
each column has numbers from 0-255
indicating the 256 ASCII characters.

• Each of the columns is randomly shuffled
producing a matrix of permuted columns
each having values from zero.

Encryption
• A randomly chosen point in the matrix say

(x,y). Each point has eight neighboring
cells hence 8 directions for a point to move
in. We substitute these directions with
numbers from 0-7 refer Table 1. The
starting coordinates are saved as the
direction.

Table 1: Direction Substitution Table

Number(Bits) Direction

0 Top

1 Top Right

2 Right

3 Bottom Right

4 Bottom

5 Bottom Left

6 Left

7 Top Left

• The input stream is read character by
character and the position selected is
moved along the direction chosen in the
matrix. Each character encountered in the
traversal of the matrix is XOR-ed with the
character in the input stream and the
position is incremented in the direction.

• At a particular iteration depending on the
length of the input stream, the read
position of the matrix reaches the

boundaries of the current matrix. The next
generation key is now generated.

• The next generation of the key is
generated by utilizing the Rjindael forward
S-Box (as in Table 2) transformation on
the current matrix. Given the properties of
the transform, a new matrix is obtained
which is revertible back to the previous
version. This is the next level matrix,
which is used as a crypto matrix for the
individual characters from the input
stream.

• The starting point of this matrix is the
same point as the place where the last read
position collided with the boundaries of
the last matrix. A new direction is chosen
from the degrees of freedom available and
the similar method is followed as
mentioned above.

• The same method is followed till another
collision happens with the current matrix’s
boundaries and the aforementioned steps
are repeated until the entire message is
encrypted.

• The key generated for this particular
encryption session is the initial 256*256
permuted matrix, the initial starting point
of the matrix then followed a tuple having
the directions the encoder took while
encrypting the data.

Decryption
• The key is read and the 256 *256 matrix is

reconstructed followed by the starting
position and the direction. The read
pointer is placed on that position and read
moved along the matrix in that direction
XOR-ing the current input character with
the current matrix character.

• Just like the encryption round, the
decryption works by following the matrix
data along the particular direction until a
collision takes place at the boundaries and
the subsequent generation of matrices are
produced which decrypts the data.

4.1. Alternative Conservative Method with
Redundancy Reduction Round

The above suggested algorithm produces a fair
amount of overhead in terms of the multiple
level matrix generation and when smaller and
limited resource execution environments are
taken into consideration, this is a problem. To
overcome this, a single matrix repetitive
method is also proposed. This method reduces
both memory and processor footprint at the
slight cost of reduction in randomness in case

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

675

of redundant inputs. The following steps are
involved for the alternative method:

Table 1: Rijndael Forward S - Box

 0 1 2 3 4 5 6 7 8 9 a b c d e f

0

0

6

3

7

c

7

7

7

b

f

2

6

b

6

f

c

5

3

0

0

1

6

7

2

b

f

c

d

7

a

b

7

6

1

0

c

a

8

2

c

9

7

d

f

a

5

9

4

7

f

0

a

d

d

4

a

2

a

f

9

c

a

4

7

2

c

0

2

0

b

7

f

d

9

3

2

6

3

6

3

f

f

7

c

c

3

4

a

5

e

5

f

1

7

1

d

8

3

1

1

5

3

0

0

4

c

7

2

3

c

3

1

8

9

6

0

5

9

a

0

7

1

2

8

0

e

2

e

b

2

7

b

2

7

5

4

0

0

9

8

3

2

c

1

a

1

b

6

e

5

a

a

0

5

2

3

b

d

6

b

3

2

9

e

3

2

f

8

4

5

0

5

3

d

1

0

0

e

d

2

0

f

c

b

1

5

b

6

a

c

b

b

e

3

9

4

a

4

c

5

8

c

f

6

0

d

0

e

f

a

a

f

b

4

3

4

d

3

3

8

5

4

5

f

9

0

2

7

f

5

0

3

c

9

f

a

8

7

0

5

1

a

3

4

0

8

f

9

2

9

d

3

8

f

5

b

c

b

6

d

a

2

1

1

0

f

f

f

3

d

2

8

0

c

d

0

c

1

3

e

c

5

f

9

7

4

4

1

7

c

4

a

7

7

e

3

d

6

4

5

d

1

9

7

3

9

0

6

0

8

1

4

f

d

c

2

2

2

a

9

0

8

8

4

6

e

e

b

8

1

4

d

e

5

e

0

b

d

b

a

0

e

0

3

2

3

a

0

a

4

9

0

6

2

4

5

c

c

2

d

3

a

c

6

2

9

1

9

5

e

4

7

9

b

0

e

7

c

8

3

7

6

d

8

d

d

5

4

e

a

9

6

c

5

6

f

4

e

a

6

5

7

a

a

e

0

8

c

0

b

a

7

8

2

5

2

e

1

c

a

6

b

4

c

6

e

8

d

d

7

4

1

f

4

b

b

d

8

b

8

a

d

0

7

0

3

e

b

5

6

6

4

8

0

3

f

6

0

e

6

1

3

5

5

7

b

9

8

6

c

1

1

d

9

e

e

0

e

1

f

8

9

8

1

1

6

9

d

9

8

e

9

4

9

b

1

e

8

7

e

9

c

e

5

5

2

8

d

f

f

0

8

c

a

1

8

9

0

d

b

f

e

6

4

2

6

8

4

1

9

9

2

d

0

f

b

0

5

4

b

b

1

6

Key Generation Round

• The initial matrix here is exactly same as
the aforementioned method.

• A reverse matrix is also generated which
contains the opposite characters in the
same places as the first matrix. For
example, if in the above matrix in the first
column, at the 97th position, 255 is there,
then in the inverse matrix will have 97 in
the 255th position of the first column and
so on.

• The Key consists of the inverse matrix and
the starting point, which is essentially a
randomly chosen column.

Encryption
• Randomly a column is chosen and is

selected as the starting point and is noted.
• The input stream is read character by

character and each of them is replaced
with the corresponding character from the
matrix. For example, if ‘a’ is encountered
in the input stream and the starting column
in the matrix is the 10th one, the ‘a’ will be
replaced with the character at the 97th
position of the 10th column.

• The read position is then incremented to
the next column and reading a character
from it and incrementing the column
further processes the input stream.

• When the column count reaches 255 i.e.
the end of the matrix, it is simply reset
back to zero and it continues producing a
stream of encrypted characters.

Decryption
• The inverse matrix is read from the key

and the read head is positioned on the
column number, which too was presented
in the key.

• The encrypted stream is read character by
character and the same method of
replacing the input character with the
corresponding character in the inverse
matrix to get a stream of decrypted
character.

Redundancy Reduction Round
The shortcoming with this method is that if the
input is highly redundant this method tends to
produce repeated blocks of cipher text, which
results in a relative easy guess of the key itself.
To address this issue the Redundancy
Reduction Round is used which is as follows:
• The entire input stream is buffered into a

pre-defined block.

• The well-known Huffman Codes is used to
reduce the input redundancies and try to
compress the input characters into blocks
of non-repeating characters.

• The blocks of non-repeating characters are
used as an input stream to the
aforementioned algorithm, which operates
on it producing a reduced set of encrypted
characters, which exactly corresponds to
the possibly longer input stream.

• Huffman decoding follows the decoding
stage to get the original expanded output.

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

676

4.2 Unique Key Generation and the Vernam
Ciphering

The randomness of the algorithm depends on the
fact that for each successful decryption the key
used is to be destroyed, never to be used again. A
central database of the unique ids of the keys is to
be maintained which keeps a track of the keys
generated. The method used to achieve this is via
the SHA 256 fingerprinting.

• The initial 256 X 256 matrix is linearized
into a (256 ^ 2) length string and is used as
the input for the SHA 256.

• A fixed length 256-bit hash is obtained
which is then inserted into the key
database provided it’s unique. Else another
initial key is generated which is again
verified through same process until a
unique SHA 256-bit fingerprint is
obtained.

• Such a method is highly reliable and
secure in a centralized network system.

•
5. CACHE OPTIMIZATION

We have proposed and implemented a method to
optimize cache utilization depending on the cache
size of machine on which the code is run.
To improve the I/O speeds for the algorithm, first
the underlying CPU is queried for the available
levels of cache. The largest cache amongst is
chosen as the size of the I/O buffer size. For
example a CPU has three levels of cache and L1 is
32K, L2 being 64Kand L3 is 3M. Therefore, the
I/O buffer size for out algorithm will be 3 MB. The
advantage of using this size is to fill up the entire
cache with the data with a single read. As the read
values will be bytes ranging from 0-255, the
probability of all the 256 bytes being in the cache is
high. The is very crucial for speed as the
consecutive reads of 3 MBs will result I the request
of the same bytes in a different order and since they
are all there in the cache, disk I/O is eliminated
hence greatly speeding up the process and also
making proper use of all the resources at the same
time.
6. SECURITY ANALYSIS
As the Poly Vernam Cipher uses a random key
shuffling mechanism including a random direction
mechanism a simple brute force attack on this
cipher would almost be impractical.
The shuffling of the key itself results in 256!^256
possibilities of the key. Furthermore the random
selection of the start point has ((254*254*8) +
(4*254*5) + (4*3)) possibilities and at every

