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ABSTRACT 
 

Model-driven code generation has been a topic of interest for researchers owing to its several benefits 
including the anticipated reduction in development effort and delivery time. It has taken a good deal of time 
to produce techniques that generate executable code in object-oriented programming languages. Aspect-
oriented software development techniques, though expected to enhance software development in many 
ways, still lack approaches that can deliver model-driven code into one of the aspect-oriented programming 
languages such as AspectJ. In this paper, we present an approach for generation of aspect-oriented code 
from Reusable Aspect Models. As first step towards the code generation, we have developed a formal and 
semantically equivalent text-based representation of the aspect models using XML schema notation. 
Further, we have proposed an approach that takes the XML representation of the aspect models to generate 
aspect-oriented skeleton code. Currently, our approach can be used to obtain complete aspect structure, 
interfaces, classes, constructors, fields and stubs of methods specified in the structural part of an aspect.      

Keywords: Aspect-Oriented Modeling; Model-Driven Engineering; Aspect-Oriented Code Generation; 
Reusable Aspect Models 

1. INTRODUCTION  
 
 Software development industry aims at 

delivering high quality software products within 
allocated time. However, with an almost ever 
growing size and complexity of the product, the 
goals of quality and on-time delivery tend to 
become more and more difficult to achieve. 
Therefore, to prevent them ending up running 
over schedule, or even worse, relinquishing 
quality in order to meet the deadlines, software 
teams are always in need of techniques that can 
help reducing delivery time, and also lend to 
raising the quality of the product. In this context, 
the visual modeling languages such as [1-4] are 
particularly helpful as they provide modeling and 
model-checking capabilities at the design level. 
Nevertheless, since the end product has to be an 
executable, modeling languages need to be 
combined with automatic code generation 
techniques in case their support was to be 
extended to the implementation and maintenance 
phases. This way, automatically (and correctly) 
generated code enhances the benefits of high-
level design effort. For this reason, in past, 
several studies have been conducted to generate 
or help to generate executable code from high 
level design models, see for example, Petri Nets 
[5], Software Cost Reduction (SCR) [6], and 
Cinderella SLIPPER [6], which use formal 
notations. Also, some other research work (cf. [7-

10]) has used models developed using UML to 
generate fully executable code. Similarly, for a 
long time now, software developers have been 
using commercial (e.g., IBM Rational Software 
Architect [11], AjileJ StructureViews [12], 
MagicDraw UML [13]) as well as open source 
(e.g., ArgoUML, Eclipse UML2 Tools) CASE 
tools in order to obtain code stubs.                

 Aspect-oriented software development 
techniques [14-16] essentially improve the 
handing of crosscutting concerns, which 
correspond to the functionality that cuts across 
the basic modularization of a software system. 
Crosscutting concerns usually originate from 
non-functional requirements such as logging, 
security, and persistence etc., and thus, if handled 
using traditional software development 
approaches (e.g. object-oriented development), 
lead to problems associated with the phenomena 
of scattering and tangling of behavior. These 
phenomena are known as symptoms to show that 
a concern has not been implemented in a well 
modularized way. Specifically, the 
implementation of a distinct concern will be 
referred to as scattered if it is spread out over 
more than one modules, and tangled if there exist 
more than one modules to represent it. With the 
use of aspect orientation at different levels of 
development, these concerns (usually referred to 
as aspect behavior) can be identified, separated 
and encapsulated in a more explicit way. Benefits 
of applying aspect orientation to software 
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development are usually associated with the 
reusability, maintainability and extensibility of 
the system, see for example [17-20]. Some other 
studies have also reported several benefits of 
aspect oriented techniques from other 
perspectives of development, see for example 
[17, 18, 21, 22]. Owing to this, the current study 
has been conducted to elaborate a code 
generation approach that specifically focuses on 
generation of aspect-oriented code skeletons. For 
this purpose, Reusable Aspect Models (RAM) 
[23-26]  notation has been used as the input 
aspect-oriented modeling notation, whereas 
AspectJ [27] is the target, which is essentially an 
extension of Java [28] programming language. 

This paper is organized in six sections. 
Following this introduction, Section 2 provides a 
background for this study by briefly describing 
the RAM modeling approach, the use of XML 
schemas in the context of code generation and 
specifically this study. Section 3 provides a text-
based representation of the RAM models in the 
form of XML schema. Section 4 is dedicated to 
present the code generation approach. Section 5 
describes some related work, and Section 6 
concludes the paper while highlighting some 
future directions for this research.                

