
Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

594

 TOWARD THE MATURITY OF SOFTWARE ENGINEERING:
UNIVERSAL, FORMAL, AND MATHEMATICAL

DEFINITION FOR VALUE AND OPERATION AS TWO
BASIC CONCEPTS OF COMPUTING

1BERNARIDHO I HUTABARAT, 2KETUT E PURNAMA, 3MOCHAMAD HARIADI

1Student, Department of Electrical Engineering, ITS, Surabaya
2Lecturer, Department of Electrical Engineering, ITS, Surabaya

 2Assoc. Prof., Department of Electrical Engineering, ITS, Surabaya
E-mail: 1brih@its.ac.id, 2ketut@ee.its.ac.id , 3mochar@ee.its.ac.id

ABSTRACT

The presence of informal and redundant definitions of basic concepts of computing / programming
prohibits the advances of software engineering. This problem is not addressed by all literatures of software
engineering about formal methods. A paper by the present authors have provided partial solution by
establishing Type and Object as two (out of four) disjoint basic concepts of computing and programming.
This paper proposes the remaining two of the four basic concepts.

With the substitution test, this paper shows that informality and redundancy of concepts in the widely
referenced publications have led to another problem: the circularity of concept. Our proposed concepts have
the opposite properties: formal, unique, and non-circular. The definitions are independent toward
programming paradigms.

The solution requires the formal definition for expression and operand, a semi-formal definition for
statement; and the removal of synonyms like invoke, invocation, parameter and argument. Current standard
of software engineering has five synonyms for operation, two synonyms for value, and two synonyms for
operand. This paper proposes unique terms, proposes semi-formal and formal definitions for two basic
concepts: operation and value. It gives way to advancing the software engineering as a mature discipline.

Keywords: Basic Concept, Value, Operation, Expression, Statement

1. INTRODUCTION

 Physics provide engineers of diverse specialties
– chemical, electrical, mechanical – the seven
unique and formal base quantities/dimensions.
Those seven dimensions are length, mass, time,
temperature, electric current, substance, and light
intensity Engineering students in their first year
learn "Concepts Every Engineer should know" [1].

Unfortunately such is not the case for software
engineering. The term instance in C# [2] and Java
[3] has different meaning from the term instance
created by Oracle DBMS [4] and Microsoft SQL
Server [5] – to cite just some examples. Oracle
DBMS defines instance as "The combination of the
background processes and memory buffers" ([4]
page I-13). Ref [6] as the glossary for software
engineering contains several redundant concepts
and defined informally. This paper uses ref [6] as
main source in proving the presence of problems.

 The organization of this paper is as follows.
Section 1 overviews the problem and basic
concepts of computing. Section 2 elaborates the
problems. Section 3 presents formal definition for
value and operation. Section 4 applies the
theory/hypothesis. Section 5 draws the conclusions.
Appendix (sec 6) provides detailed supporting
proofs.

2. STATE OF THE ART

Until the present day ref [6] is the only official
standard glossary for software engineering. It has
been 23 years old. The terminologies (shortened as
terms) in numerous research papers have not yet
been compiled in the form of [6]. It is thus fitting
to review the state of the art mainly from ref [6],
with some terms adopted from additional literature.
The subsections that follow present the state of the
art of the terms.

http://www.jatit.org/
mailto:brih@its.ac.id
mailto:ketut@ee.its.ac.id
mailto:mochar@ee.its.ac.id

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

595

2.1 Operator, Operation

Reference [6] defines operation as 1

1. In mathematics, the action specified by an
operator on one or more operands.

2. In programming, a defined action that can
be performed by a computer system.

3. The process of running a computer system
in its intended environment to perform its
intended functions.

The definition is problematic: it is based on yet

another term: action. Moreover, ref [6] does not
define action. Instead, it defines operator (written
in the 1st definition of operation) as the following:

1. A mathematical or logical symbol that
represents an action to be performed in an
operation.

Figure 1 shows the quality of a definition

through substitution test [7]. We replace the word
operator in the first definition of operation. The
result is a direct circular definition: the definition of
operation is based on the operation itself.

In mathematics, the action specified by a
mathematical symbol that represents an action to
be performed in an operation on one or more
operands.
Fig 1 The First Sentence Produced By Substitution Test

2.2 Instruction

Reference [6] directs the definition of instruction
to computer instruction. It defines computer
instruction as

A statement in a programming-language, specifying
an operation to be performed by computer and the
addresses or values of the associated operands.
Fig 2 The Definition Of Instruction From Ref [6]

The definition is problematic. An instruction is
not equal to a statement. Section 4 will elaborate
statement, expression, and operation-call.

Reference [6] uses MOVE as an example of
instruction. Yet reference [8] refers MOV in the
LOADREG: MOV EAX, SUBTOTAL 2 as op
code.

1 The quoted definitions do not italicize and underline the

concepts; the emphasis are from this paper to assist the readers.
2 Intel uses more complex term: mnemonic identifier of an op

code, subsec 1.3.2.1 of http://download.intel.com/products/
processor/manual/253665.pdf

The MOV (or MOVE) is referred to as
instruction as well as op code. The two terms are
redundant. Notice also that the definition contains
the word operation. It is another redundancy.

2.3 Action

The term action is used in HTML (HyperText
Markup Language), a very popular programming-
language. However, HTML standards [9-10] do not
define what action is. W3C school website [11],
however, provides a definition as written in fig 3.

The action attribute specifies where to send the
form-data when a form is submitted.
Fig 3 The definition of action [11]

The term action is also used in UML (Unified
Modeling Language), the most widely used
modeling language. Similar to HTML, the UML
standards [12-13] do not define what action is.

In absence of the definition from standards, the
approximate definition is extracted from a webpage
[14] that defines it as in fig 4.

Action is a named element which represents a
single atomic step within activity, i.e. that is not
further decomposed within the activity.
Fig 4 The definition of action from a UML website

The absence of formal definitions in the standards
like [9-10, 12-13] causes ad hoc informal
definitions with two problematic properties. The
first property is the definition is language
dependent (e.g., HTML versus UML). The second
property is lack of clariy: the definition is defined
on yet other terms (named element, activity).

2.4 Method

In object-oriented programming, a method is a
subroutine (or procedure) associated with a class.
C# standard [15] subsec 8.7.3 defines method as in
Fig 5. Notice the problem of the dependency of
definition to yet another term: action.

