
Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

311

 COMPUTATIONAL PROBLEM SOLVING ARCHITECTURAL
DESIGN BASED ON MULTI - AGENT

1MARYAM RAJABI, 2TEH NORANIS MOHD ARIS, 3MD. NASIR SULAIMAN
1, 2, 3 Department of Computer Science, Faculty of Computer Science and Information

Technology, 43400 UPM Serdang, Selangor, Malaysia

E-mail: 1maryam.rajabi2020@gmail.com, 2 nuranis@fsktm.upm.edu.my, 3 nasir@fsktm.upm.edu.my

ABSTRACT

The application of problem solving methods is seemed to be difficult for novice students in computer
programming field. Hence, majority of them prefer to go straight to the last stage to collect information by
analyzing source code. Indeed, introducing an efficient solution for this problem will help them to figure
out programming problems properly as well as saving time. Nevertheless, computational problem solving
systems are not as applicable as enough to be contributed to complex problems craving intelligent analysis.
So, intelligent agents tie with problem solving methods to conquer the mentioned issue. Here, a new
system mapped by prometheus design tool (PDT) has been introduced. Likewise, the textualized problem
to be given to the system and then problem analysis chart (PAC), input process output (IPO) chart,
flowchart and algorithm will be produced. The designed problem solving system in this work comprises
five agents, namely GUI, PAC, IPO, flowchart and algorithm agents interacting with the environment by
percepts and actions. Additionally, there exists extraction, transformation and module number generation
processes covering with three scenarios: ‘Extract Scenario, ‘Transform Scenario’ and ‘Generate Module
Number Scenario’. The system specification, the architectural design and the detailed design are produced
based on the analysis overview diagram and the scenario diagram.

Keywords: Computational Problem Solving, Problem Solving Method, Intelligent Agents, Prometheus
Design Tool (PDT)

1. INTRODUCTION

Nowadays, the major problem which novice
students in computer programming field are faced,
is applying taught problem solving concepts to
unfamiliar given problems. There is such a place
where problem solving techniques come to help
them. Extracting required information from
problems by utilizing these methods has turned into
a hot topic these days.

Moreover, with the rapid growth in technology,
the need of preparing capable programmers drew
significant attention to itself more than before. On
the other hand, most of the novices in computer
programing field prefer to consider the examples of
source codes and change them based on the
problem posed in their assignments [1], [2]. To ease
large-scale understanding of agent applications
there exists an urgent requirement for frameworks,
methodologies in addition to toolkits that assist the
effective progress of agent systems [3]. That is
because one of many tasks for which usually agent
systems were invented could be the integration

between heterogeneous software programs and
independently developed agents [4], [5]. At this
point, the agents indicate how problem solving
techniques are visualized. Here, it is predicated that
agent-based models are to decrease programming
bugs or errors in the procedure of developing
programs [2], [6].

1.1 Intelligent Agent
In this study, an intelligent agent is surely

considered as an entity which is of some
intelligence. Agent on the side of the users can
perform tasks, owing to the autonomous and
reactivity of agents in addition to their mobility [5].
Likewise, intelligent agents are is capable of
playing on the behalf of the users, thus, they are
very likely to dependent on roles which assist
designers as well as coders in how to model the
intelligent agents. This contributes to complete
tasks highly more than those developed for, which
is most probably to what happens in the real life,
where people discover ways to perform things and
also develop their knowledge [4], [7].

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

312

Moreover, agents are viewed as the most
important paradigms which, not only improve the
current techniques in order to conceptualize,
designing and also implementing software devices,
but also they may solve the legacy software
integration problem as well as agents which are
flexible problem solvers [5].

