
Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

347

FLOW-BASED CONCEPTUAL REPRESENTATION OF
PROBLEMS

SABAH AL-FEDAGHI
Assoc. Prof., Department of Computer Engineering, Kuwait University, Kuwait

E-mail: sabah@alfedaghi.com

ABSTRACT

Well-structured problem-solving involves a stage of (external) representation of the problem to provide a
structure that serves as a shareable object of thought for studying the behavior of the underlying system. A
dominant problem-solving methodology involves state-based representation with an initial state, a goal
state, and a set of transactions. In addition, object-oriented methodology and Unified Modeling Language
(UML) are increasingly utilized for drawing descriptions of a problem space. Petri nets attract designers
(e.g., software) with its formal depictions modeling the behavior of a system. Nevertheless, each of these
methodologies of problem representation has its own weaknesses, especially with regard to incorporating
the features of understandability and simplicity. This paper proposes a different flow-based representation
that has advantages for describing certain types of problems. The resultant description is characterized by
uniform application of the basic structure of a flow system. The new methodology is demonstrated through
sample toy problems, such as the problem of the dining professors.
Keywords: Conceptual Model, Dinning Philosophers, Problem Representation, Problem Solving, State-

Based Representation, System Behavior, UML

1. INTRODUCTION

According to Hong [1], “Problem solving has
been one of the dominant fields of research in the
study of human information processing over the
past three decades.” Gestalt psychologists have
researched how to define a problem and develop a
solution and claim that such a process involves
“insight” and “restructuring”. Inability to
conceptualize a problem can hinder solving it.
Newell and Simon's 1972 "Problem Space Theory"
[2] has greatly influenced development of problem-
solving methodologies. They proposed that
problem-solving involves a search in a problem
space that has an initial state, a goal state, and a set
of transactions. The solution is achieved by starting
with the initial state and passing through to the goal
state, moving from one state to the next while
applying heuristics or algorithms that systematically
check all potential states. Some problem spaces are
so large that it is very difficult, or sometimes
impossible, to represent the entire space; thus
strategies or heuristics are used to move through
them. A well-structured problem consists of a well-
defined initial state, a known goal state, a
constrained set of the logical state, and constraint
parameters [3].

Well-structured problem-solving involves three
stages: (external) representation of the problem, a
search for a solution, and implementation of the
solution [1]. According to Simon [4], “solving a
problem simply means representing it so as to make
the solution transparent.... the ease of solving a
problem is almost completely determined by the
way the problem is conceptualized and
represented.… A well-chosen analogy or diagram
can make all the difference when trying to
communicate a difficult idea to someone, especially
a non-expert in the field” [5].

Experts are better problem solvers than novices
for a number of reasons. The most important
reason is that [experts] construct richer, more
integrated mental representations of problems
than do novices ... Experts are better able to
classify problem types … because their
representations integrate domain knowledge
with problem types. [6] (Italics added)

A representation in this context includes the

underlying structure of possible solutions [7]. The
quality of this representation directly influences
solving of the problem [2][8]. Problem
representation consists of organizing and displaying
the problem and the information required to solve
it, in ways that are appropriate for the problem-

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

348

solving process. This has been addressed in various
ways. This paper focuses on conceptual
diagrammatic representations that assist in
understanding of the semantics of the problem, and
the development of mental models necessary to
create working solutions [9]. In particular, we target
initially pedagogical applications of the results
introduced in the paper, since “a good way of …
teaching all kinds of CS topics is to use
visualization and graphic animation in their various
guises” [10].

“Problem representation” can serve a number of
functions [11], including the following:
- Guiding further interpretation of information
about the problem
- Providing insight into the structure of the problem
- Simulating the behavior of the system based on
knowledge of the properties of the system
- Developing a possible solution
(External) representations also “provide a structure
that can serve as a shareable object of thought…
When someone externalizes a structure, they are
communicating with themselves, as well as making
it possible for others to share with them a common
focus. An externalized structure can be shared as an
object of thought” [12].

