Journal of Theoretical and Applied Information Technology
20" December 2013. Vol. 58 No.2 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

COMPUTATIONAL PROBLEM SOLVING ARCHITECTURAL
DESIGN BASED ON MULTI - AGENT

'MARYAM RAJABI,’TEH NORANISMOHD ARIS, M D. NASIR SULAIMAN
1.23pepartment of Computer Science, Faculty of Comp&tgéence and Information

Technology, 43400 UPM Serdang, Selangor, Malaysia

E-mail: 'maryam.rajabi2020@gmail.coiinuranis@fsktm.upm.edu.mynasir@fsktm.upm.edu.my

ABSTRACT

The application of problem solving methods is sedree be difficult for novice students in computer
programming field. Hence, majority of them prefergo straight to the last stage to collect infoioraby
analyzing source code. Indeed, introducing an iefficsolution for this problem will help them tayéire
out programming problems properly as well as satimg. Nevertheless, computational problem solving
systems are not as applicable as enough to belmaent to complex problems craving intelligent aséd.
So, intelligent agents tie with problem solving heets to conquer the mentioned issue. Here, a new
system mapped by prometheus design tool (PDT) bas mtroduced. Likewise, the textualized problem
to be given to the system and then problem analgls&t (PAC), input process output (IPO) chart,
flowchart and algorithm will be produced. The desid problem solving system in this work comprises
five agents, namely GUI, PAC, IPO, flowchart andosithm agents interacting with the environment by
percepts and actions. Additionally, there existsaetion, transformation and module number genanati
processes covering with three scenarios: ‘Extraemn&rio, ‘Transform Scenario’ and ‘Generate Module
Number Scenario’. The system specification, théigectural design and the detailed design are predu
based on the analysis overview diagram and theasicediagram.

Keywords: Computational Problem Solving, Problem Solving Methintelligent Agents, Prometheus
Design Tool (PDT)

1. INTRODUCTION between heterogeneous software programs and
independently developed agents [4], [5]. At this
Nowadays, the major problem which novicepoint, the agents indicate how problem solving
students in computer programming field are facedechniques are visualizeHlere, it is predicated that
is applying taught problem solving concepts t@gent-based models are to decrease programming
unfamiliar given problems. There is such a placbugs or errors in the procedure of developing
where problem solving techniques come to helprograms [2], [6].
them. Extracting required information from .
problems by utilizing these methods has turned int%)’1 '”te'"ge”.t Agent . . .
In this study, an intelligent agent is surely

a hot topic these days.
considered as an entity which is of some

Moreover, with the rapid growth in technology,intelligence. Agent on the side of the users can
the need of preparing capable programmers drgwerform tasks, owing to the autonomous and
significant attention to itself more than beforen O reactivity of agents in addition to their mobilify].
the other hand, most of the novices in computdiikewise, intelligent agents are is capable of
programing field prefer to consider the examples gilaying on the behalf of the users, thus, they are
source codes and change them based on thery likely to dependent on roles which assist
problem posed in their assignments [1], [2]. Toeeaglesigners as well as coders in how to model the
large-scale understanding of agent applicationiatelligent agents. This contributes to complete
there exists an urgent requirement for frameworksasks highly more than those developed for, which
methodologies in addition to toolkits that assiet t is most probably to what happens in the real life,
effective progress of agent systems [3]. That iwhere people discover ways to perform things and
because one of many tasks for which usually agealso develop their knowledge [4], [7].
systems were invented could be the integration

s
311

Journal of Theoretical and Applied Information Technology
20" December 2013. Vol. 58 No.2 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-1SSi817-3195
Moreover, agents are viewed as the most L.E.C.G.O. is considered as an open

important paradigms which, not only improve thegroblem-solving computer learning environment
current techniques in order to conceptualizayhich has been designed for supporting students
designing and also implementing software deviceduring learning programming and C programming
but also they may solve the legacy softwartanguage. The design of L.E.C.G.O. results in the
integration problem as well as agents which argynthesis and combination of three models: a) the
flexible problem solvers [5]. learning model b) the subject matter model, and

