
Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

380

USE OF ARTIFICIAL INTELLIGENCE IN AUTOMATION OF
SEQUENTIAL STEPS OF SOFTWARE DEVELOPMENT /

PRODUCTION
1SENTHIL JAYAVEL, 2S ARUMUGAM, 3BRIJENDRA SINGH, 4PRASHANT PANDEY, 5AKASH

GIRI, 6AKSHAY SHARMA

1, 4, 5,6 Vellore Institute of Technology, School of Computer Science and Engineering Vellore-63014,
India

2 Nandha College of Technology, Erode – 638052, India.
3 Vellore Institute of Technology, School of Information Technology and Engineering, Vellore-63014,

India
E-mail: 1senthil.j.vit@gmail.com, 2senthil.j.vit@gmail.com, 3bobbybisht333@gmail.com,

4prashantsp95@gmail.com,5 akashgiri@gmail.com

ABSTRACT

Software development is a sequential process where the allied steps in the development lifecycle involve
planning and modularization, requirement engineering, analysis of product viability, profits estimation,
strategic decision making, maintenance strategies etc. Often, most of these phases are pretty complex and
thereby, extremely difficult to handle solely through human intervention, mainly due to the size of the
project, the number of factors to be taken into consideration at each modular level and the rapidly changing
external environment.

In this paper we aim to provide an intuition on using Artificial Intelligence (AI) in the different phases of
the software development lifecycle. Our paper focuses on a specific software development example for
clarity and precision, but most of the techniques are highly general and scalable to any software
development process.

Keywords: Software Engineering; Artificial Intelligence; Machine Learning

1. INTRODUCTION

As a firm goes through a software development
process it faces many problems. The problems at
forefront include the following [1]:

1. To group the work and subsequently the
work force into coherent clusters to achieve
work force modularity.

2. To measure the market value of the product
based upon its features and quality.

3. To select the appropriate tools for
development based on our functional and
non-functional requirements.

4. To ensure proper maintenance of the
product.

Often, most of these problems are either, not
addressed properly or, addressed manually
through human intervention which makes the

product vulnerable to flaws thus leading to
catastrophic consequences.

Though the above list is certainly not exhaustive,
it identifies the major issues in the development
process which are to be addressed. This paper
identifies the above problem on a selected model
and proposes robust learning algorithms at each
level to deal with them. The advantage that
learning algorithms have over manual decision
making is that, not only are they fast and robust,
they also adapt with the changing environment.
Besides, if the size of the project is huge, manual
evaluation can be almost unfeasible and
sometimes impossible, making AI the only
viable option.

http://www.jatit.org/
mailto:senthil.j.vit@gmail.com
mailto:2senthil.j.vit@gmail.com
mailto:4prashantsp95@gmail.com,5

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

381

2. ARTIFICIAL INTELLIGENCE IN
SEQUENTIAL STEPS OF SOFTWARE
DEVELOPMENT

In this section we describe AI algorithms to
address to above stated problems. We begin the
discussion of AI techniques [4], [5], [8] for
work-force modularization, followed by cost
prediction, requirement engineering and finally
maintenance. We have included small subsets of
data used in our experiments as tables in each
section. The figures shown in each section are
the result of applying the respective algorithms
on our dataset.

2.1 Modularizing Design and Work-Force

The early phase of software lifecycle involves
modularization i.e. dividing the project into
smaller modules. Naturally, this division would
imply a similar division of employee work
force.Both these tasks can be thought of as an
unsupervised machine learning algorithm which
can be accomplished by a clustering algorithm.

Consider a project scenario where we have the
identified the different entities of our software
and we have defined the interaction between
them. A feasible way to modularize the project
could be done by observing the interaction
between these entities. If there exists a strong
interaction between some entities, they could be
put together in one single module and likewise
for other entities. This division would ensure that
components which are highly interrelated are
developed as a single module quite independent
from those which have very less interaction with
others. We can apply a simple K-means
clustering or a single linked clustering algorithm
to bring about this modularization where the
similarity measure between entities will be
proportional to the degree of interaction between

them.