A method is a member that implements a
computation or action that can be performed by an
object or class.
Fig 5 The Definition Of Method In C# Standard

The definition is informal and not universal –
e.g., Oracle PL/SQL [16] has method but not class.
Neither Java standard [17] nor HTML standard [9-
10] defines what method is. W3C schools website
[11] has different definition for method, written in
fig 6. It is another example of lack of universality.

http://www.jatit.org/
http://download.intel.com/products/%20processor/manual/253665.pdf
http://download.intel.com/products/%20processor/manual/253665.pdf
http://www.uml-diagrams.org/uml-core.html#named-element
http://www.uml-diagrams.org/activity-diagrams.html#activity

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

596

Specifies the HTTP method to use when sending
form-data
Fig 6 The definition of method for HTML from [14]

2.5 Trigger

SQL standard [18] subsec 4.38.1 defines a trigger
as in fig 7. The definition is informal and dependent
on other terms: action and operation.

a specification for a given action to take place
every time a given operation takes place on a given
object.
Fig 7 The definition of trigger in SQL standard [20]

SQL standard defines action and operation. But
the definition (which differs from ref [6]) has
similar problem: the usage of extra terms; see fig 8.

The action, known as a triggered action, is an SQL-
procedure statement or a list of such statements.
The object is a persistent base table known as the
subject table of the trigger. The operation, known
as a trigger event, is either deletion, insertion, or
replacement of a collection of rows.
Fig 8 Extended definition of trigger that contains yet
extra terms

Figure 9 contains an example trigger. The word
operation1 denotes the trigger, the triggered action.
The word insert denotes operation, or trigger event.

create or replace trigger operation1
 before insert on objects1 for each row
begin
 null;
end;

Fig 9 An example trigger in Oracle PL/SQL

2.6 Command

Reference [6] defines command as in fig 10. It is
dependent on another term: action, and informal.
No precise formula to differente it from action.

an expression that can be input to a computer
system to initiate an action or affect the execution
of a computer program; for example, the “log on”
command to initiate a computer session.
Fig 10 Reference [6]’s definition of command

2.7 Routine, Subroutine

Reference [6] defines a routine as in fig 11.

A subprogram that is called by other programs and
subprograms.
Fig 11 Reference [6]’s definition of routine

Reference [6] goes further with the explanation as
in fig 12. It is an admission that the standard (ref
[6]) is full with redundant and language-dependent
terms. A true engineering standard must not have
that low degree of quality.

The terms “routine”, “subprogram”, and
“subroutine” are used differently in different
programming languages; the preceding definition is
advanced as a proposed standard. See also:
coroutine, subroutine.
Fig 12 Reference [6]’s note for the definition of routine

Despite the admission of problem as in fig 12, ref
[6] defines subroutine as in fig 13. The definition is
informal and imprecise.

A routine that returns control to the program or
subprogram that called it.
Fig 13 The definition of subroutine from ref [6]

2.8 Call, Invoke

Computing literatures contain terms like RFC
(Remote Function Call), RPC (Remote Procedure
Call), and RMI (Remote Method Invocation). Re-
ference [19] contains the term 'method invocation'.
Invoke and Invocation are synonymous to call.

2.9 Argument

Reference [6] defines argument as in fig 13. The
definitions are informal and imprecise. All three
definitions are too similar.

1) An independent variable; for example, the
variable m in the equation E = mc2. (2) A specific
value of an independent variable; for example the
value m = 24 kg. (3) A constant, variable, or
expression used in a call to a software module to
specify data or program elements to be passed to
that module. See also: argument; formal
parameter.
Fig 14 The definition of argument from ref [6]

2.10 Parameter

Reference [6] defines parameter as in fig 15. The
definition is informal, and imprecise in terms of
differences between parameter and argument.

(1) A variable that is given a constant value for a
specified application. See also: adaptation
parameter. (2) A constant, variable, or expression
that is used to pass values between software
modules. See also: argument; formal parameter.
Fig 15 The definition of parameter from ref [6]

2.11 Operand

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

597

Reference [6] defines operand as in fig 16. The
definition is similar with argument, and too similar
with the operand. No formal differences
formulated for the three concepts.

A variable, constant or function upon which an
operation is to be performed. For example, in the
expression A = B + 3, B and 3 are the operands.
Fig 16 The definition of operand from ref [6]

2.12 Value

Having seen the problematic definitions for
synonyms of operation it is time to see the
problems associated with value. No research paper
known to the author defines value. The absence of
the definition for value gave rise to the similar
problem with the ones for operation.

2.13 Literal

Reference [6] defines literal as in fig 17: explicit
representation of the value of an item. Reference
[6] is weak due to the absence of the definition of
value and the presence of the definition of literal. If
ref [6] is to be consistent, it should replace value
with literal in defining the argument and parameter.

In source program, an explicit representation of the
value of an item; for example the word FAIL in the
instruction: If x = 0 then print “FAIL”.
Fig 17 Reference [6]’s definition of literal

Reference [6] is not the only literature having the
redundant concept. Reference [19] contains similar
problem. While value (not literal) is one of ref [19]
four core concepts, ref [19] does not define value.
Instead, it defines literal as in fig 18.

A literal is a symbol that denotes a value that is
fixed and determined by the particular symbol in
question.
Fig 18 The definition of literal from ref [7]

Reference [19] wrote 4, 2.7, 'ABC', and FALSE
as literals. However, those literals are values. This
is a classic example of having redundant and
informal concepts.

2.14 State

State transition diagram is a term taken for
granted, never questioned. Books for software
engineering like [20] and theory of computation
like [21] did not question the term state. Figure 19
shows a state transition diagram from Wikipedia
that will be altered in section 4. The alteration is
for proving the redundancy in the current theory
and applying the proposed theory.

Figure 19 An example state-transition diagram

3. PROPOSED THEORY AND APPROACHES

In this section we propose the theory of value and
operation as two basic concepts of computing and
of programming. After stating the hypotheses we
are presenting semi-formal and formal definitions
for operation and value. A semi-formal definition
is like an informal definition, but with limited
vocabulary to help making formal definitions.

The proposed theory is adopted from four basic
concepts in [22] and similar to four core concepts in
[19.] Two of the four basic concepts (i.e., Type and
Object) have been formalized in [23]. The rest of
this section hypothesizes and defines the two
remaining basic concepts: value and operation.