Agents are autonomous encapsulating;ma”y ¢) the learner model [11].

invocation [8]. Although, an object provides ONTOIAS (Ontology-supported
methods caused externally, an agent does nliformation Agent Shell) as an environment used
provide any control point with external entitie§.[3 for multi agent technique [12] includes the four
Thus, an agent can be act autonomously since it caignificant modules of information agents, such as
operate with no interference of human-being omnformation searching using OntoCrawler,
others and it also controls on their performancesxtracting information via OntoExtractor,
and inner state.. An agent is views as social esinc information classifying with OntoClassifier, and
has cooperation with people or other agents whidnformation presenting/ranking with
experience their tasks. An agent can be reacti¥@ntoRecommander. ONTOIAS provides many
since it —recognises its surrounded environment angers with tremendoumformation integration as
in a timely fashion provides responses for theseell as recommendation ranking [12].
changeswhich — happen in the environment. In : . .

L : . oo Jeliot 3 is considered as a program
addition, an agent can be proactive since it is.

- - . . Visualization tool. Its main is to learn programmin
capable of displaying goal-directed behaviouy X . .
through by subtracting initiative although it i Java for novices. The user interface of Jelist3

simply show reaction in response to its surrounde%]ass'f'ed into two -important panes: (1) the code

environment. It might be -logical, always acting tc)edltor as the code - visualized and (2) Visualarati

- . N ane such four interconnected areas as method,
obtain experiences for achieving its goals. It meve’

prevents meeting their -aims, and it can learn hogyPression evaluation, constant, instance and then
. . ’ : . array areas of -different visualization components.
to adapt itself to be suitable for - its environinen

and the -requests of its users [9]. Hence, it can b]ellot 3 makes supports the agents to visualize

. ; seudo-code language [13].
noted that agents -require the partlcuIaP ! . .
computational apparatus in order to —enable run- Another tool i.e. RAPTOR is highly

. . . relevant to the source code level. RAPTOR as a
time decisions - regarding the scope and the naturé

of their interactions so that it can initiate\é';l;;lo prt%geri?marp'gﬁth?nnvgﬁagggt a?“ejlpalgéwkirgs
interactions not foreseen on design time [10]. P 9 P

; . away from syntactic baggage. In other words,
1.2 Computational Problem Solving .
Multi-agent problem solving systems RAPTOR contributes to students to construct flow

within scientific computation are becomingCharts and the tool which visualize them through

: . . . “the content of variables and arrays[14].
increasingly complex and they include numenca;3 The Prometheus Design Tool

models of the real life. Therefore, we need mosil

to take them into consideration as strategies which In this paper, we use PDT specifically
geveloped to support the Prometheus methodology

prowd_e scientific computing systems aimed %n order to design our system [3]. Prometheus
resolving problems cooperatively [4]. X . : .
design methodology is an intelligent agent
Here, before the development of any evelopment which gives the ability to handle all
source code, computational problem solving need P gn Ity .
evelopment phases is respectively specification,

be viewed as the opening step . However, the .~ " ; . .
problem is that the novice students have proble esian, implementation and debugging [15]. PDT is

with how to understand problem statements ank&ased on Java programming language and hence is

how to transform them into computational problen¥Iewed as platform independent. The Prometheus

: . . . ethodology comprises three following phases
solving techniques [6]. Environments designed for, _.. e
problem solving in data mining, computer 16]: (1) The system specification phase (2) The

language C and other languages includds architectural design phase (3) The detailed design

LEE.C.G.O. [11] 2) ONTOIAS [12] 3) JELIOT 3 phase. Figure 1 show the notation used in PDT.

