
Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

441

OPTIMISING ONTOLOGY INTEGRATION THROUGH
INTERMEDIATE ONTOLOGIES

1V. RAJESWARI, 2 Dr. DHARMISHTAN K. VARUGHESE

1 Faculty, IT Dept., 2Faculty, ECE Dept., Karpagam Collegge of Engg, Coimbatore, INDIA
E-mail: 1 rajeswari.vp21@gmail.com , 2dr.dharmishtan@gmail.com

ABSTRACT

The semantic web is increasingly being seen as a solution to manage knowledge content among
heterogeneous and distributed information on the internet. Evolution of the semantic web is linked to a
great extent to the evolution of various domain ontologies. It is necessary to formally define the mapping
between ontologies to enable interoperability between applications in heterogeneous distributed
information systems. The authors, in this paper illustrate how the fundamental problem of mapping
between the global ontology and the local ontologies can be addressed, primarily through a newly
developed WeGO algorithm. A mapping system for OWL-DL ontologies, where mappings are expressed as
correspondences between conjunctive queries over ontologies, forms the core of this research work. The
algorithm finds the semantically equivalent terms in local ontologies and uses them to build an intermediate
ontology. The intermediate ontologies form the building block for a global ontology that will encompass
the salient elements of the various local ontologies. It is further shown how the mapping system proves
effective for the task of ontology integration through illustrative queries. Experimental data show that the
query results obtained from the local ontology and global ontology match the results obtained from the
intermediate ontology.

Keywords: Data Integration, RDF, OWL, Semantic Web, Heterogeneous Data, World Wide Web, Local
Ontology, Global Ontology, Intermediate Ontology, Mapping, Merging

1. INTRODUCTION

1.1 Research Issue

In this era of coming together of “Knowledge
Communities” across the globe, Semantic web is
increasingly seen as a solution to manage content
and knowledge among distributed information
sources. Semantic web, to a large extent, is
employing ontology for ensuring relevant
information retrieval from diverse information
sources. The main issue which is addressed by
ontology is the semantic interoperability [1]. For
achieving this, it is necessary to formally define the
mapping between ontologies to enable
interoperability between applications in distributed
information systems [2]. In this paper, we define a
mapping system for OWL-DL ontologies, where
mappings are expressed as correspondences
between conjunctive queries over ontologies [3].
We further show how the mapping system can be
applied for the task of ontology integration and
present a query system.

Using the graph representation for ontologies
and schemas we proceed to calculate the weights
for each node of the graph using the lexical

similarity. The path traversed to reach a node is
taken into consideration for matching different
graphs which represent ontology or schema. Since
the algorithm is very fast it can be used as a quick
and primary method to do initial matching of a
large dataset and then proceed to the exact match
with other algorithms.

Semantic mapping for ontology development
across different user communities has been an
important research area. Theoretically it is possible
to develop a global ontology carrying the same
meaning for all distributed applications. But
practical situations show otherwise [4], since
different communities develop their own ontologies
independently according to their interpretation of
things. This necessitates a mapping method for
enabling applications to exchange data and provide
interoperability. Most of the mapping methods are
based on standards of linguistic and structural
characteristic similarity

1.2 Related work

Ontology based applications should harmonize
their own ontologies to achieve semantic
integration. This problem is known as ontology

http://www.jatit.org/
mailto:rajeswari.vp21@gmail.com
mailto:2dr.dharmishtan@gmail.com

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

442

alignment (matching) problem. The aim here is to
find matches and relations [5] between concepts
between different ontologies. Many mapping
algorithms are recommended for ontology mapping
[3]. Especially in [6], ontology mapping problem is
indicated with comprehensible current solution
approaches and a correct definition. As a general
thing, today’s techniques make use of some
research areas such as Bayes decision theory [3],
information retrieval [5] and description logics [4].

Some of the popular algorithms that are in use

for ontology mapping have approaches that are
computation intensive and aim at larger ontologies.
Anchor-flood algorithm [7] consists of two parts.
The first one is ontology schema matching Anchor-
flood algorithm ranging a set of ontology concepts
and properties. Second one is instance matching.
The weak point is the fact that this system ignores
some distantly placed aligned pairs in ontology
alignment system. In instance matching, it has still,
rooms to work in structural transformation.