Agents are autonomous encapsulating
invocation [8]. Although, an object provides
methods caused externally, an agent does not
provide any control point with external entities [3].
Thus, an agent can be act autonomously since it can
operate with no interference of human-being or
others and it also controls on their performances
and inner state.. An agent is views as social -since it
has cooperation with people or other agents which
experience their tasks. An agent can be reactive
since it –recognises its surrounded environment and
in a timely fashion provides responses for these
changeswhich – happen in the environment. In
addition, an agent can be proactive since it is
capable of displaying goal-directed behaviour
through by subtracting initiative although it is
simply show reaction in response to its surrounded
environment. It might be -logical, always acting to
obtain experiences for achieving its goals. It never
prevents meeting their -aims, and it can learn how
to adapt itself to be suitable for - its environment
and the -requests of its users [9]. Hence, it can be
noted that agents -require the particular
computational apparatus in order to –enable run-
time decisions - regarding the scope and the nature
of their interactions so that it can initiate
interactions not foreseen on design time [10].
1.2 Computational Problem Solving

Multi-agent problem solving systems
within scientific computation are becoming
increasingly complex and they include numerical
models of the real life. Therefore, we need mostly
to take them into consideration as strategies which
provide scientific computing systems aimed at
resolving problems cooperatively [4].

 Here, before the development of any
source code, computational problem solving need to
be viewed as the opening step . However, the
problem is that the novice students have problems
with how to understand problem statements and
how to transform them into computational problem
solving techniques [6]. Environments designed for
problem solving in data mining, computer
language C and other languages includes 1)
L.E.C.G.O. [11] 2) ONTOIAS [12] 3) JELIOT 3
[13] 4) RAPTOR [14]:

L.E.C.G.O. is considered as an open
problem-solving computer learning environment
which has been designed for supporting students
during learning programming and C programming
language. The design of L.E.C.G.O. results in the
synthesis and combination of three models: a) the
learning model b) the subject matter model, and
finally c) the learner model [11].

ONTOIAS (Ontology-supported
Information Agent Shell) as an environment used
for multi agent technique [12] includes the four
significant modules of information agents, such as
information searching using OntoCrawler,
extracting information via OntoExtractor,
information classifying with OntoClassifier, and
information presenting/ranking with
OntoRecommander. ONTOIAS provides many
users with tremendous information integration as
well as recommendation ranking [12].

Jeliot 3 is considered as a program
visualization tool. Its main is to learn programming
in Java for novices. The user interface of Jeliot3 is
classified into two -important panes: (1) the code
editor as the code - visualized and (2) Visualization
pane such four interconnected areas as method,
expression evaluation, constant, instance and then
array areas of -different visualization components.
Jeliot 3 makes supports the agents to visualize
pseudo-code language [13].

Another tool i.e. RAPTOR is highly
relevant to the source code level. RAPTOR as a
visual programming environment help students
develop their algorithm envision and also keep
away from syntactic baggage. In other words,
RAPTOR contributes to students to construct flow
charts and the tool which visualize them through
the content of variables and arrays[14].
1.3 The Prometheus Design Tool

In this paper, we use PDT specifically
developed to support the Prometheus methodology
in order to design our system [3]. Prometheus
design methodology is an intelligent agent
development which gives the ability to handle all
development phases is respectively specification,
design, implementation and debugging [15]. PDT is
based on Java programming language and hence is
viewed as platform independent. The Prometheus
methodology comprises three following phases
[16]: (1) The system specification phase (2) The
architectural design phase (3) The detailed design
phase. Figure 1 show the notation used in PDT.

Figure 1: Entity Notation.

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

313

2. STEPS OF DESIGN USING
PROMETHEUS

2.1 System Specification
It is common to briefly capture the initial

ideas for a system in a few paragraphs. Then the
mentioned descriptions must be explained in detail
to implement a suitable basis for system design and
development.

Our Problem Solving Comprehension
System is described as a system with pre-
programming phase which requires five following
agents: extracting simple text formed problems
using the GUI agent, analysing the problem using
PAC agent, developing the Input-Process-Output
(IPO) using IPO agent, drawing the program
flowcharts using flowchart agent, writing
algorithms using algorithm agent.