3.1 Hypotheses

We hypothesize that
1. Operator, command, routine, subroutine,

function, procedure, operator, method, and
action are synonyms of operation; any
substantial deviation is subjective to the
human interpreter of the term.

2. Literal and state are just synonyms of value.
3. Function, procedure, and trigger are specific

categorizations for operations.

In the next two sections we present semi-formal

definition for operation and value. A semi-formal
definition can be formalized in straightforward way

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

598

using predicate calculus. By contrast, there is no
straightforward way to produce formal definition
from informal definition.

3.2 Value

Figure 20 shows two semi-formal definitions of
value as a basic concept of computing.

A value is of some type(s). (1.1)
A value has no identity. (1.2)
Fig 20 Semi-formal definition for value

Fig 21 formalizes the definition of value. The
Values represent the universe of values. The Types
represent the universe of types. Both Values and
Types are subscripted. The ~ represents negation
operation, while is_of_some_type is assumed as an
operation returning boolean value.

∀ 𝑉𝑎𝑙𝑢𝑒𝑠𝑖 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠 ∃ 𝑇𝑦𝑝𝑒𝑠𝑗 ∈ 𝑇𝑦𝑝𝑒𝑠
𝑖𝑠_𝑜𝑓_𝑠𝑜𝑚𝑒_𝑡𝑦𝑝𝑒 (𝑉𝑎𝑙𝑢𝑒𝑠𝑖 , 𝑇𝑦𝑝𝑒𝑠𝑗) (1.3)

∀ 𝑉𝑎𝑙𝑢𝑒𝑠𝑖 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠 ~ℎ𝑎𝑠_𝑖𝑑 (𝑉𝑎𝑙𝑢𝑒𝑠𝑖) (1.4)

Fig 21 Formal definitions for value

3.3 Operation

We choose the term operation over operator for
two reasons:

1 Creator of programming languages and tools
often equate operator to a subset of system-
defined operation (e.g., assignment operator,
but not Writeline operator).

2 The term operation is more often found in
programming manuals.

Figure 22 contains semi-formal definitions for
operation. The formal definition follows fig 22.

1. An operation has identity. (2.1.1)
2.a. An operation is a function (special operation)

or a procedure (general operation). (2.2.1)
2.b A general operation returns value of some type.

 (2.3.1)
2.c. A special operation does not return value of

any type. (2.4.1)
3. An operation operates operands that can be

values, objects, types, or operation(s). (2.5.1)
Fig 22 The semi-formal definitions for operator

In order to formally define the concept of

operation, we need to define some universes.

• Values refer to the universe of values,
• Oprts refer to the universe of operations,
• Objects refer to the universe of objects,
• Types refer to the universe of types.

We can now formalize the concept of operation.

Formula 2.1.2 formalizes the semi-formal definition
(2.1.1) that an operation has identity.

∀ 𝑂𝑝𝑟𝑡𝑠𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠 �ℎ𝑎𝑠_𝑖𝑑(𝑂𝑝𝑟𝑡𝑠𝑖)� (2.1.2)

Formula 2.2.2 formalizes the semi-formal

definition 2.2.1. It categorizes any operation into
special and general operation. The categorization
follows the categorization of types in [23].

∀ 𝐺𝑒𝑛𝑒𝑟𝑎𝑙-𝑜𝑝𝑟𝑡𝑠𝑖 ∈ 𝐺𝑒𝑛𝑒𝑟𝑎𝑙-𝑜𝑝𝑟𝑡𝑠
∀ 𝑆𝑝𝑒𝑐𝑖𝑎𝑙-𝑜𝑝𝑟𝑡𝑠𝑗 ∈ 𝑆𝑝𝑒𝑐𝑖𝑎𝑙-𝑜𝑝𝑟𝑡𝑠

𝐺𝑒𝑛𝑒𝑟𝑎𝑙-𝑜𝑝𝑟𝑡𝑠𝑖 ≠ 𝑆𝑝𝑒𝑐𝑖𝑎𝑙-𝑜𝑝𝑟𝑡𝑠𝑗 &&
𝐺𝑒𝑛𝑒𝑟𝑎𝑙-𝑜𝑝𝑟𝑡𝑠 ∩ 𝑆𝑝𝑒𝑐𝑖𝑎𝑙-𝑜𝑝𝑟𝑡𝑠 = ∅ &&

𝑆𝑝𝑒𝑐𝑖𝑎𝑙-𝑜𝑝𝑟𝑡𝑠 ∪ 𝐺𝑒𝑛𝑒𝑟𝑎𝑙-𝑜𝑝𝑟𝑡𝑠 = 𝑂𝑝𝑟𝑡𝑠 (2.2.2)

Formula 2.2.2 can be written as formula 2.2.3.

Replace General-oprt by Procedure and Special-
oprt by Function. For sake of brevity formula 2.2.3
is the one that mainly used.

∀ 𝐹𝑢𝑛𝑐𝑠𝑖 ∈ 𝐹𝑢𝑛𝑐𝑠 ∀ 𝑃𝑟𝑜𝑐𝑠𝑗 ∈ 𝑃𝑟𝑜𝑐𝑠

𝐹𝑢𝑛𝑐𝑠𝑖 ≠ 𝑃𝑟𝑜𝑐𝑠𝑘 &&
𝐹𝑢𝑛𝑐𝑠 ∩ 𝑃𝑟𝑜𝑐𝑠 = ∅ &&

𝐹𝑢𝑛𝑐𝑠 ∪ 𝑃𝑟𝑜𝑐𝑠 = 𝑂𝑝𝑟𝑡𝑠 (2.2.3)

The next step is formalizing the semi-formal

definitions 2.3.1 and 2.4.1. For this we need two
things listed below:

1 Function τ symbolizing the TORV (Type Of
Returned Value) of an operation.

2 Type void as special type with empty set of
values is used to simulate the presence of type
of returned value for procedures.

With the two above assumptions we can define

∀ 𝐹𝑢𝑛𝑐𝑠 ∈ 𝐹𝑢𝑛𝑐𝑠
τ (𝐹𝑢𝑛𝑐𝑠)≠ 𝑣𝑜𝑖𝑑 && 𝑆𝑜𝑉�τ (𝐹𝑢𝑛𝑐𝑠)�≠ ∅ (2.3.2)

∀ 𝑃𝑟𝑜𝑐𝑠 ∈ 𝑃𝑟𝑜𝑐𝑠

τ(𝑃𝑟𝑜𝑐𝑠) = 𝑣𝑜𝑖𝑑 && 𝑆𝑜𝑉�τ(𝑃𝑟𝑜𝑐)� = ∅ (2.4.2)

At this point we formalize the semi-formal
definition ‘an operation operates the operands’ by
specifying two cases: the absence and the presence
of operands through formulas 2.5.2 and 2.5.3. Sec

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

599

3.4 translate Operands into Values, Operations,
Types, and Objects in several definitions.