Next, we come to work force modularization.
Consider a large firm where different members
of the firm have different area(s) of expertise.
Let us assume that the firm maintains the record
of their employee’s field of expertise in the form
of a 2D matrix of dimension m x n where m
represents the total number of employees and n
represents the total possible field of expertise.
Furthermore, each entry in the matrix is a
number between 0 and 1.1 represents that the
employee is a complete expert in the given field
and 0 represents that the employee has no
knowledge in the given field. As such, each
employee’s skills will be an n dimensional
vector. Having this data with us, a logical step
would be to define a similarity measure amongst
the employees and use it to form coherent
clusters based on their field of expertise. For the
purpose of simplicity let’s assume that this
similarity measure is inversely proportional to
the element wise difference between two such
vectors. Let’s assume it as a measure of distance
between the two employees. Concretely,
consider that X1, X2, X3, X4 be the allied area
of expertise. Say Employee1(E1) specializes in
X1 and X3 while Employee2(E2) specializes in
X2 and X4.Say, a third employee(E3) specializes
again in X2 and X4 and a fourth employee(E4)
in X1 and X3.Below are their feature vectors:

When we take the square element wise
difference say, for E1 and E4 we get (0.95-0.7)2

Table 2:Sample Dataset Of Employee’s Field Of Expertise
C Photos

hop
PH
P

Databa
se

Design

C++ CSS H
T
M
L

X
M
L

J
A
V
A

Illus
trat
or

Java
Scri
pt

X
S
L
T

Pa
sca

l

F
la
s
h

A
ja
x

Data
Analy

sis

8 1 2 0 7 1 0 1 9 1 0 0 10 0 0 2
1 9 2 0 3 10 0 1 3 10 1 1 0 8 0 0

0 1 8 0 0 0 9 1 1 1 10 3 1 0 8 1
1 3 2 10 1 0 2 9 0 2 0 9 0 0 1 8

Table 1: Feature Vectors of Employees
 X1 X2 X3 X4

E1 0.95 0.3 9.7 1.2
E2 0.7 9.3 1.7 8.9
E3 0.5 8.9 0.7 9.2
E4 0.9 0.3 9.9 0.2

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

382

+ (0.3-9.3)2 + (9.7-1.7)2 + (1.2-8.9)2. We can
clearly observe that E1 and E4 are very close
together but pretty far from E2 and E3. Likewise,
E2 and E3 are very close together but are very
far away from E1 and E4. Now, when we apply a
K-means clustering algorithm to the above, E1
and E4 will be grouped together and so would
E2 and E3. This is exactly what we wanted. The
algorithm groups workers with similar skills
together and thereby helps to break the work
force into coherent clusters. Notice that the
similarity measure that we have defined here is
very elementary, so as to maintain simplicity, a
better measure would involve use of a more
complex Gaussian similarity measure as in the
case of Support Vector Machines.

As a concrete case, let’s consider our example of
a firm which is building a website for Hospital
management system. We will use the same
example in the next stages as well. We apply the
above model to divide the work force in this
firm. We have every employee’s detail available
with us. Say, our goal is to divide the work force
into coherent groups of Designers, Programmers,
Database Developers and Web Developers. Our
features vector is an n dimensional vector
consisting of all allied field of expertize viz. C ,
Photoshop, PHP, MySQL, Python, CSS,
HTML5, XML, Java, Illustrator, JavaScript,
XSLT, Pascal, Flash, jQuery, Data Analyst.
There are m such vectors where m in our case
represents our employee strength for the
particular project. As mentioned above, each
entry in this m x n matrix is a number between 0
and 1. Now, we run the K-means clustering
algorithm on our dataset and we set the desired
number of clusters (k) to 4. The results are
shown in Figure 1. The algorithm automatically
separates the Designers (experts in Photoshop,
CSS, Illustratorand Flash), Core Programmers
(experts in C, C++, Pythonand Java), Web
programmers (experts in PHP, HTML5,
JavaScript and jQuery) and Database Developers
(experts in MySQL, XML, XSLT, Data
Analyst). Table 2 shows a sample dataset for
such a system. Figure 1 shows the possible effect
of running a clustering algorithm on such a data
set.

Figure 1: Effect Of Clustering Algorithm

2.1.1 Cost prediction

In this section we will deal with AI algorithms in
order to predict the cost of product [3], [6]. The
cost incurred in the development of a software
product generally depends on many factors.
Suppose we are building a website for an online
Hospital management system. The cost of the
system will depend on factors like number of
users (a measure of traffic to the website), the
total memory storage required for user data, the
number of transactions allowed per second, etc.
We call them features in this context. Certainly,
there will be many such online sites on the web.