Another system AROMA [8] has three phases:

(1) A preprocess phase that represents each title
with a set of expressions like classes and properties,
(2) The second phase consists of the occurrence of
rules among labels, (3) A post-process phase that
aims to increase the result mapping correctness and
to elect unnecessary matches. Since AROMA
returns not only equivalence correspondences but
also subsumption correspondences, its precision
value is negatively influenced. In [3], Choi et al.
divided ontology matching approaches to three
groups. The first group talks about mapping local
and global ontologies. In this way, finding the
relationship among local ontologies and a global
ontology is an easy task because of a shared
vocabulary that relates all the concepts in the local
ontologies to the same concept in the global
ontology. However, mapping local ontologies to
each other becomes a hard task [9]. On the other
hand, the second group talks about mapping local
ontologies to each other. It maps similar concepts
of source ontology to semantically related concepts
in target ontology. This mapping technique is more
appropriate for scaling up to the Web. The last
group is based on merging ontologies to build a
single coherent merged ontology [9]. It should be
noted that the present work discusses only the first
group in this paper.

2. ARCHITECTURE OF THE FRAME WORK

The standard information system architecture
framework that handles user queries and interacts

with the deep web is of the form shown in Fig. 1.
The present work operates on the semantic layer of
this architecture.

Fig 1: Standard Information System Framework

The framework is based on the Integrated View
(IV) and a set of wrappers. In this framework, IV
follows a Local as View (LAV) approach to
represent the mapping between the concepts in the
source ontologies and the integrated view.

The Transformation Processor (TP) transforms
the data from the data source model to the
materialized data model. In the implementation, we
consider the materialized data being represented as
an ontology model [9]. During the maintenance of
the materialized view, according to the updated
occurring in the data sources, the Incremental
Maintenance Processor (IMP) will determine which
data in the materialized view are going to be
updated. After the IMP receives the integrated data
from IV, it will compare to decide which parts need
to be updated [11].

The two modules TP and IMP in the dashed box
in the figure form the Maintenance module for the
Materialized View (MMV). The task of the Query
Processor QP in this architecture is to determine if
the query could be answered from the materialized

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

443

view (MV), virtual view, or both. If the query needs
actual data i.e., data from the sources, then the
query should be decomposed and rewritten based
on the mapping of the concepts between the
integrated view and the data sources. As soon as the
QP gets the query answer back from the data
sources and the materialized view, QP “merges” it
and returns it to the user [11]. The Metadata (MD)
module is a repository for the mapping terms for
the concepts, roles, and individuals used by both
the IV and the data sources.
3. GLOBAL AND LOCAL ONTOLOGY

Ontology helps in semantically connecting
references in relation to the context they occur.
Though it is possible to ideally visualise a Global
Ontology that encompasses everything, we believe
that creation of an Intermediate Ontology simplifies
the mapping and merging. Local ontologies enable
local groups to build, maintain and use their own
interpretation for Ontologies.
3.1 Global Ontology

We denote with AG the alphabet of terms of the
global ontology, and we assume that the global
ontology of an Ontology Information System (OIS)
is expressed as a theory G in some logic LG [2].

3.2 Local Ontologies
We assume to have a set S of ‘n’ local

ontologies S1…Sn. We denote with ASi the alphabet
of terms of the local ontology Si. We also denote
with AS the Union of all ASi’s. We assume that the
various ASi’s are mutually disjoint, and each one is
disjoint from the alphabet AG. We assume that each
local ontology is expressed as a theory Si, in some
logic LSi, and we use Sto denote the collection of
theories S1…Sn

3.3 Mapping
The mapping MG, S is the heart of the OIS, in

that it specifies how the concepts in the global
ontology and in the local ontologies map to each
other.

3.4 Semantics

Intuitively, in specifying the semantics of an
OIS, we have to start with a model of the local
ontologies. The crucial point is to specify which are
the models of the global ontology that need to be
considered [10]. Thus, for assigning semantics to an
OIS O=<G, S, MG, S>, we start by considering a
local model D for O, i.e., an interpretation that is a
model for all the theories of S. We call global
interpretation for O any interpretation for G. A
global interpretation I for O is said to be a global
model for S with respect to D if:

• I is a model of G, and
• I satisfies the mapping MG, S wrt D.

Following are the research done in data
integration [10]. The two basic approaches for
defining this mapping are as follows.

In the global-centric approach the concepts of
the global ontology G are mapped into queries over
the local ontologies in S where as in the local-
centric approach the concepts of the local
ontologies in S are mapped into queries over the
global ontology G.

4. CASE 1: LOCAL ONTOLOGIES

Two local ontologies MGI and MCK are
derived from the corresponding database of the
respective websites www.medguideindia.com and
www.medclik.com. These websites provide
information on drugs and medicines and
information on diseases and treatment.