∃ 𝑂𝑝𝑟𝑡𝑠 𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠 𝑁 (𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠) = 0 (2.5.2)
∃ 𝑂𝑝𝑟𝑡𝑠 𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠 𝑁 (𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠) ≠ 0 (2.5.3)

3.4 Expression Versus Statement

A common mistake in several literatures is
equating operation (or its synonyms) to statement,
as exemplified in fig 2. ISO SQL standard commits
similar mistake by using the phrases like ‘DELETE
statement’, ‘SELECT statement’ [18].

References [24] states that expression is different
from statement but does not define both. Fortunate-
ly ref [25] defines expression as in fig 22.

An expression is a construct that will be evaluated
to yield a value. (2.6.0)

The first author in [22] proposes a more general
definition of expression, formulated as 2.6.1. Based
upon that definition and the observation of various
programming-languages, semi-formal definition of
statement is formulated as formula 2.6.2.

Evaluation of expression can return value 3. (2.6.1)
Evaluation of statement cannot return value. (2.6.2)
Fig 23 Expression versus statement

The following sample code illustrates the
difference. The former is statement, and the latter is
expression.

b; // evaluate (b;) returns void, no value
b // evaluate (b) returns a value, the value of b

We assume the presence of functions as follows:
1. TypeOf, that takes expression or statement as

its only operand. It returns void if the operand
is a statement, and non-void (basic value,
record value, collection value) otherwise.

2. SoV, short of Set of Values. This function
takes a type-expression as its only operand. If
the operand is void, SoV returns empty set;
else it returns set of value from a given type.

∀ 𝑆𝑡𝑚𝑡𝑠 𝑖 ∈ 𝑆𝑡𝑚𝑡𝑠 𝑆𝑜𝑉�𝑇𝑦𝑝𝑒𝑂𝑓(𝑆𝑡𝑚𝑡𝑠𝑖)�

= ∅ (2.6.3)

∀ 𝐸𝑥𝑝𝑟𝑠 𝑗 ∈ 𝐸𝑥𝑝𝑟𝑠
𝑇𝑦𝑝𝑒𝑂𝑓�𝐸𝑥𝑝𝑟𝑠𝑗� ∈ 𝑆𝑝𝑒𝑐𝑖𝑎𝑙-𝑡𝑦𝑝𝑒𝑠

|| 𝑇𝑦𝑝𝑒𝑂𝑓�𝐸𝑥𝑝𝑟𝑠𝑗� ∈ 𝐺𝑒𝑛𝑒𝑟𝑎𝑙-𝑡𝑦𝑝𝑒𝑠 (2.6.4)

3 The only exceptions: path-expressions and type-expressions.

Reference [22] wrote two additional semi-formal

definitions for expression.

An expression can be formed by value only, type
only, operation only, object only, or combined
occurrences of things denoting the basic concepts.

 (2.6.5)

An expression is formed by operation(-call) and

operand. (2.6.6)

We can formalize the expression using formula
2.6.5. V denotes value, Ob denotes Object, T de-
notes Type, and Op denotes Operation. The super-
script is superscript that denotes the number of
occurrences. Thus, Va means a occurrences of
value. Similar rule applies for other basic concepts.
Formula 2.6.7 then formally defines expression.

𝑉𝑎 𝑂𝑏𝑏 𝑇𝑐 𝑂𝑝𝑑 ; 𝑎, 𝑏, 𝑐,𝑑 ≥ 0; 𝑎 + 𝑏 + 𝑐 + 𝑑

≥ 1 (2.6.7)

3.5 Formalizing The Actual Operand In The

Expression

Operation is often defined as something that has
operands. In previous section we say that operation
operates the operands. In practice, operation
operates the expressions. However, any expression
will be evaluated and can in turned be perceived as
a single operand. Thus, we still must answer the
question: What is an operand?

The best answer comes from the four basic
concepts. There are only four possible form of
operand, and that four possible forms are no other
than the four basic concepts. Hence, an operand can
take form of one of these:

• Value
• Operation
• Type
• Object

Since all the above four basic concepts have been

formalized, the concept of operand has been
formalized. With that completion, we are now in a
position to formalize the concept of expression
from the second semi-formal definition.

 Formalization of informal description 2.5.1 takes
into consideration the valid combinations of
operands. Formulas 2.5.4 through 2.5.9 formally
define the operation as something that operates
values, objects, types, and operations in valid
combinations. N denotes a function accepting an

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

600

operation and returning the number of virtual
operands.

∃ 𝑂𝑝𝑟𝑡𝑠 𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠 ∃ 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑗 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
𝑁 (𝑂𝑝𝑟𝑡𝑠𝑖) > 0

&& 𝑜𝑝𝑒𝑟𝑎𝑡𝑒 �𝑂𝑝𝑟𝑡𝑠𝑖 ,𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑗� (2.5.4)

∃ 𝑂𝑝𝑟𝑡𝑠 𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠 ∃ 𝑉𝑎𝑙𝑢𝑒𝑠 𝑘 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠
𝑁 (𝑂𝑝𝑟𝑡𝑠𝑖) > 0

&& 𝑜𝑝𝑒𝑟𝑎𝑡𝑒 (𝑂𝑝𝑟𝑡𝑠𝑖 ,𝑉𝑎𝑙𝑢𝑒𝑠𝑘) (2.5.5)

∃ 𝑂𝑝𝑟𝑡𝑠 𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠 ∃ 𝑂𝑝𝑟𝑡𝑠𝑙 ∈ 𝑂𝑝𝑟𝑡𝑠
𝑁 (𝑂𝑝𝑟𝑡𝑠𝑖) > 0

&& 𝑜𝑝𝑒𝑟𝑎𝑡𝑒 (𝑂𝑝𝑟𝑡𝑠𝑖 ,𝑂𝑝𝑟𝑡𝑠𝑙) (2.5.6)

