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ABSTRACT 

 
 Although the task of malware detection in network traffic had been done successfully through 
Deep Packet Inspection (DPI) in the last two decades, this approach is becoming less efficient due to the 
continuous increasing of network traffic volumes and speeds and concerns on user’s privacy. The recent 
alternative approach is the flow-based detection which has the ability to inspect high speed and backbone 
network traffic because it significantly aggregates and reduces the inspected data. However, the capability 
of this approach to detect packet-based attacks such as viruses and trojans is questionable because of the 
absence of the actual data at the payload level. In this paper we proof through experiments the ability to 
detect network flows that contain malicious packets that had been previously marked as malicious by 
Snort using only flow level attributes using several Machine Learning (ML) classifiers. We created our 
dataset from captured traces of a subnet of our university’s network. The detection accuracy is found to be 
75% True Positive (TP) with almost zero False Negative which we consider as a verification of the 
capability of flow-based approach to detect malware. This finding is encouraging for future researches 
where it can be combined with more traditional detection methods to form more powerful NIDSs. 

Keywords: Network Intrusion Detection System (NIDS), Flow level network traffic inspection, Snort, 
Malware Detection, Machine Learning, NetFlow 

 
1. INTRODUCTION  
 

Malware and intrusion detection in network 
traffic is a process that is crucial in any network 
today. With the ever increasing rate of attacks, 
malware and intrusion detection has become more 
significant. One of the most common and efficient 
worldwide acceptable Network Intrusion Detection 
System (NIDS) is Snort [1]. It is an open source and 
software based packet inspection system that can 
run on any general purpose computer. The 
inspection is based on matching every packet 
contents against a predefined set of rules that look 
for certain signature patterns in the packet header or 
packet payload to identify a malware. Although this 
approach is found to be very efficient as long as the 
rule set used is updated and contains the most 
recent version, at many times it is not feasible or 
not applicable at all. One of these situations is the 
case of malware detection in high speed networks 
when signature-based NIDS, such as Snort, cannot 
cope to inspect every passing by packet and run 
thousands of rules concurrently. Another case is 
when deep packet inspection is not desirable 
because of privacy concerns or not possible because 
of encryption. 

An alternative approach is the flow level 
inspection [2-4]. In this approach the inspection is 
done for flow records created on the basis of 
connection level that may contain multiple of 
packets that represent a whole session between two 
communicating parties. In flow-level inspection, a 
(unidirectional) flow is defined as all packets that 
have the same 5-tuples in a certain period of time. 
These 5-tuples are; source and destination IP 
addresses, source and destination port number, and 
transport layer protocol. This approach significantly 
decreases the amount of inspected data.  Moreover, 
most of core routers today are equipped with 
platforms that can be enabled and configured to 
create flow statistics records for all the traffic that 
forwarded in form of NetFlow [5]. Authors of [3] 
calculated the ratio between packets exported by 
NetFlow (containing the flow records) and the 
packets on their experimental network to be on 
average equal to 0.1% of the network load 
measured in bytes with the overhead due to 
NetFlow to be on average 0.2%. NetFlow protocol 
is originally innovated for network traffic 
monitoring and classification, but it has been found 
useful in flow-based NIDS. 
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The evolvement of NetFlow flow-based 
inspection is a feasible and cost effective solution 
for high speed networks and in cases of encrypted 
traffic. However, a question may arise here about 
the capability and the efficiency of this approach to 
detect malware. Although the malware exist in the 
payload, the question is will the flow features 
exhibit the presence of malware? In this paper we 
are working to verify that flow-based NIDS has the 
capability to highlight flows that contain packet 
payload attacks. In order to achieve this objective, 
this paper tries to answer these two questions; (i) is 
it possible to use only basic NetFlow attributes to 
detect IP flows that contain packet(s) with payload 
attack(s) currently detectable by the Snort NIDS? If 
so, how effective is it? (ii) what are the most 
significant attributes that can be used in flow-based 
malware detection? To answer these questions we 
create flow-based dataset and used several Machine 
Learning (ML) algorithms to build flow level 
classifiers. We regard the set of events alerted by 
Snort as representing the most complete available 
knowledge. The function of ML is to determine 
how best to reproduce the alerts at the flow level 
that approximate a packet signature. The outcome 
of these algorithms to reproduce alerts is found to 
be approximately 75% TP and almost zero FP. 