4.1 Local Ontology I - MGI
The Drugs, Immunization and the Health

Insurance are the three major categories of the local
ontology MGI, shown in Fig. 2.

Figure 2: Classes In MGI Ontology

Classes and subclasses of MGI:
Drugs,Brand,Brand_brand,Category,Constituents_per_unit,Man
ufacturer_brand,Package_per_unit,Price_per_unit,PriceInRS_b
rand,Sno,Type_brand,Unit_brand,GenericIndication_ContraInd
ication_Precaution_Sideeffects,MatchedBrandswith_Combinatio
nOfGenerics,MatchedBrandswith_SingleGeneric,Sno_generic,M
anufacturer,Address,BrandList,Brand_Name,Constituents_per_
Unit,PackageUnit,Price_per_Unit,PriceInRS,SNo,Type,Unit,Em
ail,Fax,ManufacturerName,PhoneNo,S_No,SubDivision,URL,He
alth_Insurance,Immunization
4.1.1 Applying the axiom propery c1⊆ c2
• Axiom Property for MGI:
• MGI ⊆ {Drugs, Health_Insurance, Immunization}

MGI⊆={Drugs(Brand(Brand_brand,Category,Constitue
nts_per_unit,Manufacturer_brand,Package_per_unit,Price
_per_unit,PriceInRS_brand,Sno,Type_brand,Unit_brand),
GenericIndication_ContraIndication_Precaution_Sideeffec
ts,MatchedBrandswith_CombinationOfGenerics,MatchedB

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

444

randswith_SingleGeneric,Sno_generic),Manufacturer(Add
ress,BrandList(Brand_Name,Constituents_per_Unit,Packa
geUnit,Price_per_Unit,PriceInRS,SNo,Type,Unit),Email,F
ax,ManufacturerName,PhoneNo,S_No,SubDivision,URL),
Health_Insurance,Immunization}

• Axiom Property for Drugs:
Drugs ⊆ {Brand U Manufacturer U Generics}
Drugs⊆{(Brand_brand,Category,Constituents_per_unit,
Manufacturer_brand,Package_per_unit,Price_per_unit,Pr
iceInRS_brand,Sno,Type_brand,Unit_brand),GenericIndic
ation_ContraIndication_Precaution_Sideeffects,MatchedB
randswith_CombinationOfGenerics,MatchedBrandswith_S
ingleGeneric,Sno_generic),Manufacturer(Address,BrandLi
st(Brand_Name,Constituents_per_Unit,PackageUnit,Price
_per_Unit,PriceInRS,SNo,Type,Unit),Email,Fax,Manufact
urerName,PhoneNo,S_No,SubDivision,URL)

• Axiom Property for Brand :
Brand⊆{Brand_brand,Category,Constituents_per_unit,
Manufacturer_brand,Package_per_unit,Price_per_unit,Pr
iceInRS_brand,Sno,Type_brand,Unit_brand}

• Axiom Property for Generic:
Generic⊆{Indication_ContraIndication_Precaution_Sid
eeffects,MatchedBrandswith_CombinationOfGenerics,Mat
chedBrandswith_SingleGeneric,Sno_generic}

• Axiom Property for Manufacturer:
Manufacturer= Manufacture_br U BrandList
Axiom Property for Manufacture_br:
Manufacture_br⊆{Address,BrandList,Email,Fax,Ma
nufacturerName,PhoneNo,S_No,SubDivision,URL}
Axiom Property for BrandList :
BrandList⊆Brand_Name,Constituents_per_Unit,Packa
geUnit,Price_per_Unit,PriceInRS,SNo,Type,Unit}

4.1.2 Applying relational algebra

The ‘Drugs’ is a subclass of MGI. The ‘Project’
operation is applied to the Drugs, which is the
union of Brand, Manufacturer and Generic.

Drugs =
∏Brand_brand,Category,Constituents_per_unit,Manufact
urer_brand,Package_per_unit,Price_per_unit,PriceInRS_
brand,Sno,Type_brand,Unit_brand (Brand) U
∏Indication_ContraIndication_Precaution_Sideefects,Ma
tchedBrandswith_CombinationOfGenerics,MatchedBrands
with_SingleGeneric,Sno_generic(Generic) U
∏Address,BrandList(),Email,Fax,ManufacturerName,Pho
neNo,S_No,SubDivision,URL (Manufacturer)

4.1.3 Applying the axiom property II to MGI

Constructor : hasClass and hasValue
DL Syntax : Ǝ P.C and Ǝ P. {X}
Pattern : Ǝ Local Ontology. hasClass. {f1,
f2, f3…fn} where fi, f2, f3…fn indicates Fields