∃ 𝑂𝑝𝑟𝑡𝑠 𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠 ∃ 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑗 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
∃ 𝑉𝑎𝑙𝑢𝑒𝑠𝑘 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠 𝑁 (𝑂𝑝𝑟𝑡𝑠𝑖) > 1

&& 𝑜𝑝𝑒𝑟𝑎𝑡𝑒 �𝑂𝑝𝑟𝑡𝑠𝑖 ,𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑗 ,𝑉𝑎𝑙𝑢𝑒𝑠𝑘� (2.5.7)

∃ 𝑂𝑝𝑟𝑡𝑠𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠 ∃ 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑗 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
∃ 𝑂𝑝𝑟𝑡𝑠𝑙 ∈ 𝑂𝑝𝑟𝑡𝑠 𝑁 (𝑂𝑝𝑟𝑡𝑠𝑖) > 1

&& 𝑜𝑝𝑒𝑟𝑎𝑡𝑒 �𝑂𝑝𝑟𝑡𝑠𝑖 ,𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑗 ,𝑂𝑝𝑟𝑡𝑠𝑙� (2.5.8)

∃ 𝑂𝑝𝑟𝑡𝑠 𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠 ∃ 𝑉𝑎𝑙𝑢𝑒𝑠 𝑘 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠
∃ 𝑂𝑝𝑟𝑡𝑠𝑙 ∈ 𝑂𝑝𝑟𝑡𝑠 𝑁 (𝑂𝑝𝑟𝑡𝑠𝑖) > 1

&& 𝑜𝑝𝑒𝑟𝑎𝑡𝑒 �𝑂𝑝𝑟𝑡𝑠𝑖 ,𝑉𝑎𝑙𝑢𝑒𝑠𝑘 ,𝑂𝑝𝑟𝑡𝑠𝑙� (2.5.9)

The formal formulas 2.5.4 through 2.5.9 represent
non-type–expressions that can be summarized by
formal formula 2.6.8 (subset of formula 2.6.7).

𝑉𝑎 𝑂𝑏𝑏 𝑂𝑝𝑑 ; 𝑎, 𝑏, 𝑐,𝑑 ≥ 0; 𝑎 + 𝑏 + 𝑑
≥ 1 (2.6.8)

Fig 24 There are no types in non-type–expressions

The formal formulas 2.5.10 through 2.5.12
represent type-expression involving operations.
References [28-29] digress on type-expression
(including the one without operation).

∃ 𝑇𝑦𝑝𝑒𝑠𝑚 ∈ 𝑇𝑦𝑝𝑒𝑠 ∃ 𝑂𝑝𝑟𝑡𝑠 𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠
∃ 𝑉𝑎𝑙𝑢𝑒𝑠 𝑘 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠 𝑁 (𝑂𝑝𝑟𝑡𝑠𝑖) > 1 &&

𝑜𝑝𝑒𝑟𝑎𝑡𝑒 (𝑂𝑝𝑟𝑡𝑠𝑖 ,𝑇𝑦𝑝𝑒𝑠𝑚 ,𝑉𝑎𝑙𝑢𝑒𝑠𝑘) (2.5.10)

∃ 𝑇𝑦𝑝𝑒𝑠𝑚 ∈ 𝑇𝑦𝑝𝑒𝑠 ∃ 𝑂𝑝𝑟𝑡𝑠 𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠
∃ 𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑘 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑁 (𝑂𝑝𝑟𝑡𝑠𝑖) > 1 &&

𝑜𝑝𝑒𝑟𝑎𝑡𝑒 (𝑂𝑝𝑟𝑡𝑠𝑖 ,𝑇𝑦𝑝𝑒𝑠𝑚 ,𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑘) (2.5.11)

∃ 𝑇𝑦𝑝𝑒𝑠𝑚 ∈ 𝑇𝑦𝑝𝑒𝑠 ∃ 𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑗 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
∃ 𝑉𝑎𝑙𝑢𝑒𝑠 𝑘 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠 ∃ 𝑂𝑝𝑟𝑡𝑠𝑖 ∈ 𝑂𝑝𝑟𝑡𝑠

𝑁 (𝑂𝑝𝑟𝑡𝑠𝑖) > 2 &&
𝑜𝑝𝑒𝑟𝑎𝑡𝑒 �𝑂𝑝𝑟𝑡𝑠𝑖 ,𝑇𝑦𝑝𝑒𝑠𝑚 ,𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑗 ,𝑉𝑎𝑙𝑢𝑒𝑠𝑘�

(2.5.12)

For the sake of completeness, formula 2.6.9
formalizes general definition for type-expression.

𝑉𝑎 𝑂𝑏𝑏 𝑇𝑐 𝑂𝑝𝑑 ; 𝑐 > 0; 𝑎,𝑏,𝑑 ≥ 0 (2.6.9)

Fig 25 There must be at least one type in type-
expressions

The term is generic and it is useful to use specific
terms actual-operand and virtual-operand. The
difference between the two is described in the
following fragment of C source-code.

void print_it (int virtual_operand)
{ printf ("%d", virtual_operand); }

void main()
{
 print_it (5); // 5 is the actual-operand
}

Fig 26 Virtual-operand versus actual-operand

The difference between virtual-operand and
actual-operand is worth exploring to attach the
precise semantics to the polymorphic (or polytypic,
see [25]) operation. Figure 23 shows the operation-
declaration [6] of printf [30].

int printf(const char * restrict format,
...);

Fig 27 Operation-declaration of printf in [16]

The call to printf can involve only one operation.
However, printf is not a unary operation because it
can be called with more operands. Referring to the
printf as n-ary operation (by possible actual-
operands) is more precise than as unary operation –
by mandatory virtual-operand. This is our precedent
in proposing that the (maximum) number of actual-
operand be the cardinality of operation.

3.6 Approaches

The approach used in this paper is linguistic
(substitution test) and mathematic. The linguistic
approach involves substituting the words and
paraphrasing of sentences. The mathematical
approach uses predicate calculus.

3.6.1. Id (identity)

We propose the term identity (shortened as id) as
a term that is more generic toward name. Names
have non-numerical connotation. The operation
name (or operation code) MOV in a processor may
have corresponding operation id of 111. While both
MOV and 111 can both be referred to as identity,
the 111 can hardly be referred to as name.

Table 1 Mapping of synonyms for operation

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

601

Synonyms Non redundant
term

Action, Command, Function,
Operator, Procedure, Routine,
Subroutine, Instruction

Operation

Literal, state Value
Argument, parameter Operand

3.6.2. Mappings

We propose the removal of redundant terms.
Tables that follow list the mappings to remove
redundant terms.