2. BACKGROUND: REUSABLE ASPECT 
MODELS, XML AND XML SCHEMAS 
 

2.1. Reusable Aspect  Models (RAM)  
RAM [23-26] is a multi-view modeling 

approach that combines different modeling 
approaches to model aspect-oriented class, 
sequence and state diagrams into one approach. 
This allows the use of the most appropriate 
notation to model each view of a system. The 
RAM’s notion that it views all of the concerns 
that are potentially reusable in a single system or 
a set of systems as aspects makes it different from 
other aspect-oriented modeling approaches. This 
essentially enhances, as well as supports, the 
reusability at all levels of development. Different 
views, i.e., structure, message, and state views, of 
a reusable concern are encapsulated in a special 
UML package, which represents the aspect 
model. The model comprises of three 
compartments. These compartments use a UML 
class, state and sequence diagrams each 
corresponding to the structural, state, and 
message view of the modeled concern, 
respectively.  

Classes in the first compartment are not 
required to be complete, and include methods and 
attributes which are relevant only to the concern 
that this aspect model represents. Such 

incomplete classes are referred to as mandatory 
instantiation parameters, and are composed with 
other classes while instantiation of aspect to 
obtain complete classes.    

Second compartment relates to the state view, 
which contains UML statechart diagrams to 
describe the internal states of the class that are 
relevant within the concern. A complete class in 
structural view usually has a corresponding 
standard statechart in state view, whereas an 
incomplete class is represented here using an 
aspectual state diagram, which contains a 
pointcut and an advice. The pointcut part is used 
to define the states and transitions that are 
required in target state diagram, whereas the state 
diagram that replaces the occurrence of pointcut 
in the target state diagram is defined by the 
advice part.  

Third compartment defines a number of 
sequence diagrams to describe the message 
passing between objects of classes in the 
structural view. Aspect models are used in target 
model by means of either instantiation or binding 
directives, which map the mandatory instantiation 
parameters defined in different views of the 
aspect model to elements in the target model.  

2.2. XML and XML schemas  
XML has emerged as a powerful and easy-to-

use standard to save and exchange data [29, 30]. 
It can easily be integrated with other related 
standards and tools which allow accessing the 
data stored in XML documents by means of 
standard application programming interfaces 
(APIs). XML represents the stored data using 
XML elements consisting of a start tag, XML 
attributes, content, and an end tag.    

The structure and content of an XML 
document is defined using an XML schema[31]. 
Just like the rules and features of a UML 
diagram, XML schemas define a set of rules 
describing elements and other markup objects to 
be defined in an XML document. The standard to 
define XML schemas is called XML Schema 
Definition (XSD). 

3. XML SCHEMA REPRESENTATION 
OF RAM MODELS 

 
As a first step to transform a graphical design 

model (in our case the one developed using RAM 
notation), a formal and semantically equivalent 
text-based implementation of the same has to be 
provided. This is essential in order to make the 
visual model a computer-understandable entity. 
For this purpose, XML and related standards 
have traditionally been used by code generation 
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approaches to define text-based implementation 
models, see for example [8, 32-34]. In this 
section, a text-based representation of RAM 
models in the form of XML schema is presented. 
For this purpose, we first elaborate a set of 
concepts used by a RAM model in a systematic 
way, and later use the same elaborations to 
propose the text-based representation. It has to be 
emphasized here that, since in the current study, 
our focus in on generation of skeletons only, our 
discussion in this section and the following 
section will be limited to structural part of RAM 
models only.  

3.1. Conceptual reference for RAM models  
The concepts related to structure of a RAM 

aspects can be divided into two distinct 
categories, i.e., Core and Structure. We describe 
both of these in the following.  

3.1.1. Core 
This category contains the details related to 

the aspect as a whole. These details include the 
information on mandatory instantiation 
parameters, instantiations, and specification of 
the classes as well as statechart diagrams defined 
within the structural and state views, respectively.  

3.1.2. Structure 
Conceptually, the structure of an aspect is 

defined by a set of classes and interfaces, and 
relationships among them. In RAM, both types of 
structural units, i.e., classes and interfaces share 
some characteristics, and hence it would be 
desired to capture those common concepts in a 
general type, which can further be specialized to 
represent each of these units. A class can either 
be complete or incomplete, where the latter case 
would require its composition with some other 
class by means of binding or an export as a 
mandatory instantiation parameter. Both 
interfaces and classes may contain an arbitrary 
number of functions, however, the specialized 
types of constructors and methods can only be 
contained by classes. It is to be noted here that we 
make a conceptual distinction here between a 
function and a method. Methods in our 
representation refer to functions that contain 
functionality and are commonly associated with a 
statechart in the state view.  