[13] 4) RAPTOR [14]: CunoTe Zhcor SAgmt D Adion Orok
Cpata &> Message < Percept .;::_‘Scenario > Goal

Figure 1: Entity Notation.

s
312

Journal of Theoretical and Applied Information Technology
20" December 2013. Vol. 58 No.2 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-1SSi817-3195
2. STEPS OF DESIGN USING Afterward, we refine this diagram through
PROMETHEUS recognising the percepts which for each scenario

S are inputs -, and the actions which are produced by
2.1 System Specification the system -. They relate them to -the -suitable

: It is common to briefly capture the initial actor and agents as -indicated in Figure 2. On the
ideas for a system in a few paragraphs. Then th

mentioned descriptions must be explained in deta(ﬂ?her hand, messages have been used to display the
i . . . fesults of each step. As an example, user enters a
to implement a suitable basis for system design an .
problem as a percept (input) to the system and the
development. . ;
system -act the extraction on the given problem.
Therefore, the analysis overview diagram illusisate

Svstem Oil;r dzg?:tr)ilsgj iglvg]g S Cs:toemmp“w?r?s'opethe interaction between the system and environment
ryo ramming phase which re uiri/as five foIIowipn In the guise of percepts and actions (output) d5 we
prog) 9 p!) q Yas messages. Percepts in our system are User

agents: extracting simple text formed problem

)) . ?’roblem, keywords, Input-Process-Output,
using the GUI agent, analysing the problem USING| owehart Process and also Algorithm Process.

PAC agent, developing the II']plJt'Process'oUtplf_tikewise, used actions in our system are Extract,

(IPO) using IPO agent, drawing the Progranb ac transform, IPO transform, Flowchart

flowc_harts using f_Iowchart agent, - writing transform, and ALGORITHM transform.
algorithms using algorithm agent.
Our proposed design possesses five

. . messages, namely: 'Keywords', 'Input’, 'to flowthar
tmhgthg?j?)rlo can mgsﬁciisg:h ot:fer agitr:;sc'tio-l;]hgequence‘, 'to Algorithm sequence' and ‘algorithm’.
9y P 'The agents used in our design are GUI agent that

gz)ncsggg:t'olt antﬂe m%(llé;li?lnir:\;mb?l’r\e ge;g;té?ngxtracts simple text formed problems, PAC agent
transformed to text form should be given to th that analyses the problem, IPO agent that develops

svstem by the user. Here the GUI agent is tr(]?he IPO and produce module number, flowchart
Sy y oo * ge ggent that draws the program flowchart, algorithm
interface by which the user interacts with other . . . ,

. gent that writes algorithm. ‘Problem statement
agents. As a matter of fact, it starts from a text

document produced by the PAC agent. The IP5'C|UdeS (jifferent sample problems in computer
agent is able to extract the needed informatioR 29 2 'ming that covers. Java - fundamental
rogramming, arrays and strings.

from the PAC agent, the flowchart agent can alsb' °9 9 y 9
take information out of the IPO agent and finally
the algorithm agent can obtain the needed
information from the flowchart agent respectively.
Indeed, such agents are at an intersection with eac
other via sending data including keywords, Input- b
Process-Output, I-P-O module number and process.
Finally, the output of this model is shown in the [
form of Algorithm. It should be noted that these [Tuserproblem < —— [cur
problem solving stages are related to each other.
2.1.1 AnalysisOverview

Centered at top of the first page should be | |keyworss < —>{[pac|
the system specification development which starts
with the identification of the external entitieseés

et >
7 IPO transform
actors) which interact with the system in some

The GUI agent is the interface by which

Analysis Overview

EXTRACTION

PAC transform

ways. The main scenarios along with interaction
will happen are as follow. [Trowctartproces < —] rioweraar)
This can be performed through PDT using

the ‘Analysis Overview Diagram’. In Figure 2 we ;.)

identified ‘User’ as an actoand GUI, PAC, IPO,
FLOWCHART, ALGORITHM as the agents which \ SESORTI Sramio
have interactions with the system. We connect them algorithm >

to the three keyscenarios associated with the syste
functionality.