Table 2 Mapping of synonyms for id

Synonyms Non redundant term
Op code, mnemonic Operation id
identifier Identity

Table 3 Mapping of synonyms for call and related phrase

Synonyms Non redundant
term

Invoke Call
Method call, method invocation,
Operator call, operator invocation

Operation call

Table 4 Mapping of synonyms for operand and related

phrases

Synonyms Non redundant term
Argument, Parameter Operand
Argument, Parameter,
Actual parameter

Actual operand

Formal argument, formal
parameter,

Virtual operand

We recognize that some terms deserve to be

retained because they convey specific meanings.
Table 5 lists three terms and their specific and
precise definitions.

Table 5 Some specific terms that are retained

Term Dimension Definition
Function V Op T Operation that returns

value of some type.
Procedure V Op T Operation that returns no

value of any type.
Trigger V Op T Operation that must be

called implicitly, cannot be
called explicitly.

Trigger can be formally defined as

∀ 𝑃𝑟𝑜𝑐𝑠 𝑖 ∈ 𝑃𝑟𝑜𝑐𝑠
𝑖𝑓 𝑚𝑢𝑠𝑡_𝑏𝑒_𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝑙𝑦_𝑐𝑎𝑙𝑙𝑒𝑑 (𝑃𝑟𝑜𝑐𝑠𝑖)

𝑡ℎ𝑒𝑛 𝑖𝑠_𝑡𝑟𝑖𝑔𝑔𝑒𝑟 (𝑃𝑟𝑜𝑐𝑠𝑖) (2.5.13)

3.7 Method And Module

There are two reasons of including the treatment
of module in sec 3. First, the reference to module in
the definition of some synonyms of operations, see
fig 13 and fig 14. Second, a precise semantics for
action in HTML is module instead of operation.
These two reasons above paragraph necessitate
defining the concept of module. Partial semi-formal
definitions of module are adopted from [31-32].

1. A module is a logical unit of translation.
2. A module is a namespace; able to contain

types, operations, and objects.
Fig 28 The definition of module from ref [30-31]

The informal definitions of module presented here

is sufficient to provide solution for explaining the
action in HTML form. It will be detailed in sec 4.2.

4. RESULT

This section elaborates the result of applying the
solutions presented in section 3. Six subsections in
this section contain rewritten definitions out from
ref [6]. Example definitions are rewritten mainly by
removing the redundant terms.

4.1 Removing The Term Operator

The term operator is redundant. Referring to the
proposed theory in section 3 we can rewrite the ref
[6] definition of operation into something similar
but more succinct. The definition of operation –
rewritten from ref [6] – is as follows:

1. An operation operates zero-or-more
operands.

2. An operation can be performed by a
computer system.

3. A process.

The first and second definition of operator in [6]
can be rewritten as:

4. An operation is symbolized by an identity.
5. Human operator.

In the above rewritten definition, number (1) is

served by formal formula 2.5.3 through 2.5.9; while
number (4) is served by formal formula 2.1.2. The
rewritten definitions number (2) and (5) need not be
formalized. Formalization of the definition number
3 deserves a separate paragraph, the next one.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

602

A process is an operation. Formulas for operation
in sec 3 may as well be rewritten by replacing the
universe of operations (Oprts) with the universe of
processes (Processes) and essentially nothing
changes. We stick with operation because it is
practically more general. As example that process
is less general than operation, sense that the notion
of 'process writeline' is less appropriate compared
to 'operation writeline'. Specifically for process, we
put it as a synonym in the rewritten semi-formal
definition for operation, written in sec 4.5.

4.2 Removing The Term Action

Action often means operation. In rare cases,
however, the action does not mean operation. In
HTML, action means module (a logical translation,
see sec 3.12). Assuming the presence of HTML-
like language, fig 2 can be rewritten as fig 29.

The module attribute is used to inform the browser
what module to use once the "submit" button is
pressed.
Fig 29 Rewritten definition of action in HTML

<form module:="module1.php" method:="post"
 accept-charset:="windows-1252">
 <div>
 <label for:="txt1">Name:</label>
 <input type:="text" name:="txt1"
id="txt1"/>
 </div>
 ⋮
</form>

Fig 30 First hypothetical source-code

Fig 30 provides extra aid for understanding.
Module1.php is a source-code module whose
operation inside it will be used as a post operation.

4.3 Removing The Term Method For HTML

While the term OO method deserves its specific
term, the term method in HTML does not. The
definition in fig 31 (rewritten version of fig 3) is
more precise and succinct.

Operation in the protocol (HTTP) to send form-data

Fig 31 The definition of method from ref [14]

Figure 32 provides extra aid for understanding,

through a code written in a hypothetical language
similar to HTML.

<form module:="module1.php"
operation:="post"
 accept-charset:="windows-1252">

 <div>
 <label for:="txtname">Name:</label>
 <input type:="text" name:="txt1"
id="txt1"/>
 </div>
 ⋮
</form>

Fig 32 Second hypothetical source-code

4.4 Trigger As Implicitly Called Operation

Based on the formal and informal definition of
operation, we can paraphrase the definition for
trigger as in fig 33.

A trigger is an operation that is automatically

called in response to certain events on a particular
table or view in a database.

Fig 33 Rewritten definition of trigger

4.5 Summary For Operations

Let us see whether semi-formal definitions of
operation are really universal (and thus worthy as a
solid theory). We replace the term operation with
command, trigger, subroutine, routine, and action
from the semi-formal definition of operation. The
following list conveys the result of testing:
• A command, a trigger, a subroutine, a

routine, an action, a process has identity.
• A command, a trigger, a subroutine, a

routine, an action and a process may or may
not return value.

• A command, a trigger, a subroutine, a
routine, an action, and a process operates
the operands.

All bulleted sentences are correct. Hence, the

semi-formal definitions of operation are universal.
The terms command, trigger, subroutine, routine,
and action are truly redundant.

4.6 Removing The Term Literal

Based on the definition of value, the term literal
can be removed from software engineering glossary
book like [6]. Instead, the definition for value can
be used, and example like in fig 34 can be used.

In source-code, a value (like the string value
"FAIL") in the statement: If x = 0 then print
"FAIL".

Fig 34 Rewritten definition; literal replaced by value

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

603

4.7 Removing The Term State

The state transition diagram is really a value
transition model; each is a model how the value (of
an object) transition from one to another.