A class in RAM aspect may specify its 
conceptual relationship with other classes, or 
interfaces in the model. It may also stipulate the 
multiplicity of the relationship on both sides. 
Further, for association relationship, in which 
roles of the participants on both sides are 
relevant, we take care of the role name as well.  

3.2. XML schema representation  
The text-based implementation model, which 

encapsulates the structural part of RAM models, 
is presented in this section in the form of XML 
schema. The schema is a generic representation 
of RAM aspects, and thus, it can be used in 
combination with any other related standard, such 
as XMI. An overview of the specification of 
mapping from structural view of RAM aspects to 
XML schema is presented in Table 1, which is 
mostly self-explanatory. For space reasons, 
instead of describing the mapping of each of the 
elements, we provide an overview of 
implementation of the central concepts in the 
following. We hope that readers familiar with 
XML schemas will find the remaining 
implementation rather straightforward.         

An aspect serves as the main encapsulating 
unit that eventually contains an arbitrary number 
of classes and interfaces, their contents, and the 
relationships among them. Moreover, it may also 
define one or several of the elements as 
mandatory instantiation parameters while 
specifying their respective types. These global 
properties of aspect can be implemented as 
shown in Lines 1-14 in Figure 1. To enhance 
reusability and to respect the principles of 
modular design, we have made extensive use of 
XML schema complex types in combination with 
XML elements. Thus, for example, a class is 
represented by an element of complex type 
ClassType, which is an extension of the 
generic type StructType, representing the 
core features of a structure shared by classes and 
interfaces. Classes, interfaces and their 
corresponding details (fields, functions, 
parameters, return types etc.) are implemented 
within the structural view of the schema 
representation (defined as StructuralView 
element, see, e.g., Line 16-35 in Figure 1). As 
described in Table 1, the field element defines 
a number of attributes, which allow automatic 
generation of some methods with predefined 
semantics, e.g., if get and set attributes are set 
to true for a particular field, then getter and 
setter methods will be generated for that field 
without the need of any further information.  

Following the fields, constructors (in case of 
class types only) and methods are defined, which 
stem from a common complex type 
FunctionType (see Line 43-50 in Figure 1). 
This type provides a common base covering the 
ID, name, and specification of parameters. The 
type is directly used for the specification of 
constructors, whereas it is extended by Method 
type to include specification of an optional return 
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type and the statechart to which this method may 
be associated, see Line 51-56 in Figure 1.  

Once the classes and interfaces are fully 
declared, we move to defining their relationships. 
In our implementation, we deal with four 
different kinds of relationships among structural 
entities, i.e., inheritance, association, aggregation 
and composition relationships. Inheritance is 
implemented inside the ClassType by 
introducing an element named parent, which 
specifies the parent of this class. The 
specification of each of remaining three 
relationships is enclosed within a corresponding 
element, as shown by Lines 38-40 in Figure 1. 
We define a complex type 
RelationshipType, which is on one hand 
extended by AssociationType to define 
associations by adding the details specific to 
associations, e.g., name of the relationship 

between two participating entities. On the other 
hand, aggregation and composition relationships 
are implemented fully using the instances of the 
RelationshipType. 

4. CODE GENERATION APPROACH  
 

In this section, we present the code generation 
approach, which essentially takes the textual 
representation of RAM models, developed in the 
form of XML using the schema proposed in the 
previous section, and generates appropriate 
aspects, classes, interfaces, relationship 
implementations and skeletons of methods in 
AspectJ. A high level algorithmic form of the 
steps taken to manipulate the XML 
representation, and obtaining code is shown in 
Figure 2. We briefly describe the procedure in the 
following subsections. 

 
Table 1: Overview Of Mapping From RAM Model Elements To XML Schema 

RAM entity to 
be mapped 

Mapped XML schema entity 

Aspect XML element Aspect and a corresponding complex type AspectType declaration.  

Class XML element ClassType within StructuralView element and a corresponding complex 
type ClassType. ClassType extends the StructType (the generic structural type) using 
XML extension. In case a class implements multiple interfaces, it will have a realizes 
element corresponding to each of the interfaces.    