Figure 2: Analysis Overview Diagram.

s
313

Journal of Theoretical and Applied Information Technology
20" December 2013. Vol. 58 No.2 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

ISSN: 1992-8645 www.jatit.org E-1SSi817-3195
211 ScenariosDiagram automatically placed into the ‘Goal Overview

A scenario diagram demonstrates théiagram’, in which goal hierarchies promote how
various scenarios existing in the system. In fact, to describe the developed application In order to
series of steps make up a scenario. Each stafentify some sub-goals embedded in each goal, it
includes the functionality performing that stepe this of necessary to ask the question “how can we
name of the step, its type (one of action, percepacoplish this goal? There exists a typically
and goal, scenario or other) and optionally, thsignificant iteraction between the developemt of
information are used and produced by that step. Tlseenario and the development of goal hierarchy as
scenario diagram of our system is in Figure 3. long as the developer think that the application is
Scenario Overview adequately described.

Our main goal system is ‘pre-
programming prep’ which is consisted of two
sub goals (each sub goal is considered as a goal
compared to its sub goals), namely: ‘Extract’ and
‘Transform’. ‘Transform’ goal aimed at achieving
four sub-goals as follow: ‘PAC’, ‘I-P-O’,
‘FLOWCHART’, and ‘ALGORITHM'. Two of the
above-mentioned sub goals enjoy their own
sub goals too. Notably, ‘Generate module number’
goal is related to 1-P-O goal.

(Goal Oveniew
Transform to PAC, IPO, Generate module number Scenario
Flowchart and algorithm
Fre-programming prep

\

AND [T RN

Figure 3: Scenario Overview Diagram [\ |
N
PAC, PAC to IPO, IPO to Flowchart and flowchart

\
to algorithm. ‘Generate module number Scenario’

\ a
defines the steps of producing module number by

IPO agent. These primary goals, data and roles

Extract :

1-the keywords of the
given problem

2-PAC

3-IP0

4-Flowchart

|

L . \
There are three scenarios in the scenario l\ \
overview diagram which are ‘Extract Scenario’, |

‘Transform Scenario’ and ‘Generate module ‘I @

number Scenario’. Every scenario has its own steps |‘
to be applicable in the system. ‘Extract Scenario’ | Natnci AND
. . . extraction [
consists of extracting keywords from the given | \\
|

|

¥
problem, PAC, IPO as well as Flowchart.
‘Transform Scenario’ will transform keywords to {poblensttenentieyuors

determined are applied to t_ransfer |nf0rrn_at|0n into Figure 4: Goal Overview Diagram.
other aspects of the design in an automatic way.
212 (;pal Oije\N h | f th 2.1.3 System Role Overview
lgure represents the goals of the At this stage, goals areategorised into

probllt(ajm s(,jolvinq sys,tekr)‘n in hWhiCh hSup-gohals a'%ohesive units. In fact, their roles are determiasd

considered as 'AND’ branches. This is the goalaiher small and easily specified chunks of agent

based on which the scenariodsfined. The name) . .
functionality. Then, the percepts and actions also

of the goal can be adapted_. It preferre_d, game akes roles appropriately to accomplish their goals
goal can be related to multiple scenarios, althougpyic s performed by the System Roles Diagram.
this cannot be oftgn the case qt the most abs”%r example, Figure 5 represents that the role of
Ievgl of the An_aIyS|s Overview D|agram_. The goalSGUI’ is to achieve the goal to extract. To meet
which areoriginated from the scenarios, can bﬁﬂs goal, the role needs the inputs (user problem)

314

Journal of Theoretical and Applied Information Technology
20" December 2013. Vol. 58 No.2 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

It should perform the action of extraction on the
given problem

i E GUI Role problem statement
roblem statement keywords
g (st
‘ Flowchart Process 6 PAC Role KEYWORDS

Data Coupling Overview ‘

pac
E I-P-O Role

i O

Module Number

6 Flowchart Role LP,0
I Algorithm Process
‘I 6 Algorithm Role 'b flowchart

|
|

A .

'1 Figure 6: Data Coupling Overview Diagram.
| 2.2.2 Agent Role Grouping Overview

f In this stage we have to define the
J{ IP°"“""""" relationships between agents and roles. It wilphel

|

|

the designer to manage which roles are hence to be

: done by every agent. As understood from above
mentioned explanations, one agent is probably
associated with more than one roles. However, in
our system, each agent is linked to its own specifi
role.