Suppose we have training set consisting of each
of such features (n features) for m different
websites. Also, we have the known output (in
our case the cost incurred) for each of them. Our
problem now transcends to a supervised learning
problem. A smart way to predict the cost of the
product would be to run a regression algorithm
upon the data sets such a linear regression or
polynomial regression and predict the estimated
price of our product based on the training data.

Taking the example of the Hospital management
website, let’s assume that our feature vector
consists of an m x n matrix where n is the total
number of features. In our case n comprises the
number of users of the product, the total memory
storage required for user data, the number of
transactions allowed per second, the domain
name category and total access to the website per
month. Having these feature vectors and m
training examples which are the records of such
features from the existing models each of which
has a known cost Yi, we apply a regression
algorithm over the training data and using
gradient descent we converge to a global minima
for the mean square error function, thereby

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

383

training our parameter vector THETA (Θ). Table
3 below depicts the sample of data set used for
the purpose of cost prediction. Having obtained
Θ we now feed our feature vector to the
algorithm which then gives us the cost for our
product as shown in figure 3. Here the feature
vector is compressed to a single dimension along
x axis (with loss of some information) in order to
facilitate plotting. Figure 4 depicts the plot of the
cost function (J) against the number of iterations
via gradient descent. As evident the cost function
reduces with each iteration and finally converges
to global minima.

Table 3: Sample Dataset For Cost Prediction
User

s
Stora

ge
Transac

tions
per

second

Domain
Name

Access/m
onth

Cost

100 500 10 10 100000 50000
0

25 125 3 4 30000 12500
0

300 1500 30 10 300000 14000
00

150 1000 20 8 150000 95000
0

50 250 6 8 30000 30000
0

Figure 3: Result Of Linear Regression

Figure 4: Result Of Gradient Descent On Cost
Function After Each Iteration

Note that the features used in our training set are
just for understanding. In reality, the cost of such
software will depend on many other factors.

2.1.1.1 Requirement engineering

Requirement Engineering involves elicitation of
functional and non-functional requirements for
the particular software [2], [7]. Once we have
finalized the requirements, the next step is to
select appropriate tools to fulfill these
requirements. This is usually the tricky phase
because very often we have a variety of similar
tools to choose from. When the size of the
software is large, such a selection becomes
increasingly difficult. A good way to go about
doing this is to model the product based on its
similarity to other similar successful products
whose requirements specifics are already
available to us. For instance, consider again the
case of building an online Hospital management
system. Let’s say we are stuck with a choice
amongst among many server side scripting
languages like JSP (Java Server Pages), ASP
(Asynchronous Server Page), PHP (PHP:
Hypertext preprocessor) and PERL. Similarly,
for database system we have a choice between
Oracle, DB2C, MYSQL and SQL server. Also,
for the purpose of UI design we have a choice
between Bootstrap, CSS3 and Foundation JS.
Similarly, for the purpose of Backend
manipulation we have a choice between Python,
Ruby on Rails and Java. One way to approach
this problem is to match our requirements with
the successful models based on its similarity to

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

384

them. The one which resembles our requirement
most closely i.e. the one with the closest
similarity measure then can be chosen as our
sibling model. Since we already know the tools
used by the sibling model we can select those
tools for our model as well.

As a concrete example, lets us assume that our
training set comprises of following features:
Security, Data Size, transactions per second and
User Interface. After requirement analysis, we
have arrived at some values for these features for
our website. Given an upper cap on the price and
time duration to complete the project, each of
these feature has a value between0 and 1 i.e. say
for instance, if Security parameter has a value 1
it implies that system must use the best possible
security tool, a value around 0.5 implies that
security can be compromised in case of a
tradeoff with other features such as User
Interface Design or Datasize. We have the m x n
matrix again, where n represents the above
features and m is the number of examples (of the
successful websites) in our training set. Suppose
we define our requirement vector as

Requirement Vector:[0.9, 0.5, 0.7, 0.2, 0.6]

Table 4 below depicts the sample data set
structure used in our hospital management
example.