The rest of our paper is organized as follows. We 
discuss related work in Section 2. In section 3 we 
describe the characteristics of packet level and flow 
level network attacks and justify the capability of 
flow level inspection to detect malware using ML 
algorithms. In section 4 we present our overall 
experiment framework and describe the 
environment and experiment setup. In section 5 we 
provide a comprehensive analysis of the alerts 
produced by Snort on the captured traces. Section 6 
describes the preprocessing criteria to create and 
label the flow-based datasets from the captured 
traces and Snort alerts. In section 7 we present our 
basic and derivative features for our classifiers and 
justify our selection. We reviewed selected ML 
algorithms and performance evaluation 
methodology in section 8. We present various 
aspects of classification results in section 9 before 
we present our conclusion and suggestions for 
future work in section 10. 

2. RELATED WORK 
 

A lot of work had been done to build flow-based 
NIDSs and measure their efficiency to detect 
network attacks. The two most famous options for 
analyzing network traffic are the misuse approach 
and anomaly approach. Anomaly-based detection is 

done on the basis of monitoring network operation 
and flagging any deviation from network normal 
behavior as an indicator of an attack as reported in  
[6-13]. Misuse-based detection is done through 
comparing and matching network traffic event 
against a predefined set of database of signatures of 
known attacks as reported in [14-17].  

Since we are questioning the capability and the 
efficiency of flow-level NIDS to detect malware in 
network traffic that could be detected through deep 
packet inspection, we use a different approach from 
all the above work. Rather than alarming a certain 
network event depending on its abnormality score 
from the baseline operation, we trained our ML 
classifiers to find rules that search flow features so 
as to reproduce alerts for flows which are correlated 
to the alerts at the packet level. 

ML algorithms have been used heavily for 
network traffic classification. Several approaches 
has been evolved in this field including 
unsupervised learning of application classes via 
clustering of flow features and derivation of 
heuristics for packet-based identification [18]; 
semi-supervised learning from marked flow data 
[19], and supervised learning from flow features  
[20, 21]. 

3. NIDS: PACKET OR FLOW LEVEL? 
 

Many previous works compared the two 
approaches of packet inspection and flow 
inspection on NIDS [2, 22, 23]. One of the major 
differences between them is the nature of the 
detectable attacks in each approach. Packet level 
inspection is ideal to detect malware attack which is 
defined as any malicious or unauthorized code or 
code parameter that can cause the attacked system 
to function undesirably. On the other hand, flow 
level inspection is ideal to monitor network traffic 
performance and detect any deviations from 
baseline operation that could be caused by network 
traffic attacks. These traffic attacks are often not 
dedicated to a specific machine but rather to a 
whole network such as DoS, scans, botnets. Some 
attacks may have these two characteristics (e.g. a 
malware that spreads through network machines 
causing network performance degradation). Hence, 
such types are detectable by both approaches. 
Figure 1 illustrates this concept. In this paper we 
are trying to proof that most of packet level 
detectable attacks are actually located in the shaded 
common area as illustrated in figure 1. 
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Figure 1: Common Attacks That Are Detectable By 
Both Packet Level And Flow Level Inspection 

  

We claim that flow level inspection can also 
detect almost all malware attack types. Besides the 
fact that some of flow record information is also 
packet features, we rely on the assumption that 
there are some hidden correlations between packet 
payload and its flow record even though there may 
be no recognizable correlations implied in the 
original packet. This can be related to the attacker 
that tends to use certain elementary information 
when creating malware (e.g., malware traffic very 
often uses constant destination port, although that 
may not be specified in the signature).  

We used ML algorithms because of their 
essential advantage to learn to characterize flows 
according to all obvious and hidden features 
included in the original packet-level signature.  

4. GNERAL FRAMEWORK AND SETTINGS 
 

The general framework of our experiment is 
shown in figure 2. This framework can be viewed 
as two sequential stages. The first stage aims to 
produce labeled NetFlow-based dataset from 
captured network traces. The labeling process 
depends on the alarms produced by Snort 
inspection on these captured traces for making the 
corresponding NetFlow records as either normal or 
malicious. A flow record is marked as malicious if 
it at least contains one packet that matched one of 
the Snort activated rules and sets an alarm 
accordingly. 