2.2 Architectural Design 223 System Overvie_w Diagram :
The next stage is related to the . System_Overwew Diagram overview thg
architectural design in which the internalarch|tecture of internal system - In other word, it

composition of the device is specified. Here, thgaptures the system's overall (static) structure

significant task is to make decisions on the typfes Wh'Ch. bnggs all the _|tem3 tog(ra]ther. The_ sy?tem
agents (as selections of roles) that could hapgen @/€rView diagram is viewed as the most -significan

a way to recognise the identified targets anaroduct of the design process. It is highly related

scenarios. Decisions on grouping of roles to agenfdeNts: data, external input and output togeter. |
are made in the ‘Agent-Role Grouping Diagram’. also represents how the agents communicate with

22.1 Data Coupling Overview each other -. To complete this overview, it is
o The Data Coupling Agent AcquaintanceneEded -that the interactions among the agents are

diagrams help the designer learn visualising thg_efined and any shared data are added. To put it

relationships of roles to data. As seen in Figure imple, de5|gner .has surely de_zS|g_ned Its system
in our design each role has connected to its rateva efore reaching this stage but this diagram indude

data. As an example, GUI role couples WithaII_the needed <_jata. Hence, it will be.much edsier
problem statement data. refine and review the system design. As far as

agents are concerned, they have their own action,
percepts and data.

E

rd

PAC transform

Figure 5: System Role Overview Diagram.

For instance, we can see that observing the
'‘GUI' agent receives problem (percept) from user
and read data from ‘problem statement' and then
provides an extract action.

s
315

Journal of Theoretical and Applied Information Technology
20" December 2013. Vol. 58 No.2 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-1SSi817-3195
Entities in an agent/capability overview diagram
System Overview propagated, form part of the interface to the
internals of the agent/capability are represerasd
e [immsoea A
el TR Agent OverwewJ _
problem statement

1

extracting keywords IR

1PO transform J User Problem <

e /
I EXTRACTION R
! Module Number
.

ol
I PAC transform

| EXTRACTION >

|

extraction_plan

Algorithm Process z

‘ KEYWORDS | | IALGORITHM Transform >

Keywords

i FLOWCHART .

“faded” icons. These interface entities must be
associated with internal capabilities or plans \Wwhic
are defined to utilise or generate them. The design
here needs to make sure that all percepts, the
actions, messages, and data access is considered.
Figure 7: System Overview Diagram. For instance, the capability of ‘sending data’litea
to control the percept ‘DATA’ and adapts data in

2.3 Detailed Design the ‘problem statement'.
Detailed design is the spot where the 31 gui Agent Overview

details of merely every agent’s internals usuatly a Extracting keywords capability receives

developed and defined focusing capabilities, datgne User problem percept and read data from
occasions, plans and process. Diagrams are utilizgpomem statement and then problem will be
as a going stone between interaction protocols aRgyacted by the Extraction action.

ideas. The detailed design includes: The “extraction plan” is linked to a message to

* Developing the internals of generate and display keywords, when keywords

agents, in conditions of capabilities (and, in somgyiraction complete successfully, a message will
cases directly in conditions of events, ideas a”@'isplay the keywords.

data). This can be done using real estate agent

overview diagrams and also capability descriptors. Figure 8: Gui Agent Overview Diagram.

. Develop the information on
capabilities considering other capabilities antalsp 32 PAC Agent Overview
events, plans in addition to data. PAC agent overview has one capability

named ‘producing PAC'. ‘Keywords’ as a percept

This is done wusing capability provided by the GUI agent goes through PAC agent
understanding diagrams and a variety Ohnd then the inputs, outputs and processes are
descriptors. A key target is to develop plan sets fextracted from the input text.
achieve goals and ensure appropriate coverage. . , . .