Table 4: Sample Dataset For Tool Selection
Security Data

Size
Transactions
per second

User
Interface

Model

0.7 0.9 0.7 1.0 1
0.5 0.3 0.6 0.7 2
0.8 0.5 0.7 0.2 3
0.4 0.2 0.9 0.8 4
0.1 0.9 0.1 0.3 5

Here, a high value for security quotient (0.9)
implies that we want our website to be highly
secure and a low value for UI quotient (0.2)
implies we are not very much concerned with the
User-Interface design. This is because for a
Hospital management system security is of
utmost importance as most of the data stored
contains important patient diagnostics details.
Also we may not be concerned on having a very
rich UI for such a system. Having figured out

such a vector during our Requirement
Engineering phase, we now measure Gaussian
similarity between our feature vector and all
other feature vectors in our training set. The
Gaussian similarity is defined as follows:

With m feature vectors each of dimension n, our
training data consists of x(1) to x(m) where x(i)is an
n dimensional feature vector. We define f1, f2, f3

and so on till fm, as a measure of similarity
between a feature x (i) and x(j) . Concretely, we
define the similarity function as follows:

f1=similarity(𝑥(𝑖), 𝑥(1)) =𝑒−(|� 𝑥−𝑥(1)�|/𝜎2)

f2=similarity(𝑥(𝑖), 𝑥(2)) =𝑒−(|� 𝑥−𝑥(2)�|/𝜎2)

f3=similarity(𝑥(𝑖), 𝑥(𝑖))=𝑒−(|� 𝑥−𝑥(𝑖)�|/𝜎2)

fm=similarity(𝑥(𝑖), 𝑥(𝑚))=𝑒−(|� 𝑥−𝑥(𝑚)�|/𝜎2)

And so on...

Here |�𝑥(𝑖) − 𝑥(𝑗)�| is the Euclidian distance
between 𝑥(𝑖)and 𝑥(𝑗) and 𝜎 is the parameter of
the Gaussian distribution which is a constant. It
is easy to observe from the similarity formula
that when 𝑥(𝑖) is close to 𝑥(𝑗) the similarity
function outputs 1 and when 𝑥(𝑖) is far away
from𝑥(𝑗)it outputs 0.Hence it is a discrete
measure of similarity between 𝑥(𝑖) and𝑥(𝑗).

Note that this Gaussian similarity measure is
same as that used to define the features in
Support Vector Machines (SVMs) [4]. We now,
calculate the similarity measure of our
requirement vector from all the examples in the
training data. The one, closest to our requirement
vector is called the sibling vector. We then,
choose our tools based on the tools used by the
sibling vector. On comparing our requirement
vector with our dataset we found our dataset
closely matches (i.e. the Gaussian similarity
measure tends towards 0) the following vector:

Requirement Vector: [0.9, 0.5, 0.6, 0.2, 0.7]

The above requirement vector in the training set
corresponds to an online transaction based
website. This close similarity can be attributed to
the fact that both of these website have high
security quotient and low UI quotient. Since, the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

385

tools and software used in the development of
this site is already present in our database we can
easily model our new software based on them.
2.1.1.1.1 Maintenance
Towards the tail of the software development
lifecycle we have the maintenance phase.
Though the maintenance phase is very specific to
the software, in most cases we can use machine
learning algorithms to effectively address this
phase as well. Let’s again take up the same
example of building a website for Hospital
management system. Once the product is
complete and put on the server, our job is not
done. A running website is susceptible to many
threats. Some of them include denial of service
attacks, virus and Trojan attack, an attempt to
steal important Hospital data etc. One way to
ensure safety and smooth functioning of the
website is via anomaly detection i.e. we need to
monitor our server in order to detect any
fraudulent or anomalous behavior.

We can record activities like memory usage,
network traffic, number of disk accesses per
second, the CPU load on the server, number of
mouse clicks per second for each session
variable etc. Say, we have a training set that
consists of n such features over m examples. Out
of those m cases most are records of normal
activity but some are records of fraudulent
activity. Say, we represent a normal user activity
by assigning an output value 0 (y(i)=0) and an
anomalous one by output 1(y(i)=1). We can now
use an anomaly detection algorithm as follows.
Having such a data set the next step would be to
fit a Gaussian probability distribution over our
training examples. Instances of perfectly normal
activity will have high probability in such a
distribution while anomalous activities will have
very low probability. A natural step then would
be to identify those very low probability regions
on the bell-shaped curve.

