
Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

432

 INTRODUCING THE OPEN SOURCE METAMODEL
CONCEPT

AHMED MOHAMMED ELSAWI1, SHAMSUL SAHIBULDIN2, ABDELHAMID ABDELHADI3
1,2,3 Software Engineering Department, Faculty of Computing, UniversitiTeknologi Malaysia, Malaysia

E-mail: 1elsawi@gmail.com, 2shamsul@utm.my, 3abhamidhn@uofk.edu

ABSTRACT

The Model Driven Architecture (MDA) is a model centric software engineering methodology that aiming to
enhance software productivity, reusability, maintainability and quality by focusing on models and
metamodels in place of conventional code. By adopting the separation of concern these models defined in
different levels of abstraction where each model syntactically conforms to a particular metamodel. Under
the MDA context this work presents a novel approach for representing models and metamodels. Benefiting
from the knowledge representation capability and the open structure of the Entity Attribute Value (EAV)
model, we represent metamodels and its instance models in a single EAV designed repository in to support
of model transformations and introducing a new concept of what we call it an Open Source Metamodel.
Also this work demonstrate an integration between UML static and behavioral models.

Keywords : Metamodel Representation, Model Representation, Entity-Attribute-Value, EAV, Open Source
Model, MDA.

1. INTRODUCTION

Early, in software development lifecycle, models
have been employed to address structural elements
in the design phase, as well as in the testing phase
for models checking and verification. Although,
these stages are tightly interconnected with each
other, but the absence of a unified way to express
different level of abstraction concepts limited the
use of models for design and system documentation
[1].The Model Driven Architecture use Models and
Metamodels as a keystone in software development
process. The metamodel represents the conceptual
model of a design language, while the instance
generated from such particular design in a design
language is called Instance Model [2]

The development lifecycle in MDA divided to
platform independent model (PIM) and platform
specific models (PSM). Both models are working in
different level of abstractions[3]. UML/MOF are a
common OMG standard tools that normally used in
model driven development to design models and
metamodels. Model transformation is one of the
main activity in model driven software that
normally serve in transform high level models to
low level models using model transformation tools
such as Query-View-Transformation (QVT) and
Atlas Transformation Language (ATL). Together
with Computer Aided Software Engineering
(CASE) tools UML and other transformation tools

are closely related to database schema. The
database supporting such tools is often called a
repository[4].

MDA Models can be expressed visually or
textually[5].The visual representation of models is
normally concerned with the functional
requirements. Hence, in some cases some non-
functional requirements can be addressed through
transformation rules or at the level of the model by
the adoption of UML Profiles and/or Templates[6].
For the textual representation of models,[5, 6]
suggested the embedding of the transformation
rules at the model level in an XMI textual
annotation to cover both, functional and non-
functional requirements. Typical model
representations (Visual and Textual)are imprecise,
incomplete, lack models interoperability, and as
such do not lead to running applications[1].

In this paper we propose a novel approach for
representing models and metamodels using the
Entity-Attribute-Value (EAV)concept [7]. The
approach combined both, models and metamodels
representation in a single EAV designed repository.
Announcing the born of new concept called an
Open Source Metamodel.

In Section 2 of this paper, list out the related
work. The Entity-Attribute-Value concept
highlighted in Section 3. Section 4 presents Models
and Metamodels representation. In Section 5 we

http://www.jatit.org/
mailto:elsawi@gmail.com
mailto:2shamsul@utm.my
mailto:3tonianwar@utm.my
mailto:3tonianwar@utm.my

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

433

introduced the Open Metamodel Concept. The
results and discussion is in Section 6. Conclusions
and future work are discussed in section 7.

2. RELATED WORKS

The work on[2]is closely related to our work.

However, both models and metamodels presented
separately using a conventional database model.
While our work combined metamodels with their
instant models by employing EAV concept,
benefiting from its open structure flexibility, as
there are no limits on number of attributes per
entity. Therefore, there is no need to redesign the
schema upon models or metamodels grow. Also the
self-describing data and the simple physical data
format of EAV make it much practical when
representing models and metamodels. This is beside
the ‘‘Object-at-a-time’’ queries against a highly
complex logical schema that are significantly easier
to implement with EAV than with conventional
structure.