Ǝ { f1, f2, f3…fn }.hasValue{ f1 values, f2
values… fn values}: Ǝ hasChild.{MGI}
Ǝ {MGI}. {a,b,c,d……..}
Example:

• Ǝ { MGI }.{Sno, Manufacturer_brand, Brand_brand,
Type_brand,,Category,Unit_brand,Package_per_unit,Price
InRs_brand,Price_per_unit,Constituents_per_unit}

Figure 3: RDF For MGI Ontology

4.2 Local Ontolgoy II - MCK
The major categories of MedClick (MCK)-

DrugSearch are Indexwise, Genericwise,
Brandwise, Active Ingredients and Manufacturers.
These are shown in Fig. 4.

Figure 4: Classes In MCK Ontology

Classes and subclasses of MCK:

DrugSearch,BrandWise,Active_Ingredients,Brand_Name,Classif
ication,Combination,List_All_Brands,Manufacturer,Package_P
er_Unit,Pharmacology,Price,Type_of_Brand,Unit,GenericWise,
Indexwise,Manufacturers

4.2.1 Applying the axiom propery c1⊆ c2
• Axiom Property for MCK:
• MCK⊆{DrugSearch,GenericWise,IndexWise,Manufactu

rers}
MCK⊆{DrugSearch(Active_Ingredients_DS,BrandWise(
Active_Ingredients,Brand_Name,Classification(Generic_In
formation),Combination(Chemical_Combination),List_All
_Brands(Active_Ingredients_LAB,Brand_Name_LAB,Ma
nufacturer_LAB,Package_Per_Unit_LAB,Price_LAB,Typ
e_LAB,Unit_LAB),Manufacturer,Package_Per_Unit,Phar
macology(Actions,Adverse_Effects,Alerts,ContraIndicatio
ns,Dosage,General_Info,Indications,Interactions,List_All,
Others,Special_Precautions),Price,Type_of_Brand,Unit)
,GenericWise,IndexWise,Manufacturers }

• Axiom Property for DrugSearch :
DrugSearch ⊆ {Active_Ingredients_DS, BrandWise}

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

445

DrugSearch⊆{Active_Ingredients_DS,BrandWise(Act
ive_Ingredients,Brand_Name,Classification(Generic_Infor
mation),Combination(Chemical_Combination),List_All_B
rands(Active_Ingredients_LAB,Brand_Name_LAB,Manuf
acturer_LAB,Package_Per_Unit_LAB,Price_LAB,Type_L
AB,Unit_LAB),Manufacturer,Package_Per_Unit,Pharmac
ology(Actions,Adverse_Effects,Alerts,ContraIndications,D
osage,General_Info,Indications,Interactions,List_All,Other
s,Special_Precautions),Price,Type_of_Brand,Unit)}

• Axiom Property for BrandWise:
BrandWise⊆{Active_Ingredients U Brand_Name U
Classification U Combination U List_All_Brands U
Manufacturer U Package_Per_Unit U Pharmacology U
Price U Type_of_Brand U Unit}
o BrandWise⊆{Active_Ingredients,Brand_Name,C

lassification(Generic_Information),Combination(Che
mical_Combination),List_All_Brands(Active_Ingredi
ents_LAB,Brand_Name_LAB,Manufacturer_LAB,P
ackage_Per_Unit_LAB,Price_LAB,Type_LAB,Unit_
LAB),Manufacturer,Package_Per_Unit,Pharmacolog
y(Actions,Adverse_Effects,Alerts,ContraIndications,
Dosage,General_Info,Indications,Interactions,List_Al
l,Others,Special_Precautions),Price,Type_of_Brand,
Unit}

• Axiom Property for List_All_Brands :
List_All_Brands⊆{Active_Ingredients_LAB,Brand_
Name_LAB,Manufacturer_LAB,Package_Per_Unit_LAB,
Price_LAB,Type_LAB,Unit_LAB }

• Axiom Property for Pharmacology:
Pharmacology⊆{Actions,Adverse_Effects,Alerts,Con
traIndications,Dosage,General_Info,Indications,Interaction
s,List_All,Others,Special_Precautions }

4.2.2 Applying Relational Algebra

The MCK ontology has a ‘Brandwise’ subclass.
The ‘Project’ operation is applied to this subclass
with details as listed below.