The second stage is dedicated to use this dataset 
to train and test several ML classifiers to reproduce 
these alarms depending only on basic selected 
NetFlow features and finding the most significant 
attributes that affect the classification process. 

Our captured traces were mirrored from a 
residential college network which is a subset of the 
university’s campus network. The traces were 
captured using tcpdump tool and logged in pcap 
format. The whole captured traffic size was 1.3 G 

bytes which approximated to 4 million packets for a 
time window of 13 minutes. These pcap traces 
produced 466K unidirectional IP flows. 

 

 

Figure 2: General Experiment Framework 

 

To produce alerts, we used Snort engine version 
2.5.9.3 and Snort rule set version 2.5.9.0. Since we 
are interested only in packet payload alerts, we set 
the configurations to enable Snort engine and 
disable both Snort decoder and Snort preprocessor. 
We include all rule files that are concerned for 
malware or network traffic attacks.  

We made two variants of our experiment 
according to the number of rules activated in each 
variant. In the first variant, the number of rules 
activated was 3269. These rules are activated by 
default in the preferred setting of Sourcefire, the 
creator of Snort. These rules are claimed to have 
always 100% TP alert rate. In the second variant, 
we activated all rules in the included rule files and 
had 13120 rules which are four times the default.    

5. ALERTS ANALYSIS 
 

In the experiment for the first variant (with 3269 
activated rules), Snort took four minutes to process 
all traces and produced 1111 alerts that originate 
from eleven distinct Snort signature IDs and six 
class types. Table 1 shows the results of these alerts 
for the given rules and classtypes.  

The “classtype” keyword is used to categorize a 
rule as detecting an attack that is part of a more 
general type of attack class. Snort provides a 
default set of attack classes that are used by the 
default set of rules it provides. Defining 
classifications for rules provides a way to better 
organize the event data Snort produces. More 
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information about different class types are available 
in [24]. 

 

Table 1: First Variant Snort Alerts Analysis 
 

 Signature 
ID 

Rule File Classtype alerts 

1 3476 WEB-IIS Web-application 210 
2 14764 WEB-ACTIVEX Attempted-user 1 
3 15306 FILE-IDENTIFY Misc-activity 3 
4 15474 BAD-TRAFFIC Attempted-dos 4 
5 15709 FILE-PDF Attempted-user 1 
6 15912 BAD-TRAFFIC Attempted-dos 9 
7 18611 WEB-MISC Attempted-admin 1 
8 19187 BAD-TRAFFIC Attempted-user 359 
9 19653 WEB-PHP Web-application 15 
10 21355 BAD-TRAFFIC Attempted-recon 504 
11 23391 BACKDOOR Trojan-activity 4 
Total number of alerts 1111 

 

Figure 3 shows the distribution of these alerts 
over Snort class types, transport layer protocol and 
over application layer protocol. 

 

 

 

 

Figure 3: Alerts Distribution Over Snort Class Types 
Attack And Over Layer 4 Protocols For Dataset1 

In the experiment for the second variant (with 
13120 activated rules), Snort took more than 20 
minutes to process all traces and produced 12480 
alerts that originate from 55 distinct Snort signature 

IDs and 13 class types. Table 2 shows the results of 
these alerts for the given rules and classtypes.  

 