3. ENTITY-ATTRIBUTE-VALUE CONCEPT

EAV is widely used in the medical and clinical

information system as a general purpose means of
knowledge representation. The Attribute-value
pairs concept are an esteemed way of representing
information on an object, originated on 1950s on
the LISP association lists[7]. An example of
attribute-value pairs showing a particular student
information would be: ((IndexNoA3)
(ProgramCS101) (GPA3.1) (Year2012) (Status
Active)).

Unlike the conventional database the EAV design
does not support or conform to rules of database
normalization [8], where the attribute-value pairs
become triples with the entity (the thing being
described, identified with a unique identifier of
some sort) repeating in each row of a table.

Extensible Markup Language (XML) [4] syntax
is related to attribute-value pairs. XML elements,
delimited within open- and close-tags for ease and
accuracy of parsing, can represent either entities or
attributes. They can contain sub-elements nested to
arbitrary levels; sub-elements may be regarded as
attributes with complex structure. For convenience,
atomic data describing an entity may also be
represented within an element's open-tag as
attribute-value pairs, each component of a pair
being separated by an equal sign.

4. MODEL AND METAMODEL
REPRESENTATION

In this part we are presenting how we represents
models and metamodels in EAV format. Figure 1
show our instance model that we designed by a
simple State Machine design language for an
application in which Passengers buy tickets at the
time they obtain reservations. At check-in time they
obtain boarding cards if there are still seats
available. Due to over booking of flights they may
be rescheduled on later flights.

Figure 1: A State Machine Model For Airline

Passenger

Some of the information in the Airline Passenger
model is implicit. In this situation, we need to
interpret the graphical objects in the diagram, which
we do by consulting the documentation of the State
Machine modeling language and its particular
representation in this case.

Here, there are three types of object:

States, represented by ovals, each of which has a
name, represented by the text contained in the oval.

Transitions, represented by arrows. A transition
is from a source state (represented by the plain end
of the arrow) to a target state (represented by the
end of the arrow with an arrowhead).

Events, each of which is associated with a
transition. An event is represented by a name near
the arrow representing the associated transition. The
diagram contains five instances of State: Passenger

A metamodel representing the concept in Figure
1 is shown in Figure 2, represented as a UML
Classes diagram. Note that the instances in the
diagram of Figure 1 do not appear in the metamodel
of Figure 2. Note also the metaclass
NamedElement, which is a superclass of the meta-
classes State and Event. The states and events of
Figure 1 are all named. The metaclass
NamedElement supplies an attribute name to its
subclasses.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

434

Figure 2: UML Class Diagram for State Machine

Metamodels are closely related to database
schemas. Instances of the concepts specified in the
model are stored in a database specified by the
schemas developed from the metamodel. Figure 3
shows the instances in the class list of Figure 1
represented in a database whose schema is
developed from the metamodel of Figure 2.

Notice that the population of the database in
Appendix C consists entirely of tuples of literals.
Each column of each table is relational attribute of a
literal type. A column in a table is ultimately
derived from a literal-valued attribute in the UML
Classes model of Appendix B. We can think of the
population of the database as a collection of literals
organized according to the classes, associations and
attributes in the Classes model.

In the same way, the instances in the Airline
Passenger model of Figure 1 can be represented as a
population of a database whose schema is
developed from the metamodel of Figure 2, as
shown in Appendix A. (Abbreviation used for more
space). This database is the repository of a
modelling tool supporting the simple State Machine
design language. Here the columns are all derived
from the name attribute of the class NamedElement
in Appendix A. This conventional representation
for the database tables State and Event, where they
have only one column, name. The table Transition
has three columns, all foreign keys. Two are
derived from the name attribute of the class State
and one from the name attribute of the class Event.
Without the attribute name in NamedElement, it
would be impossible to create a repository schema
that would record the Airline Passenger model of
Appendix A.

A further issue is that a relational schema
requires that for each table certain attributes be
declared to be the key for the table. That is, a row in
the table can be identified by looking at the values
of the key attributes. Knowing the values of the key
attributes, we can look in the table to find the values
of the other attributes in the row. Some

metamodeling languages allow the specification of
identifiers[9]. Entity-Relationship Modeling
[10]and Object-Role Modeling [11] both support
identifiers. UML, however, does not [2]. If UML is
used as the metamodeling language, then additional
information must be supplied to designate some
attributes in the repository schema to be keys.