Interface XML element InterfaceType within StructuralView element and a corresponding 
complex type InterfaceType. This type also extends the generic StructType.  

Field XML element named field. This element further defines a number of attributes, i.e., get, 
set, increment, decrement, add, remove, and count, which allow direct generation of 
methods corresponding to the traditional functionality provided by these methods.  

Constructor XML element Constructor within ClassType element along with a complex type of the 
same name. This complex type extends the generic FunctionType.    

Method XML element operations within ClassType element along with a complex type named 
Method, which extends the FunctionType by associating an optional value of return type 
and statechartID to which this method is associated. However, if the return type is void, 
we omit the element.  

Mandatory 
instantiation 
parameter 

XML element mandatoryInstParam declared within the Core element of AspectType. It 
defines an attribute named type to specify different types of attributes such as class, 
method, field etc.  

Instantiation/ 
binding 
directive 

XML element Instantiations within the Core element of AspectType.  

Relationship 
(Inheritance)  

XML element parent within ClassType element.  

Relationship 
(Association) 

XML element association along with the declaration of a complex type AssociationType.  

Relationship 
(Aggregation, 
Composition) 

XML elements aggregation or composition as applicable, and declaration of a matching 
type RelationshipType.  
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<xs:complexType name="AspectType"> 
   <xs:sequence> 
      <xs:element name="Global"> 
 <xs:complexType><xs:sequence> 
        <xs:element name="ProjectName" type="xs:string"/> 
        <xs:element name="AspectName" type="xs:string"/> 
        <xs:element name="DependsOn" minOccurs="0" 
maxOccurs="unbounded"><xs:complexType><xs:sequence> 
                       <xs:element name="DependsOnAspect" type="xs:string" maxOccurs="unbounded"/></xs:sequence> 
                   </xs:complexType></xs:element> 
       <xs:element name="MandatoryInstParam" minOccurs="0" maxOccurs="unbounded"> 
       <xs:complexType><xs:attribute name="MIPType"><xs:simpleType><xs:restriction base="xs:string"> 
            <xs:enumeration value="class"/><xs:enumeration value="method"/><xs:enumeration value="state"/> 
                 ….. 
 <xs:element name="Instantiations" minOccurs="0"> 
      <!-- ClassInst and StateInst are defined as elements within Instantiations here -->  
 <xs:element name="StructuralView"> 
      <xs:complexType><xs:sequence> 
           <xs:element name="ClassType" type="ClassType" maxOccurs="unbounded"/> 
           <xs:element name="InterfaceType" type="InterfaceType" minOccurs="0" maxOccurs="unbounded"/> 
        ….. 
 <!-- a base structural type StructType is defined here… -->  
     <xs:complexContent> 
          <xs:extension base="StructType"><xs:sequence> 
               <xs:element name="constructor" type="Constructor" minOccurs="0" maxOccurs="unbounded"/> 
               <xs:element name="data"><xs:complexType><xs:sequence> 
                    <xs:element name="field" maxOccurs="unbounded"><xs:complexType><xs:sequence> 
                    <xs:element name="visibility"><xs:simpleType><xs:restriction base="xs:string"> 
                          <xs:enumeration value="public"/><xs:enumeration value="protected"/><xs:enumeration value="private"/> 
 …           
      
<xs:element name="fieldName" type="xs:string"/> 
     <xs:element name="fieldType" type="xs:string"/> 
     <xs:element name="initVal" type="xs:string"/></xs:sequence> 
 <xs:attribute name="get" type="xs:boolean"/><xs:attribute name="set" type="xs:boolean"/> 
 …  
 <!-- increment, decrement, add, remove, count attributes are defined in a similar way… --> 
 …. 
 <!-- different types of relationships --> 
 <xs:element name="association" type="AssociationType" minOccurs="0" maxOccurs="unbounded"/> 
 <xs:element name="aggregation" type="RelationshipType" minOccurs="0" maxOccurs="unbounded"/> 
 <xs:element name="composition" type="RelationshipType" minOccurs="0" maxOccurs="unbounded"/> 
 …. 
<!-- any number of methods can exist here now… --> 
<xs:complexType name="FunctionType"> 
    <xs:sequence> 
        <xs:element name="funcID" type="xs:ID" minOccurs="0"/> 
        <xs:element name="funcName" type="xs:string"/> 
        <xs:element name="param" minOccurs="0" maxOccurs="unbounded"> 
        <xs:complexType> <xs:attribute name="paramType"/></xs:complexType></xs:element> 
        <xs:element name="isMIP" type="xs:boolean"/> 
….. 
<xs:complexType name="Method"><xs:complexContent> 
       <xs:extension base="FunctionType"><xs:sequence> 
 <xs:element name="stateChartID" type="xs:string" minOccurs="0"></xs:element> 
 <xs:element name="returnType" minOccurs="0"><xs:complexType> 
      <xs:attribute name="isSingular"/> 