Table 2: Second Variant Snort Alerts Analysis 
 

 Signature 
ID 

Classtype Alerts 

1 254 bad-unknown 2965 
2 895 trojan-activity 18 
3 1045 web-application-attack 4 
4 1054 web-application-attack 11 
5 1079 web-application-activity 13 
6 1384 denial-of-service 4166 
7 1388 misc-attack 41 
8 1560 web-application-activity 2 
9 1715 web-application-activity 1 
10 1917 network-scan 2962 
11 2381 attempted-admin 60 
12 2441 web-application-attack 2 
13 2707 attempted-admin 16 
14 3550 attempted-user 2 
15 3679 attempted-user 16 
16 4135 attempted-dos 3 
17 6690 attempted-user 1 
18 7567 successful-recon-limited 10 
19 8734 successful-recon-limited 157 
20 10997 misc-attack 92 
21 11257 attempted-user 22 
22 11263 attempted-dos 389 
23 11968 protocol-command-decode 3 
23 12007 protocol-command-decode 5 
25 12073 protocol-command-decode 17 
26 12074 protocol-command-decode 2 
27 12181 protocol-command-decode 47 
28 13476 web-application-attack 57 
29 15147 attempted-user 4 
30 15167 trojan-activity 37 
31 15168 trojan-activity 8 
32 15699 attempted-user 2 
33 15912 attempted-dos 16 
34 16079 web-application-attack 3 
35 16301 attempted-user 7 
36 16482 attempted-dos 1 
37 17294 attempted-dos 19 
38 17410 attempted-user 52 
39 17487 attempted-dos 2 
40 17567 attempted-admin 11 
41 17579 attempted-user 16 
42 17750 attempted-dos 5 
43 18611 attempted-admin 2 
44 19187 attempted-user 747 
45 19894 attempted-user 42 
46 19996 trojan-activity 1 
47 20242 attempted-admin 2 
48 20278 attempted-user 4 
49 21669 attempted-dos 129 
50 21817 attempted-dos 65 
51 23041 trojan-activity 2 
52 23246 trojan-activity 2965 
53 23408 attempted-dos 18 
54 23861 attempted-user 4 
55 26554 trojan-activity 11 
Total number of alerts 12480 
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Figure 4 shows the distribution of these alerts 
over Snort alerts types, transport layer protocol and 
over application layer protocol. 

 

 

 

 

Figure 4: Alerts Distribution Over Snort Class Types 
Attack And Over Layer 4 Protocols For Dataset2 

 

6. DATASET CREATION AND LABELING 
 

In order to get the corresponding flows of our 
captured traces we used softflowd [25] as a 
software flow exporter. Softflowd is a flow-based 
network traffic analyzer capable of Cisco NetFlow 
data export. Softflowd semi-statefully tracks traffic 
flows recorded by listening on a network interface 
or by reading a packet capture file. These flows 
may be reported via NetFlow to a collecting host or 
summarized within softflowd itself. Softflowd 
supports data export using versions 1, 5 or 9 of the 
NetFlow protocol.  

We used softflowd-0.9.8 to read our captured 
packet traces and to export version 5 NetFlow 
records. To collect and process these NetFlow data, 

we use Nfdump tools [26] version 1.5.8. The 
captured traces produced a total number of 466K 
unidirectional flows in NetFlow v5 format. Figure 5 
shows the distribution of these flows over transport 
layer protocols. 

  

 

 

Figure 5: Flow Distribution Of Captured Traces Over 
Transport Layer Protocols 

 

As had been mentioned in the previous section, 
we need concurrent packet and flow traces so that 
the alerts that Snort made on packets can be 
associated with its corresponding flow record for 
the same connection. In other words, if Snort has 
raised an alert on a packet at time t then we search 
for the flow with the same IP 5-tuples, flow start 
time Ts, and flow end time Te such that Ts ≤ t ≤ Te 
and marked that flow as malicious. One packet may 
produce multiple Snort alerts, and one flow will 
often correspond to multiple packets, which means 
that individual flows can be associated with many 
Snort alerts. 

A Visual Basic user program is written to 
associate Snort alerts with its corresponding flow 
record. Since we have two variants of alert sets, we 
also made two variants of datasets; dataset1 and 
dataset2.  

In dataset1, we used the 1111 alerts to mark their 
corresponding flow records as malicious and mark 
the rest which have no match alert as benign. The 
labeling process produced 1063 malicious flow out 
of the total 466K flow. All resulted flows resulted 
from the captured traces are included in the dataset. 
The percentage of malicious flows is only 0.23%.  