The representation is constructed on the basis of
the problem statement, including its features and
environment. A certain problem may have a number
of different representations, with each being more
advantageous for solving the problem than the
others in some way. Representing the problem can
be achieved “by constructing tabular, graphical,
symbolic or verbal representations, and shifting
between representational formats; and formulating
hypotheses by identifying the relevant factors in the
problem and their interrelationships; organizing and
critically evaluating information” [13]. According
to [14], “Experience shows that formalisms
endowed with graphical descriptions are more
accepted by cross-organization’s stake-holders (not
just designers and programmers).”

Finite state machines are typically used to
represent a problem with a finite number of states
and input and output signals. Many tools, e.g.,
microwave ovens, vending machines, and washing
machines, are controlled by the rules of a finite state
machine. Other methods for representing problems
include dataflow diagrams and Petri nets. Recently,
UML has emerged as a tool for creating standard
representations of designs and implementations. It
is not a methodology; rather, it is a diagrammatic
representation that aids in the description and
understanding of systems and offers abstract models

of systems. Because of the extent of the topic of
methodologies of representation in the field of
problem-solving, we give UML a little more focus
as a particular scheme in this context.

Object-oriented methodology and Unified
Modeling Language (UML, [15]) are increasingly
utilized in modeling systems (e.g., software
development). After all, a system model is a
conceptual representation that reflects the dynamic
behavior of its components that replicate the
system’s conditions and activity.

UML has evolved through extension, especially
in its dynamic representation capabilities. Formal
semantics have been introduced into existing
informal notations [16][17]; for example,
translation algorithms are defined to provide given
specification notations with fixed semantics (e.g.,
UML diagram to Petri nets). “The results are
particular formalizations of some notations, which,
even if well suited for some application domains,
cannot easily be generalized” [18]. The next section
reviews a sample toy problem and its representation
in UML diagrams and Petri nets. This problem is
then re-represented in our flow-based description,
providing a study case that we offer the reader to
contrast various representation methodologies and
to demonstrate the unique features of our new
diagrammatic technique.

2. THE DINING PHILOSOPHERS
PROBLEM

The Dining Philosophers Problem was posed and

solved by Edsger Dijkstra [19] and is often used in
studying concurrency, deadlock, and
synchronization issues. Five philosophers sit around
a table. A chopstick is placed between each pair of
adjacent philosophers. They spend their time
alternately thinking and eating. A philosopher can
eat only when he has both left and right sticks. A
philosopher can use a stick only if it's not being
used by another philosopher. After he finishes
eating, he needs to put down both sticks so they
become available to others. The problem is to
design a solution such that each philosopher won't
starve. A possible solution is as follows.

For each philosopher:
Repeat

pick up left stick
pick up right stick
eat
put the left and right sticks down

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

349

This solution permits a deadlock [19]. Another
solution could incorporate a rule that the
philosophers put down a stick after waiting a certain
time and then waiting a little longer before trying
again. This scheme eliminates the possibility of
deadlock but still suffers from the problem of
starvation. Dijkstra [19] solved the problem by
assigning a partial order to the resources (sticks).

Many solutions have been presented for this
problem, including one in which the philosophers
and chopsticks are conceptualized as separate
classes of objects that communicate via messages.
Here, we are interested in the methodology of
describing the problem. For example, [20] assumes
a head waiter whose task is to receive messages
from the philosophers, assign chopsticks, and serve
as a play-by-play announcer. In this solution the
waiter acts as a “semaphore” that controls access to
a common resource by multiple processes in a
parallel programming environment.

Another solution is that philosophers can eat if
neither of their neighbors are eating, whereas
philosophers who cannot get the second stick must
put down the first stick before trying again. A single
mutual exclusion lock is used with the decision
procedures that can change the states of the
philosophers. To guarantee that no philosopher
starves, one could keep track of the number of times
a hungry philosopher cannot eat when his neighbors
put down their sticks, and a decision procedure for
picking up sticks could be augmented to require that
none of the neighbors are starving. A solution by
Chandy and Misra [21] permits an arbitrary number
of philosophers with an arbitrary number of
resources and specifies that "the philosophers do
not speak to each other".