The GUI agent is the interface by which

the user can interact with other agents. The
methodology comprises of extraction,
transformation and module number generation
processes. At the beginning, the problem
transformed to text form should be given to the
system by the user. Here, the GUI agent is the
interface by which the user interacts with other
agents. As a matter of fact, it starts from a text
document produced by the PAC agent. The IPO
agent is able to extract the needed information
from the PAC agent, the flowchart agent can also
take information out of the IPO agent and finally
the algorithm agent can obtain the needed
information from the flowchart agent respectively.
Indeed, such agents are at an intersection with each
other via sending data including keywords, Input-
Process-Output, I-P-O module number and process.
Finally, the output of this model is shown in the
form of Algorithm. It should be noted that these
problem solving stages are related to each other.
2.1.1 Analysis Overview

Centered at top of the first page should be
the system specification development which starts
with the identification of the external entities (see
actors) which interact with the system in some
ways. The main scenarios along with interaction
will happen are as follow.

This can be performed through PDT using

the ‘Analysis Overview Diagram’. In Figure 2 we
identified ‘User’ as an actor and GUI, PAC, IPO,
FLOWCHART, ALGORITHM as the agents which
have interactions with the system. We connect them
to the three keyscenarios associated with the system
functionality.

Afterward, we refine this diagram through
recognising the percepts which for each scenario
are inputs -, and the actions which are produced by
the system -. They relate them to -the -suitable
actor and agents as -indicated in Figure 2. On the
other hand, messages have been used to display the
results of each step. As an example, user enters a
problem as a percept (input) to the system and the
system -act the extraction on the given problem.
Therefore, the analysis overview diagram illustrates
the interaction between the system and environment
in the guise of percepts and actions (output) as well
as messages. Percepts in our system are User
Problem, keywords, Input-Process-Output,
Flowchart Process and also Algorithm Process.
Likewise, used actions in our system are Extract,
PAC transform, IPO transform, Flowchart
transform, and ALGORITHM transform.

Our proposed design possesses five

messages, namely: 'Keywords', 'Input', 'to flowchart
sequence', 'to Algorithm sequence' and 'algorithm'.
The agents used in our design are GUI agent that
extracts simple text formed problems, PAC agent
that analyses the problem, IPO agent that develops
the IPO and produce module number, flowchart
agent that draws the program flowchart, algorithm
agent that writes algorithm. ‘Problem statement’
includes different sample problems in computer
programming that covers: Java fundamental
programming, arrays and strings.

Figure 2: Analysis Overview Diagram.

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

314

2.1.1 Scenarios Diagram
 A scenario diagram demonstrates the

various scenarios existing in the system. In fact, a
series of steps make up a scenario. Each step
includes the functionality performing that step, the
name of the step, its type (one of action, percept,
and goal, scenario or other) and optionally, the
information are used and produced by that step. The
scenario diagram of our system is in Figure 3.

Figure 3: Scenario Overview Diagram.

There are three scenarios in the scenario
overview diagram which are ‘Extract Scenario’,
‘Transform Scenario’ and ‘Generate module
number Scenario’. Every scenario has its own steps
to be applicable in the system. ‘Extract Scenario’
consists of extracting keywords from the given
problem, PAC, IPO as well as Flowchart.
‘Transform Scenario’ will transform keywords to
PAC, PAC to IPO, IPO to Flowchart and flowchart
to algorithm. ‘Generate module number Scenario’
defines the steps of producing module number by
IPO agent. These primary goals, data and roles
determined are applied to transfer information into
other aspects of the design in an automatic way.
2.1.2 Goal Overview

 Figure 4 represents the goals of the
problem solving system in which Sub-goals are
considered as ‘AND’ branches. This is the goal
based on which the scenario is defined. The name
of the goal can be adapted. If preferred, the same
goal can be related to multiple scenarios, although
this cannot be often the case at the most abstract
level of the Analysis Overview Diagram. The goals
which areoriginated from the scenarios, can be

automatically placed into the ‘Goal Overview
Diagram’, in which goal hierarchies promote how
to describe the developed application In order to
identify some sub-goals embedded in each goal, it
is of necessary to ask the question “how can we
acoplish this goal? There exists a typically
significant iteraction between the developemt of
scenario and the development of goal hierarchy as
long as the developer think that the application is
adequately described.