 

Figure 1: Excerpt of XML schema representation of a RAM aspect  

4.1. Core implementation 
The core implementation is primarily related 

to managing the overall structure of the code 
(e.g., adding it to an appropriate file structure) 
and generating code for the global properties of 
an aspect. The activities in this part typically 
include creation of source files, creation of 

packages and subpackages, designation of class 
and interface types to their corresponding source 
files, expression of the inheritance (extends) 
relationships and instantiations. A summary of 
the various elements used within the algorithm in 
Figure 2 (mainly from line 1 to 11), which are 
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involved in the core implementation, is provided 
in the following.  

a) xGlobal: Set of all elements under 
<Global> element in <Aspect> 

b) xStructUnit: Refers to the 
<StructUnit> element under xGlobal. 
We use this element to directly obtain the 
names of classes and interfaces in the 
structural view to generate source code files. 

c) sFile: Source code file with name 
obtained from xStructUnit and which 
has an extension .java. 

d) xClassType: Refers to the 
<ClassType> element within 
xStructView. 

e) structView: Set of all elements under 
<StructuralView> element in 
<Aspect> 

f) structName: Refers to the name of 
interface or class given in the 
<structName> element of 
xClassType.  

g) xPackageDetails: Refers to 
<ProjectName> and <AspectName> 
elements in <Global> 

h) sPackageDetails: Refers to details of 
enclosing package represented in source 
code. sPackageDetails is always 
generated by appending the value of 
<AspectName> to the value of 
<ProjectName>. 

i) sClass: The interface that is declared at 
the highest level in the source file 
corresponding to each class that exists in the 
structural view of an aspect. This interface 
serves as a marker interface, and the fields as 
well as methods are declared into this 
interface using inter-type declaration 
mechanism of AspectJ. 

j) sClassAspect: Refers to the aspect that 
is declared at the highest level in the source 
file corresponding to each class that exists in 
the structural view of an aspect. The name of 
this aspect is determined by the value of 
xStructName and appending the word 
Aspect to it. This aspect accompanies the 
marker interface and is primarily used to add 
data and functionality to the interface. 

k) xParent: Refers to <ParentElement> 
within xClassType. 

l) declareExtParents: This refers to the 
code intended to declare an inheritance 
relationship between two entities (either 
classes or interfaces) of the structural model. 
First entity after the 
declareExtParents is considered as 
the child of the second entity. Here, it has to 
be ensured that declareExtParents is 
always used between two homogeneous 
entities, i.e., classes and interfaces cannot be 
mixed in a single statement. Actual 
implementation is carried out by introducing 
a declare parents statement of 
AspectJ.     

m) xRealizes: Refers to <realizes> 
element within xClassType. 

n) declareIntParents: This refers to the 
code intended to declare that a class 
implements an interface. The 
implementing class precedes the 
implemented interface in the statement.  

o) xInterfaceType: Refers to the 
<InterfaceType> element within 
xStructView. 

p) sInterface: The interface that is 
declared at the highest level in the source file 
corresponding to each interface existing in 
the structural view of an aspect. This is 
implemented as a standard interface, rather 
than a marker one, and includes all the 
method signatures provided in the aspect’s 
design.  

4.2. Classes and interfaces implementation 
Our approach provides implementation for all 

the classes and interfaces given in the aspect 
design. Part of this implementation has been 
covered in the previous section, wherein we 
designated distinct files to each entity, introduced 
packages, and declared hierarchy. So far as the 
representation of a class and interface at code 
level are concerned, a class is implemented by 
using a combination of an interface and an 
associated aspect, which introduces fields and 
methods into the interface with the help of inter-
type declaration mechanism of AspectJ (see lines 
6-17 in Figure 2). An interface, on the other hand, 
is implemented using a standard Java interface 
(see lines 18-24 in Figure 2). In order to take the 
implementation further, we need to implement 
fields, constructors, methods, relationships, and 
instantiations/bindings. In the following, a section 
has been dedicated to implementation of each of 
these elements. 
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4.3. Fields implementation 
In this section, we describe different elements 

of algorithm in Figure 2 (see lines 12-13), which 
are related to implementation of our approach 
with regards to fields given in classes of an 
aspect.  