In the STM repository of Appendix A, the tables
State and Event both have the attribute name as key,
while the Transition table has a key composed of
the three attributes source, target and
TRIGEREDBY.

Once we have a schema and a population for an
application, we can use the query language
associated with the database system to make queries
about the population. Queries are typically about
the semantics of the application. Nevertheless, any
change on the metamodel in Figure 2 should by
reflected on its instance model in Figure 1 and
consequently in the database in Appendix A.
However, because of the conventional database
structure a Data Definition Language (DDL)
statements should be used. For example to add new
attribute to the table Event or State an Alter table
statement should be employed. Which normally
done by the model designer who’s not necessary the
one who is doing the development. On the other
hand, most of the modelling tools does not allowing
any changes on their main metamodel on which
they developed based on it. To overcome this
limitation a dynamic structure employed to replace
the conventional schema in Appendix A by EAV
structure in Appendix B. The open structure of
EAV treat all the tables in the conventional schema
as a tuple entry in a single EAV table. The thing
that gives more control in managing models
dynamicity, upgrade and maintenance.

Structure-oriented queries are important in
Modelling tool applications. For example, a state
machine can have an initial state (a state with no
transitions in) or a final state (a state with no
transitions out). These states can be identified
respectively by the following two views
CREATE VIEW InitialState(StateName) AS(
SELECT A.Value_ FROM EAV A
Where A.ENTITY = 'STATE' AND A.ATTRIBUTE =
'NAME'
AND
A.Value_ NOT IN (
SELECT B.Value_ FROM EAV B
WHERE
 B.ENTITY = 'TRANSITION'

AND
B.ATTRIBUTE = 'TARGET'))

CREATE VIEW FinalState(StateName) AS(

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

435

SELECT A.Value_ FROM EAV A
Where A.ENTITY = 'STATE' AND A.ATTRIBUTE =
'NAME'
AND
A.Value_ NOT IN (
SELECT B.Value_ FROM EAV B
WHERE
 B.ENTITY = 'TRANSITION'

AND
B.ATTRIBUTE = SOURCE))

The above two views return no data because the
state machine in Figure 1 is cyclic. Hence, we
interested to validate whether our state machine
design is entirely cyclic, with neither initial nor
final states.
CREATE VIEW CyclicModel(Cyclic) AS
SELECT "Cyclic" FROM State WHERE

NOT EXISTS SELECT * FROM
InitialState

AND
NOT EXISTS SELECT * FROM FinalState

In particular, Modelling Tool repositories are

intended to store designs, which are often expressed
in graphical languages (like UML). The two-
dimensional nature of graphical languages makes it
relatively easy to have a design language where the
design concepts are expressed as a complex
structures. These complex structures generally have
formation rules (Constrains), which can be checked
by structural queries. Structural queries therefore
are more important for modelling tools than for
general database applications.

An example of a design language (metamodel)
with complex structures having constrains is our
simple State Machine language of Figure 2. An
instance of Transition is necessarily linked to two
instances of State and one instance of Event. A
structural query whose result is violations of this
constrain is

SELECT * FROM EAV A WHERE

A.ENTITY = 'TRANSITION' AND

NOT EXIST(

SELECT * FROM EAV B WHERE B.ENTITY =
'STATE'

AND B.ATTRIBUTE = 'NAME'

AND B.VALUE_ IN

(SELECT B1.VALUE_ FROM EAV B1 WHERE

B1.ENTITY = 'TRANSITION'AND

B1.ATTRIBUTE ='SOURCE')

AND

SELECT * FROM EAV C WHERE C.ENTITY =
'STATE'

AND C.ATTRIBUTE = 'NAME'

AND C.VALUE_ IN

(SELECT C1.VALUE_ FROM EAV C1 WHERE

C1.ENTITY = 'TRANSITION'AND

C1.ATTRIBUTE ='TARGET')

 AND

SELECT * FROM EAV D WHERE D.ENTITY =
'EVENT'

AND D.ATTRIBUTE = 'NAME'

AND D.VALUE_ IN

 (SELECT D1.VALUE_ FROM EAV

D1 WHERE D1.ENTITY = 'TRANSITION'AND

D1.ATTRIBUTE ='TRIGEREDBY')

)

Additional constrains can be added in to a given
design, for example that there be exactly one initial
state and exactly one final state, or that there be no
isolated states.