 BrandWise=
∏ Active_Ingredients (Active_Ingredients) U
∏Brand_Name (Brand_Name) U
∏ Classification ,Generic_Information (Classification)
U ∏Combination,Chemical_Combination(Combination)
U
∏List_All_BrandsActive_Ingredients_LAB,Brand_Name
_LAB,Manufacturer_LAB, Package_Per_Unit_LAB,
Price_LAB,Type_LAB,Unit_LAB (List_All_Brands) U
∏Manufacturer (Manufacturer) U
∏Package_Per_Unit (Package_Per_Unit) U
∏Pharmacology,Actions,Adverse_Effects,Alerts,ContraI
ndications,Dosage,General_Info,Indications,Interactions,Li
st_All,Others,Special_Precautions (Pharmacology) U
∏ Price (Price) U
∏ Type_of_Brand (Type_of_Brand) U

∏ Unit (Unit)
4.2.3 Applying the axiom property II to MCK:

Constructor : hasClass and hasValue
DL Syntax : Ǝ P.C and Ǝ P. {X}
Pattern : Ǝ Local Ontology. hasClass. {f1,
f2, f3…fn} , Where fi,f2,f3…fn indicates Fields

Ǝ { f1, f2, f3…fn }.hasValue{ f1 values, f2
values… fn values} :E hasChild.{MCK}
Ǝ {MCK}.{a,b,c,d……..}
Example:

• Ǝ {Manufacturer }.{ Juggat Pharma Ltd,FDC
Limited, Octavia Labs,Winmac Laboratories
Limited, A Parenterals Ltd, Hallmark
Formulations Pharmaceuticals, Albert David
Limited}

• Ǝ {Brand_Name}.{ AL (30 ml), 2 CLOX}

4.2.4 Adopted Property: Graph

G:=(N,E), where N=<C> and E=<is-a>, Where G
is acyclic directed rooted graph. It consists of nodes
and edges. Each node is a concept (or instance of a
concept). Each edge has “is-a” relation

4.2.5 Querying with SPARQL

To query the local ontologies MGI and MCK,
we propose a query execution with the traversal of
RDF links to discover data that might be relevant to
answer the query. By our approach the number of
instances used for the efficient query retrieval is
very much reduced. In the context of classic
SPARQL, the knowledge base can be used to relate
search terms to entities and to improve search
results based on Ontologies conceptual structure.
The utility of the knowledge base as interlinking
hub for the Web of Data is demonstrated by the
SPARQL and RDF Links [8].

5 CASE 2: GLOBAL ONTOLOGY

The global ontology formed using the instances
of MGI and MCK. Global Ontology XY is formed
as the UNION of the Local Ontologies. The
common element is retrieved by using the notation
X U Y.

Global ontology = MGI U MCK

The global ontology is built by unioning the
local ontologies through working on their RDF
models. It can be done equally well on the OWL
model also.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

446

5.1 RDF Dataset

An RDF dataset [13] is a set D = {G0, hu1,G1i,
. . . , hun,Gni} where G0, . . . ,Gn are RDF graphs,
u1, . . . , un are IRIs, and n ≥ 0. In the dataset, G0 is
the default graph, and the pairs hui,Gii are named
graphs, with ui the name of Gi. Every dataset D is
equipped with a function dD such that dD(u) = G if
hu,Gi ∈ D and dD(u) = ∅ otherwise. Additionally,
name(D) stands for the set of IRIs that are names of
graphs in D, and term (D) and blank(D) stand for
the set of terms and blank nodes appearing in the
graphs of D, respectively. For the sake of
simplicity, we assume that the graphs in a dataset
have disjoint sets of blank nodes, i.e. for i 6= j,
blank(Gi) ∩ blank(Gj) = ∅

5.2 Mapping

A mapping μ from V to T is a partial function μ
: V → T. The domain of μ, dom(μ), is the subset of
V where μ is defined. The empty mapping μ∅ is a
mapping such that dom(μ∅) = ∅ (i.e. μ∅ = ∅).

 The RDF mapping API allows the data for easy
re-use by mapping bundles to RDF types and fields
to RDF predicates. This abstract mapping can then
be used to publish the content contained in these
bundles, enabling the data to be serialised into a
number of different formats, such as RDF,
RDF/XML, or populate a SPARQL endpoint.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-
rdf-syntax-ns#>
SELECT ?Sno ?Manufacturer_brand
?Brand_brand ?Type_brand ?Category
?Unit_brand ?Package_per_unit
?PriceInRs_brand ?Price_per_unit
?Constituents_per_unit ?Manufacturer
?Brand_Name ?Type_brand ?Category ?Unit
?Package_Per_Unit ?Price ?Active_Ingredients
?Combination ?Classification ?Pharmacology
FROM <RDF>
WHERE { {?x rdf:type foaf:brand .
?x foaf:Sno ?Sno . ?x foaf:Manufacturer_brand
?Manufacturer_brand . ?y rdf:type
foaf:BrandWise
?y foaf:Manufacturer ?Manufacturer . ?y
foaf:Brand_Name ?Brand_Name .
FILTER (?Brand_brand = ?Brand_Name) . }
ORDER BY ASC(?Brand_Name) LIMIT 50