a) xField: Refers to <field> element, 
which further defines sub-elements to hold 
all details needed to declare a field for a 
class. 

b) xData: Refers to the <data> element 
within the xClassType. This element 
exists only once in each class and hosts all 
the fields for this xClassType. 

c) sField: Refers to a field declared in the 
source code of the class by means of inter-
type declaration mechanism of the AspectJ 
language. Field in source field is declared by 
generating different pieces from values of 
four sub-elements of xField and joining 
them using space character into one 
statement, followed by a semicolon. This is 
described in the following.  

Visibility: It is determined by the value of 
optional element <visibility>. If no 
value is provided for this element, we 
assume it to be private. This gives us the 
first piece to be used in the field declaration.  

Field type: It refers to the data type of the 
field to be declared and is determined by the 
<fieldType> element. Field type is 
appended after visibility.  

Field name: It is determined by the value of 
<fieldName> element. This name is 
appended after the field type. It is to be noted 
here that, since we are using inter-type 
declaration here, the field name is 
constructed by combining the name of the 
interface into which this field is to be 
introduced (i.e. xStructName) and the 
field name. Therefore, for example, if the 
field name is firstField and it is be 
introduced into an interface named First, 
the final field name will be 
First.firstField.  

 

foreach xStructUnit  xGlobal   

generate sFile of name xStructUnit  

foreach xClassType  structView 
within sFile of name xClassType.structName 

transform xPackageDetails into sPackageDetails 
generate sClass, sClassAspect from name structName 
within sClassAspect 

if xParent ≠ NULL 
add declareExtParents between sClass, xParent 

if xRealizes ≠ NULL 
add declareIntParents between sClass, xParent 

foreach xField xData 
transform xField into sField 

foreach xConstructor  xOperations  
transform xConstructor into sConstructor 

foreach xMethod  xOperations 
   transform xMethod into sMethod 

foreach xInterfaceType  structView 
within sFile of name xInterfaceType.structName 

transform xPackageDetails into sPackageDetails 
generate sInterface from name structName 
within sInterface 

foreach xFunction  xOperations 
   transform xFunction into sFunction 

foreach xClassInst  xInstantiations 
within sFile of name xClassType.structName  

declareExtParents between xMappedTo, xMappedFrom 

Figure 2: Skeleton Code Generation Algorithm
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Initial value: It refers to an optional initial 
value to be set for this field and is 
determined by the value of <initVal> 
element. If provided, an assignment operator 
is appended to the field name followed by 
the initial value to be assigned. 

4.4. Constructors implementation  
This section describes different elements of 

algorithm in Figure 2 (see lines 14-15), which are 
related to implementation of our approach with 
regards to constructors given in classes of an 
aspect. Since, in our approach, classes are not 
implemented as plain Java classes, but rather as 
interfaces along with aspects (because we need to 
allow their merging with other classes as a result 
of instantiation and binding directives), 
constructors implementation needs a special 
strategy. They cannot be implemented in standard 
way used for classes, as we are dealing with 
interfaces here, and an interface is not allowed to 
have constructors in Java. Therefore, to allow 
instantiation of our class (which is implemented 
as a public interface here), we define a private 
static class within the aspect corresponding to 
implementation of our class. Next, we declare a 
getInstance() method which returns 
instances of the classes. This is further explained 
in the following.    

Further, it has to be noted here that we follow 
the Java language principles in dealing with 
standard constructors. Thus, if an explicit 
constructor has been provided in the textual 
implementation of a class, we automatically 
generate the default constructor also.  

a) xConstructor: Refers to a <function 
xsi:type=”constructor”> element 
within xOperations, which is used to 
declare constructors of the class. 

b) sConstructor: Refers to a constructor 
defined in the source file of a class within the 
aspect corresponding to the class. As we 
stated above, a constructor is implemented 
by first generating a private static 
class within the aspect corresponding to the 
actual class in aspect model. The name of 
this class is obtained by appending the word 
Class to the class name. Within this 
private class, a method with name 
getInstance is declared for each 
constructor declared in the textual 
implementation of class in RAM aspect. 
Different getInstance methods may 
differ in the number and type of input 
parameters in the way they have been 
specified in the model. Further details on 

generating return type, handling of 
parameters, adding a return statement are 
provided in the following section wherein we 
discuss the same for methods.         