According to Samek [22], the solution to the
problem of the Dining Philosophers is a “need
event-driven system”: “In active object systems, the
generic design strategy for handling such shared
resources is to encapsulate them inside a dedicated
active object and to let that object manage the
shared resources for the rest of the system” [22].
The problem can be represented by drawing a UML
sequence diagram (Figure 1) for the main scenarios
(main use cases). Figure 1 shows the most
representative event exchanges among any two
adjacent philosophers and the Table active objects.

Sequence diagrams … help you discover events
exchanged among active objects. The choice of
signals and event parameters is perhaps the most
important design decision in any event-driven
system. The events affect the other main
application components: events and state
machines of the active objects. [22]

Figure 2 shows the state machines associated

with the Philosopher active object in which the life
cycle consists of the states “thinking”, “hungry”,
and “eating”. “This state machine generates the
HUNGRY event on entry to the “hungry” state and
the DONE event on exit from the “eating” state
because this exactly reflects the semantics of these
events… This actually is the general guideline in
state machine design” [22].

While this presents an unfair description of the
solution to the problem, it is sufficient for our
purpose, which is focused on the representation of
the problem, not on the scheme of the solution. This
paper will suggest an alternative conceptual
description based on the notion of flow.

QF Philo[n] Philo[m] Table]

thinking thinking thinking

thinking

hungry

eating

TIMEOUT

TIMEOUT

TIMEOUT

HUNGRY(n)

HUNGRY(m)

EAT(m)

EAT(n)

DONEm)

(1)
(2)

(3)
(4)

(5) (6)
(7)

(8)
(9)

(10)

hungry

eating

Figure 1. The Sequence Diagram Of The DPP Application (Partial, From [22])

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

350

Examining these diagrams, one might wonder
whether such representations are suitable as a first
step in approaching the solution, which is to draw a
conceptual description of the behavior needed to
arrive at the solution. A conceptual description
ought to be completely, to use Jackson’s
terminology [23], independent from structuring the
world domain in the machine domain. The process
described above jumps from the English description
to specification of sequence and state diagrams. The
result seems to indicate a gap in communicating the
nature of the problem and its proposed solution.
The fragmented conceptual picture of sequence
diagram and state diagram, patched with English
and hindered by programming details, creates a
mosaic of shifting focus for the problem solver and
learner. Additionally, “The Unified Modeling
Language has been shown to be complex and
difficult to learn. The difficulty of learning to build
the individual diagrams in the UML, however, has
received scant attention” [24].

Another known framework for describing
behavioral aspects in different kinds of problems is
the Petri net specification. Petri nets differentiate
between states and activities with graphical
representation in addition to formal description.
Figure 3 shows a version of the Petri net
representation of the dining philosophers problem.

Philosopher Pi may be in one of the two states,
either eating or thinking, corresponding
respectively to (presence of a token in) the
places Pi_E and Pi_T. Each fork is modeled by
a corresponding place, where the presence of a
token indicates the availability of the fork.
When philosopher’s state changes from thinking
to eating (resp. eating to thinking), the two forks
on its left and right become no more available
(resp. available again). Initially, all philosophers
are thinking and thus all forks are available. [14]

Eat1

Eat2

Eat5

Eat3 Eat4

Fork1
Fork2

Fork3

Fork4

Fork5

Release1

 Release2

Release3 Release4

Release5

P1_T P1_E

P1_T

P1_E

P1_T
P1_E P1_T

P1_E

P1_T

P1_E

Figure 3. The Dining Philosopher Problem As A Petri Net (From [14]).

thinking

hungry

TIMEOUT

[Q_EVT_CAST(TableEvt)->p... ==
PHILO_ID(me)]

EAT, DONE/

entry/

eating

Figure 2. State Machines Associated With The Philosopher Active Object And Table Active Object (Partial, From
[22])

exit/

DONE/

EAT,

….

TERMINATE/
active

EAT/
Q_ERROR();

serving

paused

HUNGRY/
 [both free] /

 Else /

….

….

…
.