collision there are a minimum of 3 and a maximum
of 5 possibilities so in the worst case for n
collisions there are n*5 possibilities.
So in total for a worst-case brute force scenario it
would require ((256!^256) * ((254*254*8) +
(4*254*5) + (4*3)) *5*n) hits to key the key right.
Here n is number of collisions which is dynamic.
Hence Poly Vernam cipher can be certified as
immune to brute force as this cipher is mainly
targeted for the networks and high speed networks
like vehicular ad hoc networks and in such
scenarios a brute force would take too long to crack
the cipher and thus would render the cracked key to
be useless.

7. CONCLUSION

Most people would argue that the study of
cryptography has reached a pinnacle and is now
saturated and they would be completely correct.
With the introduction of the AES cipher we have
reached the maximum level of security that ciphers
can provide us on traditional computing systems.
This cipher is not meant to be comparable to AES
ciphers but it is meant to be an alternative in
situations where AES takes too long a time to be
implemented. In such cases the unique features of
this cipher such as Cache Optimization and
redundancy check would provide a tremendous
speed boost to the encryption and the decryption
process and is therefore ideal in situation where
speed is of essence in networks.

REFRENCES:
[1] L.B. Alberti, “A Treatise on Ciphers. Trans.

A. Zaccagnini” Foreword by David Kahn,
Galimberti, Torino, 1997.

[2] S. Babbage, and M. Dodd, “The MICKEY
Stream Ciphers”, Lecture Notes Computer
Science, 4986: 191-209,
http://www.ecrypt.eu.org/stream/mickeypf.htm
l, 2008

[3] C.Berbain, O. Billet, A. Canteaut, N. Courtois
and H. Gilbert, “SOSEMANUK, A Fast
Software-Oriented Stream Cipher”, Lecture
Notes Computer Science, 4986: 98-18.
http://www.ecrypt.eu.org/stream/sosemanukpf.
html, 2008

[4] D.Bernstein, “ The Salsa20 Family of Stream
Ciphers”, Lecture Notes Computer Science,
4986: 84-97.
http://www.ecrypt.eu.org/stream/salsa20pf.htm
l, 2008

Journal of Theoretical and Applied Information Technology
 31st December 2013. Vol. 58 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

677

[5] M.Boesgaard, M. Vesterager and E. Zenner, “
The Rabbit Stream Cipher”, Lecture Notes
Computer Science, 4986: 69-83.
http://www.ecrypt.eu.org/stream/rabbitpf.html,
2008

[6] Canniere and B. Preneel, “TRIVIUM”, Lecture
Notes Computer Science, 4986: 244-266.
http://www.ecrypt.eu.org/stream/triviumpf.htm
l, 2008

[7] N.Courtois and J. Pieprzyk, “Cryptanalysis of
Block Ciphers with Overdefined Systems of
Equations”, pp: 267-287, 2002

[8] J. Daemen and V. Rijmen, “ The Design of
Rijndael: AES-The Advanced Encryption
Standard”, Springer, ISBN-10: 3-540-42580-
2, 2002

[9] M.Hell, T. Johansson, A. Maximov and W.
Meier, “The Grain Family of Stream Ciphers”,
Lecture Notes Computer Science 4986: 179-
190.
http://www.ecrypt.eu.org/stream/grainpf.html,
2008

[10] K.Melville, “Securing Record
Communications: The TSEC/KW-26”, 2012

[11] C. Shannon, “Communication Theory of
Secrecy Systems. Bell System Technical
Journal”, 28: 656-715, 1949

[12] G.S.Vernam, “Cipher Printing Telegraph
Systems For Secret Wire And Radio
Telegraphic Communications”, IEEE Journal,
55: 109-114, 1926

[13] H.Wu, “The Stream Cipher HC-128”, Lecture
Notes Computer Science, 4986: 39-47,
http://www.ecrypt.eu.org/stream/hcpf.html,
2008