Figure 5: SPARQL query for Global Ontology

Figure 6: RDF Graph of GLOBAL Ontology

6 CASE 3: INTERMEDIATE ONTOLOGY

 The intermediate ontology is formed through
the application of the WeGO algorithm which
checks the semantic equivalence of nodes in MGI,
MCK and the global ontology.

6.1 The WeGO Algorithm

The Weighted Global Ontology Algorithm uses
a simple method of matching entities by comparing
the location on the ontology tree. Procedure ‘find’
first checks whether exactly two nodes are present
with the same name in both graphs by using
procedure ‘compare’, and returns if successful. If
not, the flag is set to search based upon the synsets
of nodes values. Procedure ‘compare’ uses Breadth
First Search (BFS) methodology. It works by en-
queuing the root node. The node is de-queued for
examination, if the element sought is found in this
node, then the element is passed to the procedure
‘searchGraph’ and checked whether the node value
from ‘searchGraph’ is equal to the value of the
current element. If the values are equal, the search
is returned along with their weights, otherwise
enqueue any successors (the direct child nodes) that
have not yet been discovered. If the queue is empty,
every node on the graph has been examined – quit
the search and return "null". Repeat until the queue
is not empty. The procedure ‘searchGraph’ uses
BFS to navigate through all its nodes. The flag
‘exactMatch’ decides whether to use the synsets of
the corresponding node value or only the node
value. Procedures ‘isSimilarEntities’ and
‘getSynsets’ retrieve the synsets of a particular
node value from the Wordnet database which is
used upon by the calling procedure
‘searchGraph’.On successful matching of node
values, procedure ‘find’ returns the node values
along with the corresponding weights from both the
graphs in the defined ‘word’ structure.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

447

procedure find(G, G', word):
valueFound = compare(G,G',word,true)
if(valueFound!=null)
return valueFound
valueFound = compare(G,G',word,false)
if(valueFound!=null)
return valueFound
return null

procedure compare(G, G', word, exactmatch):
depth ← 0
create a queue Queue_G
enqueue root_G onto Queue_G
mark root_G
while Queue_G is not empty:
t ← Queue_G.dequeue()
t.weight_G ← depth

if (t == word.value)
foundWord ← searchGraph(G',t,exactMatch)
if(foundWord.value == t):
t.weight_G' ← foundWord.weight_G'
return t
for all edges edge_G in G.adjacentEdges(t) do
nextVertex_G ← G.adjacentVertex(t,edge_G)
if nextVertex_G is not marked:
mark nextVertex_G
enqueue nextVertex_G onto Queue_G
depth ← depth + 1
return null

procedure searchGraph(G', wordToBeFound,
exactMatch):
depth ← 0
create a queue Queue_G'
enqueue wordToBeFound onto Queue_G'
mark wordToBeFound

while Queue_G' is not empty:
currentWord ← Queue_G'.dequeue()
currentWord.weight_G' ← depth
if (exactMatch):
if (currentWord.value ==
wordToBeFound.value):
return currentWord
else
if(isSimilarEntities(wordToBeFound.value,curren
tWord.value)):
return currentWord
for all edges edge_G' in
G'.adjacentEdges(currentWord) do
nextVertex_G' ←
G'.adjacentVertex(currentWord,edge_G')
if nextVertex_G' is not marked:

mark nextVertex_G'
enqueue nextVertex_G' onto Queue_G'
depth ← depth + 1
return null

procedure isSimilarEntities(baseEntity,
candidateEntity):
baseSynsets ← getSynsets (baseEntity)
if (baseSynsets.contains(candidateEntity)):
return true
return false

procedure getSynsets(entity):
WordNetDatabase database ←
WordNetDatabase.getFileInstance()
Synset[] synsets ← database.getSynsets(entity)
while i less than synsets.length():
String[] wordForms ←
synsets[i].getWordForms()
while (j less than wordForms.length():
synsetData.add(wordForms[j])
return synsetData

Figure 7: WeGO Algorithm for Ontology

The Fig. 9 and Fig. 10 depict the nodes of local
ontologies MGI and MCK. The java application
which executes the WeGO algorithm, automatically
detects the nodes and their levels in the graph. The
‘Value’ and the ‘Level’ of the tree are indicated as a
graph (MGI) in Fig. 8 below.