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

351

Applying “firing rules” to the initial marking of
Figure 3 results in new markings. There are many
variants of Petri-net extensions for different reasons
(e.g., [25]–[29]). Zafar [14], for example, proposes
algebraic Petri nets to “support the construction of
concise, but nevertheless comprehensible and
transparent models of real-world systems.”
Nevertheless, according to Zafar [14],

Formalisms such as high-level Petri nets still
remain hardly understandable and accepted by
(cross) organization stakeholders (e.g. managers,
users, customers and even programmers), we are
going to promote the practicability and the wide-
usability through the early adoption of semi-
formal diagrammatical and standardised artifacts
both for structural and behavioral features in
service-driven applications. More precisely, all
structural features of service-driven business
applications are first described using stereo-typed
UML 2.0 use-cases and class-diagrams.
Behavioral aspects are captured through event-
driven business rules, which are inherently
understandable, evolving and process-
independent. Only after such widely acceptable
and accessible semi-formal descriptions, of any
service-driven application at hand, we then
forward a smooth and semi-automatic shifting
towards the proposed rigorous service-driven
Petri Nets formalism. [14] (Italics added)

Hence, such factors as the huge investment in

development of standard ULM, or the available
formalism of Petri nets, ought not to discourage
new ventures to propose other models with the
same objectives. Accordingly, the contribution of
this paper is to propose such a new model that can
be incorporated into current methodologies.

In preparation for recasting the representation of
the dining philosophers problem in terms of our
methodology, and to make this paper self-
contained, the next section briefly reviews
published materials describing the model that will
be used as the basis for a description [30–33]. This
paper applies this model in the area of problem
representation in the context of problem-solving.

3. FLOWTHING MODEL

To make this paper self-contained, the materials
in this section are summarized from a series of
papers that have applied the model in several
application areas [30]-[33].

The Flowthing Model (FM) was inspired by the
many types of flows that exist in diverse fields,
such as, for example, supply chain flow, money
flow, and data flow in communication models. This
model is a diagrammatic schema that uses
flowthings to represent a range of items that can be
data, information, objects, or signals. FM also
provides the modeler the freedom to draw the
system using flowsystems that include six stages, as
follows:
• Arrive: A flowthing reaches a new flowsystem

(e.g., a buffer in a router)
• Accepted: A flowthing is permitted to enter the

system (e.g., no wrong address for a delivery); if
arriving flowthings are also accepted, Arrive and
Accept can be combined as a Received stage.

• Processed (changed): The flowthing goes
through some kind of transformation that changes
its form but not its identity (e.g., compressed,
colored, etc.)

• Released: A flowthing is marked as ready to be
transferred (e.g., airline passengers waiting to
board)

• Created: A new flowthing is born (created) in the
system (a data mining program generates the
conclusion Application is rejected for input data)

• Transferred: The flowthing is transported
somewhere outside the flowsystem (e.g., packets
reaching ports in a router, but still not in the
arrival buffer)

These stages are mutually exclusive, i.e., a
flowthing in the process stage cannot be in the
created stage or the released stage at the same time.
Figure 4 shows the structure of a flowsystem. A
flowthing is a thing that has the capability of being
created, released, transferred, arrived, accepted, or
processed while flowing within and between
systems. A flowsystem depicts the internal flows of
a system with the six stages and transactions among
them. FM also uses the following notions:

• Spheres and subspheres: These are the
environments of the flowthing, such as a
company and the departments within it, an
instrument, a computer, an embedded system, a

Figure 4. Flowsystem

Create

Process Accept

Transfer Release

Arrive Receive

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

352

component, and so forth. A sphere can have
multiple flowsystems in its construction if needed.

• Triggering: Triggering is a transformation
(denoted in FM diagrams by a dashed arrow)
from one flow to another, e.g., flow of electricity
triggers the flow of air. If a sphere has one
flowsystem, then the two flows can be
represented by one box.

A flowsystem need not include all the stages; for

example, an archiving system might use only the
stages Arrive, Accept, and Release. Multiple
systems captured by FM can interact with each
other by triggering events related to one another in
their spheres and stages.