EII the entities assogigteg with the aggnt intransform_PAC_pIan IS a p!an assoc@eq with
the system overview diagram are transfetethe KEYWORDS' data. The mentioned plan is linked
agent overview diagram, such as the individude three messages to display the following results:
messages from protocols related to the agerfiPut, Process, and Output.

s
316

Journal of Theoretical and Applied Information Technology
20" December 2013. Vol. 58 No.2 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-1SSi817-3195
study aimed at investigating the designed
AgentOverview| environments for computer programing and
g possibility utilizing of multi agent systems in
KEYWORDS problem solving to help them. For the sake of
simplicity, iterations and various phases which
/ usually take place in the development process have

—1
producing PAC

not explained. The function of problem solving
- comprehension module is applied for extraction,
keywords <_ transformation and also module number generation.
The textualized problem goes through detection
process to detect words. Then, the word extraction

' IPAC T e L VTR process extracts keywords at the next step. Lastly,
: the extracted keywords are transformed to its
\ standard form in order to be displayed.

Cransform PAC plan 4. CONCLUSION AND FUTURE WORK

/ \ This article represents an agent-based
lnput> Output > system aimed at assisting novice students in

computational problem solving. The major reason

why agents are suitable for such category is their
flexibility in communicating with surrounding

environment through percepts and actions. The

problem solving system consists of five agents,
3. DISCUSSION namely, GUI, PAC, IPO, FLOWCHART, and

ALGORITHM. The agents have been defined to

accomplish different tasks such as extraction,

As regard to complex problems, multi-transformation and module number generation on

agent systems are considered as a perfect solvifge way to be achieved system goals. The whole

agent since they show the -charecteristics Qfesign has been implemented with Prometheus
flexibility, intelligence and solving complex issie methodology.

-based on -allocated knowledge along with —

Process

Figure 9: Pac Agent Overview Diagram.

capabilities updated [17]. As the next step of our future plan, we
o ~ intend to write a system code using the Java Agent
Remarkably, designing various pevelopment Framework (JADE) software since

constituents of a multi-agent system (MAS) can bgade is a java-based framework; even those who
a demanding task. In fact, prometheus design toghye initial information about agent theory areeabl
provides us with refinement model using iterativgg construct JADE agent-based systems without
steps. As a rule, there exist three significanigtes facing critical problems. In addition, software
stages: system SpeCification in which the actoss, tmevek)pers can program, test and debug agent-
inputs, outputs, can utilize scenarios and thdsgoapased applications easily by the help of the JADE
of the system are -recognised; Architectural desiggbftware. The next plan is to develop and improve
in which agents, roles, communication protocolghe problem solving skill of the designed system vi
and the overview of the internals of the system algovering a wide range of problem statements such

determined; and detailed design where each agengg |ooping and advanced Java Object-Oriented
internals are -explained to a level which can bgatyres.

immediately implemented. The detailed design
would be at a conceptual level and implementatio§, ACKNOWLEDGEMENTS
independent, so that it allows the systems to be

applied in the choice platform(18]. | would like to thank my supervisor

Apparently, novice students are unable td?r- Teh Noranis Mohd Aris and Associate Prof. Dr.

join the individual statements and constructd!d. Nasir Sulaiman for their guidance. I would
associated with IPO chart, flowchart, algorithnoint @lSO_like to thank Kementerian Pengajian Tinggi
valid programs. Therefore, it can be said that thi€<PT) for the support given under the Fundamental

s
317

Journal of Theoretical and Applied Information Technology
20" December 2013. Vol. 58 No.2 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

Research Grant Scheme (FRGS) University Putra Computers & Educatignvol. 54, No. 1, 2010,
Malaysia, project code number 02-12-10-1000FR pp. 69-87.