Figure 8: Ontology Tree of MGI

The node which is to be tested is given as input
in the graph. The application give the semantic
equivalent in the graph (MCK) and its relevant
structure. From the axiom of DAML+OIL in
conjunction with the algorithm, the application
produced the following semantic classes that were
found to match between MGI and MCK.

• Manufacturer_brand ≡ Manufacturer
• Type_brand ≡ Type_of_Brand

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

448

• Unit_brand ≡ Unit
• Active_Ingredients ≡ Constituents_per_unit
• Package_Per_Unit ≡ Package_per_unit
• PriceInRs_brand ≡ Price
• Brand_brand ≡ Brand_Name

 Results for the following matchings have been
tabulated to illustrate the
• Brand _ brand≡ Brand _Name
• Manufacturer_brand ≡ Manufacturer
• Type_brand ≡ Type_of_Brand

6.2 Evaluation Terms Used

6.2.1 Evaluation semantics
We define eval (D(G), graph pattern) as the

evaluation of a graph pattern with respect to a
dataset D having active graph

• G. The active graph is initially the default
graph. The active graph is used to match
the pattern unless otherwise stated.

• D : a dataset
• D(G) : D a dataset with active graph G

(the one patterns match against)
• D[i] : The graph with IRI i in dataset D
• D[DFT] : the default graph of D

6.2.2 Filter
Let Ω be a multiset of mappings and ‘expr’ be

an expression. We define:
• Filter (expr, Ω) = { μ | μ in Ω and expr(μ)

is an expression that has a boolean
effective value of true }

• card [Filter(expr, Ω)](μ) = card[Ω](μ)
6.2.3 Join

Let Ω1 and Ω2 be multisets of mappings. We
define:

• Join(Ω1, Ω2) = { merge(μ1, μ2) | μ1 in
Ω1and μ2 in Ω2, and μ1 and μ2 are
compatible }

• card[Join(Ω1, Ω2)](μ) = sum over μ in (Ω1
set-union Ω2), card[Ω1](μ1)*card[Ω2](μ2)

6.2.4 Evaluation of Join (P1, P2, F)
• eval(D(G),Join(P1,P2)) = Join(eval(D(G),

P1), eval(D(G), P2))
• eval(D(G),Join(P1,P2), F) = Filter(F, Join(

eval(D(G), P1), eval(D(G), P2)))
6.2.5 Solution modifiers

The notations used in the SPARQL after parsing
are as follows.

• DISTINCT
• PROJECT
• ORDER BY
• LIMIT/OFFSET

The intermediate ontology is tested with the
three different cases.

• Brand: {Brand _ brand≡ Brand _Name}
• Manufacturer:{Manufacturer_brand≡

Manufacturer}
• Type:{Type_brand ≡ Type_of_Brand}

For the above semantic classes 1192 sets of
intermediate record set are tested. The equivalent
sets if records in the second ontology are tested
against the Local Ontology 1. The total number of
result set obtained in case 1 and case II are
equivalent to the case III

By using the Intermediate Ontology the results
obtained are found to be similar to the Case 1 –
Local Ontologies and Case 2 – Global Ontology.

6.3 Comparative Query Analysis of Ontologies

The local ontologies MGI and MCK are taken
for analysis. For deriving the intermediate
ontology, the common elements are retrieved and
all the instances of the common elements are
included. If X and Y are two local ontologies, then
common elements are retrieved by using the
notation X ∏ Y.

The global ontology was formed by the union of
local ontologies MGI and MCK. Intermediate
ontology is formed using the instances of MGI and
MCI. If X and Y are two local ontologies, then the
global ontology XY is formed as indicated by the
notation X U Y.
• No. of instances in local ontology - 32
• No. of instances in global ontology - 28
• No. of instance in intermediate ontology - 08

The total number of elements tested with the
Brand is 211, with Manufacturer is 111 and with
Type is 39.

7. CONCLUSION

A web with better defined semantic languages,
with an increased expressivity and a wide area of
covered domains, used everywhere in the simple
possible way, in different corporations by non-
expert users, will be the focus of future web
applications. The authors believe the present work
will contribute to such developments. Ontology
mapping is concerned with reusing existing
ontologies, expanding and combining them by
some means and enabling a larger pool of
information and knowledge in different domains
[14] to be integrated to support new communication
and use.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

449

The work discussed in this paper shows a
simple approach that forms the basic building block
in forming a comprehensive ontology from such
local ontologies. Ontology evolving, likewise, is
concerned with maintaining existing ontologies and
extending them as appropriate when new
information or knowledge is acquired. This can be a
starting point in integrating smaller intermedaiate
ontologies to arrive at a truly global ontology
through iterative methods that can evolve in future
research work.