Our main goal system is ‘pre-
programming prep’ which is consisted of two
sub goals (each sub goal is considered as a goal
compared to its sub goals), namely: ‘Extract’ and
‘Transform’. ‘Transform’ goal aimed at achieving
four sub-goals as follow: ‘PAC’, ‘I-P-O’,
‘FLOWCHART’, and ‘ALGORITHM’. Two of the
above-mentioned sub goals enjoy their own
sub goals too. Notably, ‘Generate module number’
goal is related to I-P-O goal.

Figure 4: Goal Overview Diagram.

2.1.3 System Role Overview
 At this stage, goals are categorised into

cohesive units. In fact, their roles are determined as
-rather small and easily specified chunks of agent
functionality. Then, the percepts and actions also
takes roles appropriately to accomplish their goals.
This is performed by the System Roles Diagram.
For example, Figure 5 represents that the role of
‘GUI’ is to achieve the goal to extract. To meet
this goal, the role needs the inputs (user problem).

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

315

It should perform the action of extraction on the
given problem.

Figure 5: System Role Overview Diagram.

2.2 Architectural Design
 The next stage is related to the
architectural design in which the internal
composition of the device is specified. Here, the
significant task is to make decisions on the types of
agents (as selections of roles) that could happen as
a way to recognise the identified targets and
scenarios. Decisions on grouping of roles to agents
are made in the ‘Agent-Role Grouping Diagram’.
2.2.1 Data Coupling Overview

The Data Coupling Agent Acquaintance
diagrams help the designer learn visualising the
relationships of roles to data. As seen in Figure 6,
in our design each role has connected to its relevant
data. As an example, GUI role couples with
problem statement data.

Figure 6: Data Coupling Overview Diagram.
2.2.2 Agent Role Grouping Overview

In this stage we have to define the
relationships between agents and roles. It will help
the designer to manage which roles are hence to be
done by every agent. As understood from above
mentioned explanations, one agent is probably
associated with more than one roles. However, in
our system, each agent is linked to its own specific
role.
2.2.3 System Overview Diagram

System Overview Diagram overview the
architecture of internal system - In other word, it
captures the system’s overall (static) structure
which brings all the items together. The system
overview diagram is viewed as the most -significan
product of the design process. It is highly related to
agents, data, external input and output together. It
also represents how the agents communicate with
each other -. To complete this overview, it is
needed -that the interactions among the agents are
defined and any shared data are added. To put it
simple, designer has surely designed its system
before reaching this stage but this diagram includes
all the needed data. Hence, it will be much easier to
refine and review the system design. As far as
agents are concerned, they have their own action,
percepts and data.

For instance, we can see that observing the

'GUI' agent receives problem (percept) from user
and read data from 'problem statement' and then
provides an extract action.

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

316

Figure 7: System Overview Diagram.

2.3 Detailed Design
Detailed design is the spot where the

details of merely every agent’s internals usually are
developed and defined focusing capabilities, data,
occasions, plans and process. Diagrams are utilized
as a going stone between interaction protocols and
ideas. The detailed design includes:

• Developing the internals of
agents, in conditions of capabilities (and, in some
cases directly in conditions of events, ideas and
data). This can be done using real estate agent
overview diagrams and also capability descriptors.

• Develop the information on
capabilities considering other capabilities and also
events, plans in addition to data.

This is done using capability

understanding diagrams and a variety of
descriptors. A key target is to develop plan sets to
achieve goals and ensure appropriate coverage.

All the entities associated with the agent in
the system overview diagram are transferred to the
agent overview diagram, such as the individual
messages from protocols related to the agent.