Fig 33 is a redrawn example, with terms rewritten
according to the proposed theory. In fig 15 the 1
and 2 are referred to as states. In fig 33 the 1 and 2
are referred to as values. Note the term operation in
fig 33 replaces the term action in fig 18.

Fig 35 Value-transition model

5. CONCLUSIONS

Current software engineering is not (a mature)
engineering. The de jure standard glossary for
software engineering contains redundant, informal
(imprecise), and circularly defined terms. The use
of synonyms for operation and value prohibits the
formalization of the two concepts.

The removal of synonyms is the first step to
formalizing a concept. This paper proves the
redundancy of synonyms for values and operations.
Substitution test is used as a linguistic approach to
show the problems in current theories.

After synonyms are removed, the concept of
value and operation are formulated in semi-formal
way. The semi-formal definition is written with
limited vocabulary in human language – not
mathematical one – to avoid redundant terms. The
substitution test as a linguistic approach is again
used, this time to show that the definition solves the

problem of redundancy. The formulated semi-
formal definitions serve equally well if the term
operation is changed into command, trigger, action,
routine, subroutine, or any other synonyms.

Current standard of software engineering has five
synonyms for operation, two synonyms for value,
and two synonyms for operand. The proposed
theory – if adopted – will make a standard that
contains no such redundancy. Uniqueness of
concepts reflects a desired property for a software
engineering standard.

Finally, this paper proves the concepts can be
precisely defined, something that has never been
done previously. A standard glossary of software
engineering containing semi-formal and formal
definition for value, operation, type, and object will
be better than the current one. The clear boundaries
among concepts mark one step forward toward
establishing software engineering as a true and
mature engineering discipline.

Three additional terms – operand, statement,
expression – are also defined. They are reserved for
future researches. However, the definitions are
worth considering to be put in a standard.

APPENDIX: TABULATED RESULT

Five tables (6 through 10) compare the current
theories versus proposed theory. Some concepts
that are reserved for future researches (statement,
expression, actual-operand, virtual-operand,
operation-call, type-expression, trigger, method,
module) are exempted from the tables. Table 6
shows that seven references contributed to eight
synonyms for operation, two redundant synonyms
for value, and two synonyms for operand.

Table 7 shows that semi-formal definition of
operation is shorter than informal definitions of
redundant concepts. Table 8 shows that our theory
has no excuse for unnecessary redundancy, and
contains formal definition. Table 9 shows mappings
of definition from two language-centric literatures,
applied for two concepts: action and method.
Finally, Table 10 compares current theories for
value (that contain redundancy and informal)
versus proposed theory (unique and formal).

Table 6 Comparison of current theory versus proposed theory

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

604

Current theory [6, 9-14] Proposed theory

`

Table 7 Reference [6] versus proposed theory

Current theory [6]: redundant and wrong
terms

Proposed theory: unique term

[Operation]
1. In mathematics, the action specified by an

operator on one or more operands.
2. In programming, a defined action that can be

performed by a computer system.
3. The process of running a computer system in

its intended environment to perform its
intended functions.

[Operation]
1. An operation has identity. (2.1.1)
2.a. An operation is a function (special

operation) or a procedure (general
operation). (2.2.1)

2.b A general operation returns value of some
type.
 (2.3.1)

2.c. A special operation does not return value of
any type. (2.4.1)

3. An operation operates operands that can be
values, objects, types, or operations. (2.5.1)

[Operator]
1. A mathematical or logical symbol that
represents an action to be performed in an
operation.
[Computer instruction] A statement in a
programming-language, specifying an operation
to be performed by computer and the addresses
or values of the associated operands.
[Command] an expression that can be input to a
computer system to initiate an action or affect the
execution of a computer program; for example,
the “log on” command to initiate a computer
session.
[Routine] A subprogram that is called by other
programs and subprograms.
[Subroutine] The terms “routine”, “subprogram”,
and “subroutine” are used differently in different
programming languages; the preceding definition

operation

value
state
literal

value

operand
parameter
argument

operation, operator,
subroutine, routine,
command, method,
instruction, action,
activity

operand

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

605

is advanced as a proposed standard. See also:
coroutine, subroutine.

Table 8 On duplicity and formality Reference [6] versus proposed theory

Current theory [6] Proposed theory
The terms “routine”, “subprogram”, and
“subroutine” are used differently in different
programming languages; the preceding definition
is advanced as a proposed standard. See also:
coroutine, subroutine.

No duplicity, no excuses.

All definitions are informal. The concepts of value and operation are
formalized. The following two formulas are
formalization of the concept value.

∀ 𝑉𝑎𝑙𝑢𝑒𝑠𝑖 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠 ∃ 𝑇𝑦𝑝𝑒𝑠𝑗 ∈ 𝑇𝑦𝑝𝑒𝑠
𝑖𝑠_𝑜𝑓_𝑠𝑜𝑚𝑒_𝑡𝑦𝑝𝑒 (𝑉𝑎𝑙𝑢𝑒𝑠𝑖 , 𝑇𝑦𝑝𝑒𝑠𝑗) (1.3)

∀ 𝑉𝑎𝑙𝑢𝑒𝑠𝑖 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠 ~ℎ𝑎𝑠_𝑖𝑑 (𝑉𝑎𝑙𝑢𝑒𝑠𝑖) (1.4)

The formalization of the concept operation uses
many formulas: 2.1.2, 2.2.2, 2.2.3, 2.3.2, 2.4.2,
2.5.2, 2.5.3. Not repeated in this table for brevity.

Table 9 References [14, 17 , 18] versus proposed theory

Current theory [14] Proposed theory
Reference [14] The action attribute specifies
where to send the form-data when a form is
submitted.

The module attribute specifies where to send the
form-data when a form is submitted.

Reference [17] Action is a named element which
represents a single atomic step within activity, i.e.
that is not further decomposed within the
activity.

No further definition needed. See the definition of
operation.

Reference [18] A method is a member that
implements a computation or action that can be
performed by an object or class.

A method is an operation that has either an
implicit local-object in the operation-body, or
implicit-operand; but not both.