REFERENCES

[1] Noy N, Musen M Anchor-PROMPT: Using

non-local context for semantic matching. Proc.
IJCAI 2001 workshop on ontol. and inform.
sharing, Seattle (WA US). pp. 1-2. (2001).

[2] Peter Haase, Boris Motik: A mapping system
for the integration of OWL-DL ontologies.
IHIS 2005: 9-16

[3] Choi N., Song I. Y., and Han H. A survey on
ontologymapping. Sigmod Record, 2006.

[4] Bouquet, P., Euzenat, J., Franconi, E., Sera¯ni,
L.,Stamou, G. & Tessaris, S. (2004a),
Specification of a common framework for
characterizing alignment, Deliverable 2.2.1,
Knowledge web NoE

[5] Giuseppe Pirrò, Domenico Talia: UFOme: A
User Friendly Ontology Mapping
Environment. Proc. of the 4th Workshop on
Semantic Web Applications and Perspectives
(SWAP) 2007

[6] Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, Riccardo Rosati, and Marco
Ruzzi, “A Framework for Ontology
Integration”, In Isabel Cruz, Stefan Decker,
Jérome Euzenat, and Deborah McGuinness,
editors, The Emerging Semantic Web _
Selected Papers from the First Semantic Web

Working Symposium, volume 75 of Frontiers
in Artificial Intelligence and Applications,
pages 201-214. IOS Press, 2002

[7] Seddiqui MH, Aono M. Anchor-Flood: Results
for OAEI. Int. Semantic Web Conference
2009. pp. 2-3.

[8] David J, AROMA results for OAEI.
Int.Semantic Web Conf. 2009. pp. 1-2. (2009).

[9] Isabel F. Cruz, Huiyong Xiao, and Feihong
Hsu. An Ontology-based Framework for XML
Semantic Integration. In Proceedings of the 8th
International Database Engineering &
Applications Symposium (IDEAS 2004), pp.
217-226, 2004.

[10] Raji Ghawi, Nadine Cullot, Database-to-
Ontology Mapping Generation for Semantic
Interoperability”, VLDB ’07, September 23-28,
2007, Vienna, Austria.

[11] C. Roussey, V. Soulignac, J-C Champomier,
V. Abt, J-P Chanet ,” Ontologies in
Agriculture”, AGENG 2020 Conference,
Septembre 6-8 2010, Clermont-Ferrand,
France.

[12] Noy N, Doan A Semantic Integration. AI
Magazine Special Issue on Semantic
Integration. 26(1):7-9. (2005).

[13] Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, Riccardo Rosati, and
MarcoRuzzi. “Data integration through DL-
LiteA ontologies”. In Klaus-Dieter Schewe and
Bernhard Thalheim, editors, Revised Selected
Papers of the 3rd Int. Workshop on Semantics
in Data and Knowledge Bases (SDKB 2008),
volume 4925 of Lecture Notes in Computer
Science, pages 26-47. Springer, 2008.

[14] Ding Y, Foo S. Ontology research and
development. Part 2 - A review of ontology
mapping and evolving. Journal of Information
Science 2002; 28:375-388.

Table 1: Comparison of Records,Instances and Intermediate Elements
(Total Number of Record Sets Tested: 1192)

Class Semantic Classes
Total No. of Records Retrieved Total No. of. Instances Total.No.of

Intemediate
elements tested
under each category Local Global Intermediate Local Global Intermediate

Manufa
cturer

Manufacturer_brand
≡ Manufacturer

62 62 62 32 28 8 111

Brand Brand_brand
≡Brand _Name

26 26 26 32 28 8 211

Type Type_brand
≡Type_of_Brand

99 99 99 32 28 8 39

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

450

Figure. 9: Protégé Model of MGI

Figure. 10: Protégé Model of MCK

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

451

Figure 11: Comparison- No. of Instances of Local, Global and Intermediate Ontology

Figure 12: Comparison - Query results from Local, Global and Intermediate Ontology

Number of Instances

0

5

10

15

20

25

30

35

Local Global Intermediate

No of instances

0

50

100

150

200

250

 Local Ontology
Instances

Global Ontology
Instances

Intermediate
ontology Instances

Number of Elements

Brand
Manufacturer
Type

http://www.jatit.org/

	6.2.5 Solution modifiers
	The notations used in the SPARQL after parsing are as follows.