Entities in an agent/capability overview diagram
propagated, form part of the interface to the
internals of the agent/capability are represented as

“faded” icons. These interface entities must be
associated with internal capabilities or plans which
are defined to utilise or generate them. The designer
here needs to make sure that all percepts, the
actions, messages, and data access is considered.
For instance, the capability of ‘sending data’ is able
to control the percept ‘DATA’ and adapts data in
the ‘problem statement’.
2.3.1 GUI Agent Overview

Extracting keywords capability receives
the User problem percept and read data from
problem statement and then problem will be
extracted by the Extraction action.
The “extraction plan” is linked to a message to
generate and display keywords, when keywords
extraction complete successfully, a message will
display the keywords.

Figure 8: Gui Agent Overview Diagram.

2.3.2 PAC Agent Overview

PAC agent overview has one capability
named ‘producing PAC’. ‘Keywords’ as a percept
provided by the GUI agent goes through PAC agent
and then the inputs, outputs and processes are
extracted from the input text.

‘transform_PAC_plan’ is a plan associated with
‘KEYWORDS’ data. The mentioned plan is linked
to three messages to display the following results:
Input, Process, and Output.

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

317

Figure 9: Pac Agent Overview Diagram.

3. DISCUSSION

As regard to complex problems, multi-

agent systems are considered as a perfect solving
agent since they show the -charecteristics of
flexibility, intelligence and solving complex issues
-based on -allocated knowledge along with –
capabilities updated [17].

Remarkably, designing various

constituents of a multi-agent system (MAS) can be
a demanding task. In fact, prometheus design tool
provides us with refinement model using iterative
steps. As a rule, there exist three significant design
stages: system specification in which the actors, the
inputs, outputs, can utilize scenarios and the goals
of the system are -recognised; Architectural design
in which agents, roles, communication protocols
and the overview of the internals of the system are
determined; and detailed design where each agent’s
internals are -explained to a level which can be
immediately implemented. The detailed design
would be at a conceptual level and implementation
independent, so that it allows the systems to be
applied in the choice platform[18].

Apparently, novice students are unable to

join the individual statements and constructs
associated with IPO chart, flowchart, algorithm into
valid programs. Therefore, it can be said that this

study aimed at investigating the designed
environments for computer programing and
possibility utilizing of multi agent systems in
problem solving to help them. For the sake of
simplicity, iterations and various phases which
usually take place in the development process have
not explained. The function of problem solving
comprehension module is applied for extraction,
transformation and also module number generation.
The textualized problem goes through detection
process to detect words. Then, the word extraction
process extracts keywords at the next step. Lastly,
the extracted keywords are transformed to its
standard form in order to be displayed.

4. CONCLUSION AND FUTURE WORK

This article represents an agent-based

system aimed at assisting novice students in
computational problem solving. The major reason
why agents are suitable for such category is their
flexibility in communicating with surrounding
environment through percepts and actions. The
problem solving system consists of five agents,
namely, GUI, PAC, IPO, FLOWCHART, and
ALGORITHM. The agents have been defined to
accomplish different tasks such as extraction,
transformation and module number generation on
the way to be achieved system goals. The whole
design has been implemented with Prometheus
methodology.

As the next step of our future plan, we

intend to write a system code using the Java Agent
Development Framework (JADE) software since
Jade is a java-based framework; even those who
have initial information about agent theory are able
to construct JADE agent-based systems without
facing critical problems. In addition, software
developers can program, test and debug agent-
based applications easily by the help of the JADE
software. The next plan is to develop and improve
the problem solving skill of the designed system via
covering a wide range of problem statements such
as looping and advanced Java Object-Oriented
features.

5. ACKNOWLEDGEMENTS

I would like to thank my supervisor

Dr. Teh Noranis Mohd Aris and Associate Prof. Dr.
Md. Nasir Sulaiman for their guidance. I would
also like to thank Kementerian Pengajian Tinggi
(KPT) for the support given under the Fundamental

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

318

Research Grant Scheme (FRGS) University Putra
Malaysia, project code number 02-12-10-1000FR.

REFRENCES:

[1] L. Padgham, J. Thangarajah, and M. Winikoff,

“Prometheus design tool”. In AAAI, 2008, pp.
1882–1883.