4.5. Methods implementation  
This section describes different elements of 

algorithm in Figure 2 (see lines 16-17 and 23-24), 
which are related to implementation of our 
approach with regards to methods given in 
classes and interfaces within an aspect. 

a) xOperations: Refers to the 
<operations> element within the 
xClassType. This element exists only 
once in a class and contains the whole set of 
methods and constructors of the class. 

b) sMethod: It refers to a method declared in 
the source file of interface by using the inter-
type declaration. This method is constructed 
with the help of various pieces of 
information from the textual representation, 
and joining them into one unit using space 
characters. This is described in the following.  

Visibility: It is determined by the value of 
optional element <visibility>. If no 
value is provided for this element, we 
assume it to be public. This gives us the 
first piece to be used in the method 
declaration.  

Return type: It refers to the return type of the 
method to be declared and is determined by 
the optional <returnType> element. If no 
value is provided, we assume the return type 
to be void. The value of return type is 
appended to visibility. In case a return type is 
provided (and is not void), we have to add 
a corresponding return statement at the end 
of the method. The handling of “return 
statement” is described in the following.  

Method name: It is determined by the value 
of <funcName> element. The method 
name is appended after the return type. It is 
to be noted here that, since we are using 
inter-type declaration here, the method name 
is constructed by combining the name of the 
interface into which this method is to be 
introduced (i.e. xStructName) and the 
method name. Therefore, for example, if the 
method name is myMethod and it is be 
introduced into an interface named First, 
the final method name will be 
First.myMethod, followed by a pair of 
parenthesis. The method name is appended 
to return type.  
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Parameters: Parameters are determined by 
any number of occurrences of the <param> 
element. They are constructed by combining 
the parameter type, which is determined by 
the paramType attribute and the parameter 
name. If more than one parameters are 
found, they are separated by commas. Final 
string of parameters is added between the 
pair of parentheses added at the end of 
method name described above. Following 
the parameters, a pair of method delimiters, 
i.e., braces are added.  

Return statement: In case a method’s return 
type is declared to be non-void, a return 
statement is added inside the body of the 
method immediately before the end brace. In 
order to return a value, first a variable of the 
return type is declared inside the method 
body. The actual statement is constructed by 
starting with the keyword “return”, 
followed by the name of declared variable, 
further followed by a semicolon. 

c) xFunction: Refers to the <function> 
sub-element of <operations> element 
within the xInterfaceType. This 
element is repeated for each method defined 
in the interface.  

d) sFunction: Here, we try to distinguish 
method declarations of interfaces from those 
of classes that contain an implementation. 
sFunction refers to the source code 
generated for methods that exist in 
interfaces. sFunction is different from 
sMethod described above in that: (1) it is 
declared within an interface directly, rather 
than within the aspect corresponding to a 
marker interfaces, (2) it does not include any 
implementation, and thus it only specifies a 
return type, name, and parameters.    

4.6. Relationships implementation 
In this section, our approach with regards to 

implementation of relationships among different 
entities in the structural view of a RAM aspect is 
described. At a higher level, in structural view of 
a model, relationships may correspond to class 
level and/or instance level. In our approach, class 
level relationships, i.e., inheritance and 
realization are declared within the body of 
StructType and thus implicitly belong to both 
ClassType and InterfaceType 
declarations. Specifically, as given in section 4.1, 
inheritance and realization relationships are 
present in the textual model in the form of 
xParent and xRealizes. Their 
implementation is carried out by means of 

introducing a declare parents statement 
within the file corresponding to target class or 
interface, see declareExtParents and 
declareIntParents in section 4.1. 

As far as instance-level relationships, i.e., 
association, aggregation and composition are 
concerned, they are implemented by introducing 
statements for instantiating objects of the 
participating entities on the target side. It is no 
more than declaration of fields of the appropriate 
type on the target side of relationship. The 
process for declaring fields of a certain type has 
already been discussed in detail in section 4.3.         

4.7. Instantiations/ bindings implementation  
The implementation of instantiation and 

binding directives is intended to add code that 
would allow composition of classes with other 
classes of the model at execution time. In our 
approach, both types of these directives are 
implemented by declaring an inheritance 
relationship using declare parents statement. 
Specifically, an instantiation is implemented by 
having the instantiating entity extend the 
instantiated entity. Similarly, in case of binding, 
an extends relationship is defined to make the 
mapped-to entity inherit from the mapped-from 
entity. Since the definition of inheritance 
relationship has been discussed in detail in 
section 4.1 and 4.6, we have not reproduced it 
here.        