It may be argued that data can be in a
stored state, which is not included as a
stage of a flowsystem; however, stored is
not a primary state, because data can be
stored after being created, hence it is
stored created data, or it is stored after
being processed, hence it is stored
processed data, and so on. Because current
models of software and hardware do not
differentiate between these states of stored
data, we will assume flowsystems with
unified storage.

In addition to the fundamental characteristic of
flow in FM, the following types of possible
operations exist in different stages:
1. Copying: Copy is an operation such that
flowthing f => f. That is, it is possible to copy f to
produce another flowthing f in a system S. In this
case, S is said to be S with copying feature, or, in
short, Copy S. For example, any informational
flowsystem can be copy S, while physical
flowsystems are non-copying S. Notice that in copy
S, stored f may have its copy in a non-stored state.
It is possible that copying is allowed in certain
stages and not in others.
2. Erasure: Erasure is an operation such that
flowthing f => e, where e denotes the empty
flowthing. That is, it is possible to erase a flowthing
in S. In this case, S is said to be S with erasure
feature, or, in short, erasure S. Erasure can be used
for a single instance, all instances in a stage, or all
instances in S.
3. Canceling: Anti-flowthing f – (f with superscript –
) is a flowthing such that (f – + f) => e, where e
denotes the empty flowthing, and + denotes the
presence of f – and f.

It is possible that the anti-flowthing f – is declared
in a stage or a flowsystem. If flowthing f triggers
the flow of flowthing g, then the anti-flowthing f –
triggers anti-flowthing g –.
An example of the use of these FM features is
erasure of a flow, as in the case of a customer who
orders a product, then cancels the order. This may
require cancellation of several flows in different
spheres triggered by the original order.

Formally, FM can be specified as FM = {Si
({F j}, T l), {(Fij, Fij)}, 1≤i≤n, 1≤j≤m, 1≤l≤t}
That is, FM is a set of spheres S1, ...Sn, each with its
own flowsystems Fij,... Fim. T is a type of flowthing
T1,..., Tt. Also, F is a graph with vertices V that is a
(possibly proper) subset, {Arrive*, Accept*,
Process*, Create*, Release*, Transfer*}, where the
asterisks indicate secondary stages.

Example: Consider the “Vacuum World” toy
problem [34]. It is noted that “The problem-solving
approach has been applied to a vast array of task
environments. They tend not to have a single
agreed-upon description, so we will do our best
describing the formulations used” [34]. The
problem is formulated as follows [34]:
• States: The state is determined by both the agent

location and the dirt locations. The agent is in
one of two locations, each of which might or
might not contain dirt.

• Initial State: Any state.
• Actions: Each state has just three actions: Left,

Right, and Suck
• Transition: The actions have their expected

effects, except that moving Left in the leftmost
square, moving Right in the rightmost square,
and Sucking in a clean square have no effect.

• Goal Test: This checks whether all the squares
are clean.

• Path Cost: Each step costs 1, so the path cost is
the number of steps in the path.

Figure 5 shows the state space for Vacuum World.

Figure 6 shows the corresponding FM
representation of the same problem. Assume that
the cleaning machine starts in location 0, cleans the
dirt (if there is any), then flows to location 1 to do
the same thing, then stops. A simple pseudo code
may be presented as follows:

If location (i), then clean it;
Move to location (Mod(i+1));
If location (i), then clean it;
stop;

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

353

Note the difference in the size of representations in
Figure 6 in comparison with Figure 5, where n
locations has n * 22 states; thus, for 4 locations
there are 16 states.

Figure 7 shows the FM representation of 4
locations. For example, if the machine is in location
0, it can move to location 1 or 3. Writing a solution
for this case is not difficult.

 Process
(Cleaning)

Release
Transfer

 Process
(Cleaning)

Release

Transfer

Receive

Receive
Location

0
Location

2

Figure 6. FM-Based Representation Of The Vacuum Cleaning Problem

Figure 5. The State Space For The Vacuum World (From [34]).