In dataset2, 12480 alerts are used for the labeling 
process which produced 7844 malicious flows. In 
this variant of dataset we tried to increase the ratio 
of malicious flows in order to get a more realistic 
classification results.  Hence, all flows that have 
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protocol or service number which had never raised 
a Snort alarm is removed from the labeled dataset. 
The remaining 221K flows consist only of TCP, 
UDP protocols and service of (53, 80, 443, 1900, 
5060, 5247, 6881, and 8080) HTTP, HTTPS, and 
DNS. Hence the percentage of malicious flows now 
has increase to 3.5%. Figure 6 shows the 
distribution of malicious flows over transport and 
application layer protocols. 

 

 

 

Figure 6: Malicious Flows Distribution Over 
Transport And Application Layer In Dataset2 

 

7. FEATURE SELECTION 
 

Since NetFlow is originally designed for network 
performance monitoring, not all its record fields are 
of benefit in NIDS. There are some fields that are 
not used (pad1, pad2) and there are others that have 
no benefit in intrusion detection (e.g., nexthop, 
autonomous system number of the source, etc.). 
Out of the 20 fields that exist in v5 NetFlow record, 
only eleven are found to be useful in NIDS. We 
decided to neglect three additional attributes from 
these eleven, which are the source and destination 
IP addresses and TOS. Our decision not to use IP 
addresses is due to privacy concerns that may 
sometimes prevent using this information and also 
because we want our classification to be network 
independent. We choose to remove TOS from 
dataset attributes because this field is often set to 
zero and not used in IP protocol. Hence, we chose 
to use only six basic NetFlow fields for our dataset. 
These fields are; flow start and end time, protocol, 
source and destination port, number of packets, 
number of bytes, accumulative OR of TCP flags.  
We chose to derive a flow duration attribute to 

replace the two basic features flow start time and 
flow end time. We derived three additional 
attributes that had been used frequently in flow-
based NIDS which are; average packet length (in 
bytes), average bit rate, average packet rate. Table 3 
shows the final ten attributes of our datasets and 
Table 4 shows the derived attributes. 

 

Table 3: Final Ten Attributes Selected For Datasets 
 Attribute Basic Description 
1 Pro Basic IP protocol type 
2 Srp Basic TCP/UDP source port number 

or equivalent 
3 Dsp Basic TCP/UDP destination port 

number or equivalent 
4 Pkt Basic Number of Packets in the flow 
5 Byt Basic Number of Layer 3 bytes in the 

packets of the flow 
6 Flg Basic Cumulative OR of TCP flags 
7 Dur Derived Flow duration  
8 Bps Derived Average byte rate 
9 pps Derived Average packet rate 
10 Bpp Derived Average packet length in bytes 

 

Table 4: Derived Attributes  
 Attribute Attributes derived 

from 
Derivation 
Formula 

1 Dur Ts, Te 
(flow start tim and end time) Te - Ts 

2 Bps Byt, Dur Byt ÷ Dur 
3 pps Pkt, Dur Pkt ÷ Dur 
4 Bpp Byt, Pkt Byt ÷ Pkt 

 

8. MACHINE LEARNING ALGORITHMS 
 

We used eight data mining machine learning 
algorithms in WEKA program (Waikato 
Environment for Knowledge Analysis) [27] to 
evaluate the efficiency of flow-based IP flow 
features to reproduce Snort malware alerts. The 
selected ML algorithms are from three different 
classifiers types; bayes, rules and trees. The 
machine learning algorithm selected from bayes 
classifiers is Bayes Net [28]. Algorithms selected 
from rules classifiers are Decision Table, JRip, 
PART [28], whilst those selected from trees 
classifiers are J48 decision tree  [29], Random 
Forest [30], Random Tree [31] and  REPTree [32]. 
We split our dataset into two parts, training set 
(66%) and testing set (34%) to be used in all these 
classifiers. 

Any classifier algorithm has the possibility of 
single detection for either attack or normal which 
can be represented by four different outcomes as 
shown in table 5. The evaluating parameters used to 
measure the detection efficiency are True Positive 
(TP) rate and False Positive (FP) rate.  
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Table 5: Single Detection Possibilities 
 

 Predicted Normal Predicted Attack 
Actual Normal TN FP 
Actual Attack FN TP 

 

TP rate, (or detection rate), is defined as the 
proportion of detected attacks over all the attacks. It 
is calculated according to the formula:  

TP rate (Detection rate) = TP/ (TP+FN)*100% 

False Positive rate FP: FP rate is the percentage 
of normal data which is falsely classified as attacks. 
It is calculated according to the formula: 

FP rate = FP/ (FP + TN)*100% 

 

9. RESULTS AND DISCUSSION 
 
9.1. Full Set Attributes Classification Results 

First we used dataset1 which compose of 466K 
flow records from which there are 1063 are marked 
as malicious. Figure 7 shows the complete ten 
features classification results for the selected eight 
algorithms. 