[2] T.N. Mohd Aris, “Object-Oriented Programming
Semantics Representation Utilizing Agents”.
Journal of Theoretical and Applied Information
Technology, vol. 31, 2011, pp. 10-20.

[3] L. Padgham, J. Thangarajah, and M. Winikof,
“The Prometheus design Tool-A conference
Management System case study”, Lecture Notes
in computer Science, 2008, pp. 197-211.

[4] Tamer F. Mabrouk, Mohamed M. El-Sherbiny,
Shawkat K. Guirguis, and Ayman Y. Shawky,
“A ulti-Agent Role-Based system for Business
Intelligence”, Innovations and advances in
computer Sciences and Engineering, 2010, pp.
203-208.

[5] F. Bellifemine, G. Caire, and D. Greenwood,
“agent technology overview”. Willey series in
agent technology, 2007, pp. 3-27.

[6] M. RAJABI, T.N. MOHD ARIS, “A Multi-
Agent System for Computational Problem
Solving -A Review”, Proceedings of
International Conference on Advances in
Computer and Information Technology (ACIT),
2013, pp. 147- 151.

[7] G. Cabri, L. Ferrari, L. Leonardi, “Role-based
Approaches for Agent Development”,
Proceedings of the 3rd Conference on
Autonomous Agents and Multi Agent Systems
(AAMAS), New York, USA, Vol. 3, 2004, pp.
1504-1505.

 [8] J.J. Odell, H.V.D. Parunak, and M. Fleischer,
“Modeling agent organizations using roles”
Software and Systems Modeling, vol. 2, no. 2,
2003, pp. 76–81.

[9] L. Padgham, and M. Winikoff, “Developing
Intelligent Agent Systems: A Practical Guide”.
John Wiley and Sons, Vol. 13, 2005.

 [10] N.R. Jennings, “On Agent-Based Software
Engineering”, Artificial Intelligence, 117, 2000,
pp. 227-296.

[11] M. Kordaki, “A drawing and multi-
representational computer environment for
beginners’ learning of programming using C:
Design and pilot formative evaluation”,

Computers & Education, Vol. 54, No. 1 , 2010,
pp. 69-87.

[12] S.Y. Yang, “OntoIAS: An ontology-supported
information agent shell for ubiquitous services”
, Expert Systems with Applications, Vol. 38,
2011, pp.7803–7816.

[13] R. Bednarik, M. Joy, A. Moreno, N. Myller,
and E. Sutinen. “MULTI_AGENT
EDUCATIONAL SYSTEM FOR PROGRAM
VISULIZATION”, Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-
IAWTIC’05), 2005, pp.1-6.

[14] M.C. Carlisle, T.A. Wilson, J. W. Humphries,
and S.M. Hadfield, “RAPTOR: A Visual
Programming Environment for Teaching
Algorithmic Problem Solving”, SIGCSE, Vol.
05, 2005, pp. 176-180.

 [15] S. DeLoach, L. Padgham, A. Perini, A. Susi,
and J. Thangarajah, “Using three AOSE toolkits
to develop a sample design”, International
Journal of Agent-Oriented Software
Engineering, Vol. 3, No. 4, 2009, pp. 416–476.

[16] L. Padgham, M. Winikoff, D. Poutakidis, “
Adding debugging support to the prometheus
methodology”, Journal of Engineering
Applications in Artificial Intelligence , Vol. 18,
No. 2, 2005.

[17] M. Morandini, D.C. Nguyen, A. Perini, A.
Siena, and A. Susi, “Tool-supported
Development with Tropos: The Conference
Management System Case Study”, In Agent-
Oriented Software Engineering VIII, Springer
Berlin Heidelberg, 2008, pp. 182-196.

[18] H. Sun, J. Thangarajah, L. Padgham, “Eclipse-
based Prometheus Design Tool”, In
Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems,
International Foundation for Autonomous
Agents and Multiagent Systems, Vol 1, 2010,
pp. 1769-1770.