 Process
(Cleaning)

Release

 Process
(Cleaning)

Release

Receive

Receive

Location 2 Location 3

 Process
(Cleaning)

Release
 Process

(Cleaning)

Release

Receive

Receive

Location 0 Location 1

Figure 7. FM-Based Representation Of The Vacuum Cleaning Problem With 4 Locations

Transfer Transfer

Transfer Transfer

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

354

4. DINING PHILOSOPHERS PROBLEM
REVISITED

Returning to the Dining Philosophers problem,

Figure 8 shows the FM-based representation.
Instead of sequence and statechart diagrams
complemented with annotations and descriptions
that try to present a glued-together single
conceptual account, FM provides a uniform
description in a single framework.

Starting at circle 1 in Figure 8, a stick is released
from the table. This means that a philosopher grabs
the stick, and from the table’s point of view, it is
free to be used (3). When the philosopher actually
moves the stick to his/her mouth, the stick is in the
transfer state (circle 2). In this condition, scrutiny
of the event occurs: is the right-hand stick also
being transferred (4)? If not, the stick is marked as
“not used” (5), and the philosopher is triggered (6)
to the waiting state. In the waiting state, and after a
fixed time (8), the philosopher tries (triggers –
circle 9) to release (10) the stick again.

If the right stick is also being transferred, then
the stick flows to the philosopher (11) to be
received and used in eating. When he or she is
finished eating (12), the philosopher releases the
left stick (13), triggering him/her to think (14).
Also, when the stick is received on the table (15),
this triggers (16) a change in the state of the stick to
“Not used”. Identical events occur with respect to
the right-hand stick (lower part of the figure).

One event can occur which we could not find in
the sources about this problem, and that is when a
philosopher releases one stick while not releasing
the other (holding it in hand). It is possible to force
release and transfer of both sticks simultaneously
using a similar test as when forcing the two sticks
to move simultaneously from the table (circle 4,
and corresponding testing in the right stick
flowsystem). In our case, we permit this situation;
hence, the philosopher goes to the state of thinking.

In the state of thinking, after a fixed time (17),
the philosopher tries (triggers – circle 18) to release
(1) the stick again. Similar events occur with the
right stick, starting from release.

Figure 8 can be used in searching for a solution
to the Dining Philosophers problem. The search can
start at any position of the philosophers in the
diagram. Currently known strategies can be applied
to the FM representation. Figure 9 shows a sample
simple search pseudo code for simulating the events
in the problem representation. It is assumed that the
philosophers start in the thinking state and that they
finish thinking one after another. The simulation
can be ended in several ways, such as finding a
cycle (every philosopher thinks, eats at least once)
where no deadlock or starvation occurs.

However, we will not go into the details of a
certain solution, since the objective of this paper is
to demonstrate a new representation that can be
used only for explaining the problem and its related
features such as deadlock and concurrency.

 Release

Receive

Release

Receive

Right

Received

Released

 Not used used State
Eating (ti’’ time)

Create
ti time,
then:

left

Right

Wait

Create
t’ time,
then:

If Left is not transferred

Transfer

Figure 8. The FM representation of the Dining Philosophers problem

TABLE:STICKS PHILOSOPHER: STICKS

Transfer

Transfer

Release

Receive

 Not used used State Left

If Left is not transferred

Transfer
1

15

2

3

4

5

6

7

8

14

Think

P
H

IL
O

SO
P

H
E

R

P
H

IL
O

SO
P

H
E

R
 16

17

18

19

9 11

12

13

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

355

5. CONCLUSION

Methodologies of representation used in
problem-solving include state, UML, and Petri-net
diagrams. Each has its own advantages and
weaknesses, especially in regard to the features of
understandability and simplicity. This paper has
proposed a different flow-based representation that
is based on the notion of flow and characterized by
uniform application of the basic structure of a flow
system. The new methodology is demonstrated
through sample toy problems.

We are currently exploring areas of application
for such a methodology of representation, as in the
case of presenting it as a first phase in describing a
problem to students, instead of, say, UML
diagrams. It is possible that FM can be utilized in
actual searches for solutions.