 

 

 

Figure 7: Full Set Attribute ML Classification Results 
On Dataset1 

 

As shown in figure 6, most of the classifiers 
result in TP rate greater than 75%. Bayes Net had 
the highest TP rate (0.84%), but it also has the 
highest FP rate. In general, it is observed that the 
FP rate is very small and is almost zero for all the 
classifiers. This can be attributed to the low ratio of 

malicious flows (0.23%) compared to the benign 
flows. This is the reason why we increase the ratio 
of malicious flows in dataset2. 

Dataset2 is used to validate our first results and 
to see if we can obtain the same results. Dataset2 
composes of 221K flow records from which there 
are 7844 flows which are marked as malicious. 
Figure 8 shows the complete ten features 
classification results for the selected eight 
algorithms. 

 

 

 

Figure 8: Full Set Attribute ML Classification Results 
On Dataset2 

 

It is remarkable that the TP rate of most of the 
classifiers is slightly less than 75%. This is because 
in labeling the malicious flows of dataset2, we 
depended on all Snort rules where most of these 
rules have reliability less than 100% in producing 
alerts. The FP rate is also greater than that resulted 
from dataset1. That is because the classifier job in 
dataset2 became more challenging. The removal of 
flows with port numbers that had never set a Snort 
alarm in the packet traces causes TN rate to 
decrease and in turn increase the TP rate.  Since we 
think the results of dataset2 are more realistic and 
the degradation of accuracy is not that much, we 
made the following analysis on the basis of 
dataset2. 

9.2. Minimum Effective Attributes 

Here we searched for the minimum flow attribute 
set that gives the maximum TP rate for each 
classifier and does not increase FP rate. Table 5 
shows the minimum effective attributes and the 
maximum TP achieved for each classifier. 
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Table 5: Minimum Effective Attributes 
 

ML 
Classifier 

 
 
 

Attribute 
 

J
4
8 

R
M
F 

R
M
T 

R
P
T 

D
N
T 

J
R
P 

P
R
T 

B
S
N 

Dur        
Pro        
Srp        
Dsp        
Pkt        
Byt        
bps        
pps        
Bpp        
Flg A        

S        
F        
R        

Max TP 
achieved 74

.1
 

75
.2

 

76
.1

 

74
.8

 

69
.9

 

72
.3

 

75
.3

 

85
.2

 

 

9.3. Most Significant Attributes 

Here we searched for the key attributes that give 
each classifier its major classification efficiency. 
We consider the common minimum effective 
attributes in each classifier which are source port 
(Sp), number of bytes (Byt), and average packet 
size (Bpp). Figure 9 shows the classifiers results 
using only these three attributes and all possible 
two combinations of them. 

 

 

 

Figure 9: Most Three Significant Classification 
Results On Dataset2 

Finally, we assess the individual impact of each 
attribute on the classification results. Figure 10 
shows these results. 

 

 

Figure 10: Individual Impact Of Each Attribute On 
Classification 

 

10. CONCLUSION AND FUTURE WORK 
 

From the results obtained we have shown that 
malware detection can be done based on the flow 
level attributes with very good detection 
performance (approximately 0.75 detection rate). 
Service port number, average packet length and 
number of bytes are the most significant attributes 
for detecting snort malware when using flow level 
NIDS.  

Our work is not seeking to replace packet level 
with flow level. It is better viewed as a step towards 
an integrated, complementary approach of top-
down inspection that leverages flow level approach 
characteristics from the wider view with less 
computational resources in high speed networks. It 
is an initial stage of intrusion detection then 
forwards the highlighted flows for the deep packet 
inspection to specify the exact malicious packet and 
the type of attack. In this way we can obtain the 
large volume real-time detection complementing 
conventional NIDS approach.    
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