REFRENCES: [12] S.Y. Yang, “OntolAS: An ontology-supported
information agent shell for ubiquitous services”
[1] L. Padgham, J. Thangarajah, and M. Winikoff, Expert Systems with Applicationyol. 38,
. 2011, pp.7803-7816.
“Prometheus design toolln AAAI, 2008, pp. .
1882-1883 [13] R. Bednarik, M. Joy, A. Moreno, N. Myller,
[2] T.N. Mohd Aris, “Object-Oriented Programming ErlgdUCATIEIbNALSLét$§$EM F(';AFL{JLJFL_OA(E;;FEEI\-/II—
?emanf'cfTEEpret_Se”lta“‘(’j”A Utl'_“zd'”lg f Age't"_ts"- VISULIZATION”, Intelligent Agents, Web
TzléLnnat)l(())gyV(iogelIC;Off op pfo'ezo nformation — rechnologies and Internet Comme(@MCA-
U PR S o IAWTIC'05), 2005, pp.1-6.
[3] L Padgham, J. Thanga_\rajah, and M. Winiko 14] M.C. Carlisle, T.A. Wilson, J. W. Humphries,
The Prometheus design Tool-A conferenc and S.M. Hadfield. “RAPTOR: A Visual
Management System case studyicture Notes Programming Environment for Teaching

in computer Scien¢@008,pp. 197-211. _ Algorithmic Problem Solving”,SIGCSE Vol.
[4] Tamer F. Mabrouk, Mohamed M. El-Sherbiny, o5 2005, pp. 176-180.

“SAha\;:'th K. tGRuizgués, ar:jd Aytmaan. BSh‘??ka’ [15] S. DelLoach, L. Padgham, A. Perini, A. Susi,
ulti-Agent Role-based system 10r BUSINESS = 5,4 3 Thangarajah, “Using three AOSE toolkits
Intelligence ' Innovations an_d aQVances In to develop a sample designinternational
computer Sciences and Engineeri@g10, pp. Journal of Agent-Oriented Software
203-208. Engineering Vol. 3, No. 4, 2009, pp. 416-476.

[5] F. Bellifemine, G. Caire, and D. Greenwood, g | ~padgham, M. Winikoff, D. Poutakidis, *
“agent technology overview"Willey series in Adding debugging support to the prometheus
agent technology2007,pp. 3-27. .) methodology”, Journal of Engineering

[6] M. RAJABI, T.N. MOHD ARIS, “A Multi- Applications in Artificial Intelligence Vol. 18,
Agent System for Computational Problem Ng. 2, 2005.

Solvmg. “AReview”, Proceedings Of.Ll?] M. Morandini, D.C. Nguyen, A. Perini, A.
International Conference on Advances i Siena, and A. Susi, “Tool-supported
Computer and Information Technology (ACIT), Develé)pment with Tropoé: The Conference

2013, F’P- 147- 151'_ L Management System Case Studifi, Agent-
[7] G. Cabri, L. Ferrari, L. Leonardi, “Role-based oriented Software Engineering VIISpringer
Approaches ~ for ~ Agent Development’, Berlin Heidelberg, 2008, pp. 182-196.

Proceedings of the 3rd Conference ; P
) 8] H. Sun, J. Th h, L. Padgham, “Eclipse-
Autonomous Agents and Multi Agent Syste S]basegn Pron?gghaersjsa Designg a_lr_r(1)0|” (I:nlpse

(AAMAS), New York, USA, Vol. 3, 2004, pp. Proceedings of the 9th International Conference
1504-1505. on Autonomous Agents and Multiagent Systems
[8] J.J. Odell, H.V.D. Parunak, and M. Fleischer, International Foundation for Autonomous
“Modeling agent organizations using roles” Agents and Multiagent Systems, Vol 1, 2010,
Software and Systems Modelingl. 2, no. 2, pp. 1769-1770.
2003, pp. 76-81.
[9] L. Padgham, and M. Winikoff, “Developing
Intelligent Agent Systems: A Practical Guide”.
John Wiley and Son¥ol. 13, 2005.
[10] N.R. Jennings, “On Agent-Based Software
Engineering” Artificial Intelligence 117, 2000,
pp. 227-296.
[11] M. Kordaki, “A drawing and multi-
representational computer environment for
beginners’ learning of programming using C:
Design and pilot formative evaluation”,

318