REFERENCES:

[1] Hong NS. (1998). The relationship between

well-structured and ill-structured problem
solving in multimedia simulation. PhD thesis,
Pennsylvania State University.
http://www.cet.edu/pdf/structure.pdf

[2] Newell A., & Simon HA. (1972). Human
problem solving. Englewood Cliffs, NJ:
Prentice Hall.

[3] Greeno J (1978). Natures of Problem-Solving
Ability. Handbook of learning and cognitive
processes (pp. 239-270). Hillsdale, NJ:
Lawrence Erlbaum.

[4] Simon HA. (1981). Studying human
intelligence by creating artificial intelligence.
American Scientist 1981; 69(3): 300-309.

[5] Epistemics. (2003). Knowledge Models. Blog.
Last modified: 20 November 2003. Accessed
October, 2012.
http://www.epistemics.co.uk/Notes/90-0-0.htm

[6] Jonassen DH. (2005). Tools for representing
problems and the knowledge required to solve
them. Knowledge and Information
Visualization. 82-94.

[7] Voss JF., Lawrence JA., & Engle RA. (1991).
From representation to decision: An analysis of
problem solving in international relations. In R.
J. Sternberg RJ, Frensh PA (Eds.), Complex
problem solving, pp. 119-157. Hilldale, NJ:
Lawrence Erlbaum.

[8] Hayes JR. (1981). The complete problem solver.
Philadelphia: The Franklin Institute Press.

[9] Miller JA. (2004). Promoting computer literacy
through programming Python. PhD.
dissertation, University of Michigan.
http://www.python.org/files/miller-
dissertation.pdf

[10] Gal-Ezer J., & Harel D. (1998). What (else)
should CS educators know? Communications of
the ACM; 41(9).

[11] Savelsbergh ER., deJong T., & Ferguson-
Hessler, MGM. (1998). Competence-related
differences in problem representations. In M.
van Sommeren M, Reimann P, deJong T,
Boshuizen H (Eds.), The role of multiple
representations in learning and problem
solving, pp. 262-282. Amsterdam: Elsevier.

[12] Kirsh D. (2010). Thinking with external
representations. AI & Soc; 25:441–454. DOI
10.1007/s00146-010-0272-8.

[13] PISA (2012). PISA 2012 Field trial problem
solving framework.
http://www.oecd.org/pisa/pisaproducts/4696200
5.pdf

[14] Zafar B. (2008). Conceptual modelling of
adaptive Web services based on high-level Petri
nets. PhD thesis, De Montfort University.
https://www.dora.dmu.ac.uk/bitstream/handle/2
086/2407/thesis44.pdf?sequence=1

Initial()
For all i, Think(i)

Left (i)
if (left (i) = used) then Wait(i) else (left (i) = used)}
if (Right (i) = used) then

{left(i) = NotUsed, Think(i), Wait(i) }
Eat(i)
Think(i)

Thinking(i)
wait ti
left(i)
Right(i)

Right (i)
if (Right (i) = used) then (Wait(i)) else (Right (i) = used)}
if (Left (i) = used) then

{Right(i) = NotUsed, Wait(i)}
Eat(i)
Think(i)

Figure 9. Possible Simple Pseudo Search For Solution To The Dining Philosophers Problem

Journal of Theoretical and Applied Information Technology
 20th December 2013. Vol. 58 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

356

[15] Fowler M., & Scott K. (1997). UML distilled:
Applying the Standard Object Modeling
Language. Reading, MA: Addison-Wesley.

[16] Bates BW., Bruel JM., & France RB, Larrondo-
Petrie MM. (1996). Guidelines for formalizing
fusion object-oriented analysis methods. In
Conference on Advanced Information Systems
Engineering (CAiSE) 96, pp. 222–233.

[17] Wang EY., Richter HA., & Cheng BHC.
(1997). Formalizing and integrating the
Dynamic Model within OMT. In Proceedings of
the 19th International Conference on Software
Engineering, pp. 45–55. ACM Press, May.

[18] Baresi L., & Pezz M. (2001). On formalizing
UML with high-level Petri nets, In: Agha G, et
al. (Eds.), Concurrent OOP and PN, LNCS, pp.
276–304. Berlin: Springer-Verlag.