A summary of the various elements used 
within the algorithm in Figure 2 (line 25 to 27), 
which are involved in the implementation of 
instantiations and bindings, is provided in the 
following. 

a) xInstantiations: Refers to the 
<Instantiations> element within 
xGlobal. This element appears only once 
in the schema representation of an aspect and 
hosts all the class and state instantiations.  

b) xClassInst: Refers to the 
<ClassInst> sub-element of 
xInstantiations. This element is 
repeated for each class instantiation in the 
model, and it defines instantiations in the 
form of a pair of from and to elements.       

c) xMappedTo: Refers to the 
<CMappedFrom> element within 
xClassInst. This element contains the 
name of class from which a mapping has 
been done.  

d) xMappedFrom: Refers to the 
<CMappedTo> element within 
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xClassInst. This element contains the 
name of class onto which a mapping has 
been defined.     

5. RELATED WORK 
 

As far as its objective is concerned, the work 
presented in this paper is closely related to other 
aspect-oriented code generation work such as the 
approaches of Bennet et al. [33], Hecht et al. [35], 
and Groher and Schulze [36]. Also, this work is 
related, though widely, to the previous work on 
Reusable Aspect Models by Kramer and Kienzle 
[37]. In this section, we provide a description of 
this related work.     

Bennet et al. [33] have proposed an approach 
for aspect-oriented skeleton code generation to 
complement Formal Design Analysis Framework 
(FDAF) [38]. FDAF is an aspect-oriented 
architectural design framework that supports the 
analysis and design of non-functional 
requirements. It works at the architectural design 
layer. The code generation approach uses a 
graph-based transformation mechanism to 
transform aspect models into code. In contrast, 
our work is based on RAM models, which work 
at the detailed design layer and are capable to 
model any reusable functionality (not only non-
functional requirements) as an aspect. Owing to 
this, and the point that it is based on a mature 
aspect-oriented modeling notation, our approach 
may lead to an integration of aspect orientation 
and model-driven engineering [39-41].  

  Hecht et al. [35] generate code from 
Theme/UML [42, 43] models using a template-
based approach that manipulates the model using 
XSLT transformations. Template-based 
approaches put several constraints on the modeler 
since they need a good deal of implementation 
detail at modeling level. Unlike our work, they 
have not provided a standard text-based 
representation of the model that can possibly be 
used by any transformation mechanism and be 
integrated into existing code generation tools. 
Moreover, the use of XSLT in this scenario, 
instead of customized XML-to-code mechanisms 
has been reported to have certain limitations, see 
[30]. Groher and Schulze [36] have also used the 
mapping algorithm of Theme/UML but to 
directly manipulate the model in order to obtain 
code. They have not provided much detail on 
their technique of handling transformation from 
model to code. The direct manipulation technique 
may eventually become extremely difficult to 
handle when it comes to integration of behavioral 
models. Moreover, they opted against the use of 

XMI, which could allow a standard textual 
representation of the graphical model. 

Kramer and Kienzle [37] have proposed an 
approach for mapping RAM models to aspect-
oriented code. However, their work is limited to 
the conceptual mapping only, they have not 
provided any details as regards the code 
generation from visual models of RAM.   

6. CONCLUSION AND FUTURE WORK  
 
Model-driven code generation can support the 

software development by reducing the coding 
effort, and consequently the delivery time. 
Several existing studies in the literature focus on 
obtaining executable object-oriented code from 
design models. However, studies on aspect-
oriented software development associate many 
benefits of the approach with directly 
transforming aspect models into code of aspect-
oriented programming languages. In this context, 
the current paper proposes an approach to 
generate skeleton code from aspect models 
developed using the Reusable Aspect Models 
(RAM) approach.  

As first step towards code generation, we 
have provided a formal, text-based representation 
of RAM models. The code generation approach 
takes this text-based representation as input and 
generates the structural code including the 
implementation of packages, classes, interfaces, 
constructors, fields, and method stubs. 

We believe that the text-based representation 
of RAM models using XML schema presented in 
this paper can be used, the way it is, to extend 
this work to incorporate code generation from 
behavioral diagrams such as state and sequence 
diagrams, which are both supported by RAM 
models. This can essentially lead to fully 
executable behavioral code generation in aspect-
oriented paradigm.   
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