Reference [14] Specifies the HTTP method to use
when sending form-data

Operation in the protocol (HTTP) to send form-
data

Table 10 References [7, 9] on literal versus proposed theory on value

Current theory [7, 9]. Redundant and informal
terms: literal and value

Proposed theory. Unique and formal concept:
value

Reference [7] A literal is a symbol that denotes a
value that is fixed and determined by the
particular symbol in question.
Reference [6] In source program, an explicit
representation of the value of an item; for
example the word FAIL in the instruction: If x = 0
then print “FAIL”

A value is of some type(s). (1.1)
A value has no identity.
 (1.2).

References [6, 7] do not formalize the concept. Formalizes the concept of value. See Table 8.

REFRENCES:
[1] Saeed Moaveni. Engineering Fundamentals:

An Introduction to Engineering, 2nd ed,

Thomson Engineering. 2005
[2] P. J. Deitel, H. M. Deitel. Visual C# 2008:

How to Program, 3rd edition. Pearson. 2009.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

606

[3] P. J. Deitel, H. M. Deitel. Java: How to
Program, 7th edition. Pearson. 2007.

[4] Michele Cyran, Paul Lane, JP Polk. Oracle®
Database Concepts 10g Release 2. October
2005. Oracle Corp.

[5] Bernaridho I Hutabarat. SQL Server 2000.
Dian Rakyat. 2005.

[6] IEEE. IEEE Standard Glossary of Software
Engineering Terminology. IEEE. 1990.

[7] Geoffrey Leech, Margaret Deuchar, Robert
Hoogenraad. English Grammar for Today.
MacMillan. 1982.

[8] Intel. Intel® 64 and IA-32 Architectures.
Software Developer’s Manual: Volume 3 (3A,
3B & 3C). Intel Corp. 2012.

[9] World Wide Web Consortium. HTML 5.1
Nightly: A vocabulary and associated APIs for
HTML and XHTML. W3C. 2012.

[10] ISO. ISO/IEC 15445_2000. Information
technology — Document description and
processing languages — HyperText Markup
Language (HTML). ISO. 2000.

[11] W3C,
www.w3schools.com/tags/att_form_target.
asp, World Wide Web Consortium, accessed
25-mar-2013.

[12] OMG. OMG Unified Modeling Language
Infrastructure. Object Management Group.
2011.

[13] OMG. OMG Unified Modeling Language
Superstructure. Object Management Group.
2011.

[14] OMG. uml-diagrams.org/activity-diagrams-
actions. html . OMG. Accessed 25-mar-2013.

[15] ECMA International. ECMA-334 Standard.
C# Language Specification. 2006.

[16] Lakshman, Bulusu. Oracle 9i PL/SQL: A
Developer’s Guide. Apress. 2003.

[17] James Gosling, Bill Joy, Guy Steele, Gilad
Bracha, Alex Buckley. The Java Language
Specification. Oracle Corp. 2012.

[18] ISO. ISO/IEC JTC 1/SC 32. Information
technology — Database languages — SQL —
Part 2: Foundation (SQL/Foundation). ISO.
2003.

[19] C. J. Date, Huh Darwen. The Third Manifesto:
Databases, Types, and The Relational Model,
3rd ed Addison Wesley. 2007.

[20] Carlo Ghezzi, Mehdi Jazayeri, Dino
Mandrioli. Fundamentals of Software
Engineering, 2nd ed. Prentice Hall. 2003.

[21] John E. Hopcroft, Rajeev Motwani, Jeffrey D.
Ullman. Introduction to Automata Theory,

Languages, and Computation; 2nd edition.
Addison Wesley. 2001.

[22] Bernaridho I Hutabarat. Programming
Concepts: with NUSA Programming
Language. Ma Chung Press. 2010.

[23] Bernaridho I. Hutabarat, Mochamad Hariadi,
Ketut E. Purnama, and Mauridhi H. Purnomo.
“Toward the maturity of software engineering:
universal, formal, and mathematical definition
for type and object as two disjoint basic
concepts”, Journal of Theoretical and Applied
Information Technology. 30 June 2013.

[24] C. J. Date. An Introduction to Database
Systems, 8th ed. Addison Wesley.

[25] David A. Watt. Programming Language
Design Concepts; 2nd edition. Wiley. 2004.

[26] Haruo Hosoya, Jérôme Vouillon, Benjamin C.
Pierce. Regular Expression Types for XML.
ACM SIGPLAN 1-58113-202-6/00/0009. pp
11-22. 2000.

[27] C. J. Date. An Introduction to Database
Systems; 8th ed. Addison Wesley. 2003.

[28] Luca Cardelli, Peter Wegner. On
Understanding Types, Data Abstraction, and
Polymorphism. Computing Surveys. Vol 17
no 4 pp 471-522. December 1985.

[29] Alfred V. Aho, Monica S. Lam, Jeffrey D.
Ullmn, Ravi Sethi. Compilers: Principles,
Techniques, and Tools; 2nd edition. Addison
Wesley. 2006.

[30] ISO. ISO/IEC 9899:1999 Programming
Languages -- C. ISO. 1999.

[31] Bernaridho I. Hutabarat. Modular
Programming: A Revolutionary Approach.
Ma Chung Press. 2010.

[32] Bernaridho I. Hutabarat, Mochamad Hariadi,
Ketut E. Purnama, and Mauridhi H. Purnomo.
“Module, Modular Programming, and
Module-based Encapsulation: Critiques and
Solutions”; in The 5th International
Conference on Information & Communication
Technology and Systems (ICTS). pp 233-240.
ISSN 2085-1944. 2009.

http://www.jatit.org/
http://www.w3schools.com/tags/att_form_target.%20asp
http://www.w3schools.com/tags/att_form_target.%20asp

	1BERNARIDHO I HUTABARAT, 2KETUT E PURNAMA, 3MOCHAMAD HARIADI
	2.1 Operator, Operation
	2.2 Instruction
	2.3 Action
	2.4 Method
	2.5 Trigger
	2.6 Command
	2.7 Routine, Subroutine
	2.8 Call, Invoke
	3.1 Hypotheses
	3.2 Value
	3.3 Operation
	3.4 Expression Versus Statement
	3.5 Formalizing The Actual Operand In The Expression
	3.6 Approaches
	3.6.1. Id (identity)
	3.6.2. Mappings
	3.7 Method And Module
	4.1 Removing The Term Operator
	4.2 Removing The Term Action
	4.3 Removing The Term Method For HTML
	4.4 Trigger As Implicitly Called Operation
	4.5 Summary For Operations
	4.6 Removing The Term Literal
	4.7 Removing The Term State