[19] Dijkstra EW. (1971). Hierarchical ordering of
sequential processes. Acta Informatica 1, 115-
138.
http://www.cs.utexas.edu/~EWD/ewd03xx/EW
D310.PDF

[20] Feldman MB. (1992). The portable dining
philosophers: a movable feast of concurrency
and software engineering. Proc. 23rd ACM-
SIGCSE Technical Symposium on Computer
Science Education, Kansas City, MO, March.
http://www.seas.gwu.edu/~mfeldman/papers/po
rtable-diners.html

[21] Chandy KM., & Misra J. (1984) The Drinking
Philosophers problem. ACM Trans. on
Programming Languages and Systems G:G32-
646.

[22] Samek M (Quantum Leaps, LLC). (2012).
Application note Dining Philosophers Problem
(DPP) example. Document Revision D August.
http://www.google.com.kw/url?sa=t&rct=j&q=
%22application%20note%20dining%20philoso
phers%20problem%20(dpp)%20example%22&
source=web&cd=1&cad=rja&sqi=2&ved=0CB
0QFjAA&url=http%3A%2F%2Fwww.state-
machine.com%2Fresources%2FAN_DPP.pdf&
ei=ja5dUKHBGIi40QW2xIFw&usg=AFQjCN
EmxvIJroeOeznmXNJfDrIyyYbaRA

[23] Jackson M. (1997). The meaning of
requirements. Annals of Software Engineering;
3(1):5–21.

[24] Vander Meer D. (2009). Applying learner-
centered design principles to UML sequence
diagrams. Database Management; 20(1).

[25] Bernard B., & Michel D. (1991). Modeling and
verification of time dependent systems using
time Petri nets. IEEE Trans. Software Eng: 259-
273.

[26] Lakos C. (1995). From coloured Petri nets to
object Petri nets. In Proc. of 16th Application
and Theory of Petri Nets, Lecture Notes in
Computer Science; 935: 278–287.

[27] Lakos C. (1996). The consistent use of names
and polymorphism in the definition of objects
Petri nets. In Proc. of 17th Application and
Theory of Petri Nets, Lecture Notes in
Computer Science; 1091: 380–399.

[28] Sibertin C. (1994). Communicative and
cooperative nets. In Proc. of the 15th
International Conference on the Application
and Theory of Petri Nets, Lecture Notes in
Computer Science; 815.

[29] Jensen K. (1992). Coloured Petri nets: basic
concepts, analysis methods and practical use.
Volume 1: Basic Concepts. EATCS
Monographs in Computer Science, 26.

[30] Al-Fedaghi S. (2010). System-based Approach
to Software Vulnerability, The IEEE
Symposium on Privacy and Security
Applications (PSA-10), Minneapolis, USA.

[31] Al-Fedaghi S. (2009). Interpretation of
Information Processing Regulations, Journal of
Software Engineering & Applications, Vol. 2
No. 2, pp. 67-76.

[32] Al-Fedaghi, S. (2012). Conceptual Framework
for Recursion in Computer Programming,
Journal of Theoretical and Applied Information
Technology, Vol. 46 No. 2.

[33] Al-Fedaghi S., & Al-Saqa A. (2013). Toward A
Conceptual Base for Protocol Engineering,
Journal of Theoretical and Applied Information
Technology, Vol. 51, No. 2.

[34] Centurion. (2012). Well-defined problems and
solutions: Vacuum World. Last Modified 5
May.
http://centurion2.com/AIHomework/AI110/ai11
0.php

[35] Jumaat, S.A. , Musirin, I., Othman, M. M., &
Moklis, H. (2012). Computational Intelligence
Based Technique In Multiple Facts Devices
Installation For Power System Security, Journal
of Theoretical and Applied Information
Technology. pp 0537 - 0549 Vol. 46. No. 2.

[36] Guo, C. (2013). Design and Implementation of
a Multimedia Database Application system,
Journal of Theoretical and Applied Information
Technology. Vol. 47. No. 3 – January.