In our example, say we our monitoring our
server for abnormal activities. Suppose someone
launches a Denial of Service (DOS) attack on
our website. For the sake of simplicity, let’s
assume that our feature vector consists of only
two features CPU load on the server and memory
usage or disk access and m here are the users
accessing our website each uniquely identified
by their IP address. A DOS attack would imply

that even though the memory access is low the
CPU load would be very high because the
attacker would simply bombard PING requests
on our server without doing any actual activity
on our website. Table 5 represents a sample of
our training set. Figure 5 represents the CPU
load versus memory used plot. Figure 6 shows
instances of such activity as points outside the
Gaussian curves. Clearly these IPs will have a
very low probability distribution and will lie as
an outlier on the plot as shown in the figure 7
marked with a cross symbol. An obvious step
then would be to either block such IP addresses
or ask the user to establish their identity for
further access.

Table 5: Sample Dataset For Anomaly Detection.

CPU Load on system (%) Memory Usage of system
(%)

20 39
7 8

27 35
14 17
85 2

3. FUTURE WORK AND SCOPE

As mentioned above, the techniques discussed
here are, by no means, exhaustive. There are
many other phases in the software development
life cycle where AI can be used. Some of them
are described next at an abstract level for the
sake of completeness.

Consider the problem of software testing, which
involves generating test cases to check the
functioning of each module. Machine learning
can be used to develop those test cases by
generating test sets for our module based on the
history of similar modules. Artificial neural
networks (ANN) are most helpful in this regard.
During the requirement gathering phase we
obtain an informal description of functional and
non-functional requirements which then have to
translate into formal specifications. It turns out
that Natural Language Processing (NLP) can be
used to bring about this conversion. AI can also
be used during the design phase for prototyping
from a training set of similar models.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

386

Figure 5: CPU Load Versus Memory Plot

Figure 6: Gaussian Probability Distribution On The
Dataset

Figure 7: Identified Anomalies

4. LIMITATIONS

The paper only addresses a few out of the many
possible approaches to using AI in the field of
software engineering. The algorithms suggested
here are only to provide an intuition on how to
go about solving a problem in a particular state
of the development life cycle using machine
learning algorithms. They are by no means
exhaustive. Generally, the success of an AI
system depends heavily upon the kind of data
available with us and the way we go about
choosing our feature vector. Selection of features
is a broad topic and domain specific, which is
outside the scope of this paper. In case of
unsupervised learning algorithms such as
clustering, effectiveness also depends on the way
we define the similarity measure between our
feature vectors. The similarity measures defined
in our examples above are quite abstract and at a
very high level.

5. CONCLUSION

In this paper we provide solutions to different
problems in a software development life cycle
using Artificial Intelligence. Our aim here is to
provide a general feel of how AI can be
effectively applied in software engineering. As
such, we have taken a concrete example to
describe each technique discussed above and
applied learning algorithms to demonstrate their

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

387

functioning. Though these techniques are highly
generic and scalable to other software
development process, we have chosen a
particular scenario to ensure clarity and proper
understanding. An important point to note here is
that the performance of these techniques, just
like any other AI techniques is highly subjective
to the type of software, the quality and amount of
data available and the diligence with which we
choose our features.

REFERENCES

[1] Justin S. Di Stefano and Tim Menzies,Lane
machine learning for software engineering:
case studies in software reuse.

[2]Du Zhang, Applying machine learning
algorithms in software development.

[3]Mark Harman and Bryan F. Jones,Search-
based software engineering (2001).

[4]Ralferbrich, ThoreGraepel and Klaus
Obermayer, Support vector learning for
ordinal regression (2005).

[5] Rich Caurana and AlexandruNiculescu-Mizil,
Empirical comparison of supervised learning
algorithm (2006).

[6] Derek Partridge, Artificial intelligence and
software engineering (Glenlake Publishing
Company Ltd.).

[7]Jonathan Onowakpo Goddey Ebbah
Deploying Artificial Intelligence Techniques
In Software Engineering

[8]Engr.Farah Naaz RazaArtificial Intelligence
Techniques in Software Engineering (AITSE)

http://www.jatit.org/