Some modeling languages allow constraints to be
represented by annotations on the model, but it may
not tell a designer how to concretely represent a
design. For example, the UML model of Figure 2
does not tell the designer enough to be able to
represent the design of the Airline Passenger state
model so that it looks like Figure 1. To do this, the
conceptual model must be augmented by some
rendering conventions. However, we are
implementing this by joining both model and
metamodel presented in Figure 1 and Figure 2
respectively in a single EAV structure, shown in the
next part.

5. THE OPEN SOURCE METAMODEL

In this part we combining a Metamodel in Figure
2 with its Instance Model in Figure 1. Since the
documentation one of the modelling purpose, we
add some basic information about the model.
Appendix C presented the state machine in Figure
1 combined with its metamodel in Figure 2.

The Entity column in the above EAV structure
can include several attributes separated by “.” to
address different areas in the representation of the
models and metamodels. To realize this the Entity
“Metmodel.Elmnt.NameElmnt.EVNT” and
”Metmodel.Elmnt.NameElmnt.State” can be
queried to list the correspondence data that
inherited from the NameElmnt at the metamodel
level as well as the model level as per below query.

SELECT * FROM EAVRepository

WHERE

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

436

ENTITY
LIKE('Metamodel.Elmnt.NameElmnt%')

Different scenarios can be implemented where
the instant model can be addressed without the
metamodel or vice versa. That’s why it is advisable
to create different views for each area of interest.
1:

2:

3:

4:

5:

6:

7:

8:

9:

</EAV>

<EAV>

<Row

ENTITY="Metmodel.Elmnt.NameElmn.EVNT
"

 ATTRIBUTE="NAME"

 VALUE_="complete"

 />

</EAV>

Figure 3: A Fragment Of A Combined Metamodel
With Its Instance Model In Single EAV XMI Repository

The MDA tools along with other modelling tools
support the XML/XMI format to support the
interoperability, model interchange and code
generation. The SQL/XML standard is ISO/IEC
9075–14:2005(E), Information technology –
Database languages – SQL – Part 14: XML-Related
Specifications (SQL/XML). As part of the SQL
standard, it is aligned with SQL:2003 [3]. Figure 3
show apart from an XML representation to the
EAVRepository table.

6. RESULTS AND DISCUSSION

Metamodels are combining a set of concepts and

corresponding mechanisms that allow to "model"
formally different contexts (e.g. #business
processes/activities) with the same point of view.
Similar to the open source software concepts,
having suchcapability of representing metamodels
and its instance models in an XML/XMI format in a
single repository enables for instance, to manage
models formalizing each one subset of an overall
operational context, keeping it consistent with the
others.

Therefore, consistency between models
presenting the same type of point of view is one of
the key interest of having one metamodel and
models in the same repository. This EAV structure
is capable to handle several metamodels in a single
repository as well. Of course, this makes sense on
condition that each metamodel address a point of
view different from the points of views of the other
metamodels. Having this capability, one can

represent different points of views of the same
context.

Normally, it is hard to validate the correctness of
the models before development. So, the
communication between the artifact designer and
the developer is very crustal. Hence, it is hard to
keep the models and development artifacts in
synchronization during the development and
maintenance phases. The open source metamodels
concepts gives better control and quality on
metamodels and its generated models: when
defining and changing the metamodel it possible to
immediately check how it influences to the models.
This gives immediate feedback, testability and
incremental metamodel definition. This is in sharp
contrast to the ways how metamodels are defined in
some standardization organizations where
metamodels are not executed or tested with models
(but stay as a document).

This is beside the great support to the model
evolution: with proper mechanisms in place there is
a flexibility to ensure that models will work, open
in editors, produce the code etc. with the newer
metamodel too (e.g. updates automatically the
models to the new metamodel).

There are also other advantages like faster
metamodel/language development, easier
management, possibility to couple various
generators based on the metamodel together, etc.
The think that support software product line
productivity.

Under the MDA context the static models (Class
diagram) has a capability of 1 to 1 mapping to
implementation (source code) potentially. However,
the behavioral models (State Machine) arenormally
lack of capability for entire code generation.
Considering code generation from behavioral
diagram, it is possible to generate the skeleton of
method invocations, however, it is impossible to
generate the content codes of
methods(functions/operation). Otherwise, it is
necessary to specify same description like the
source codes. The proposed approach demonstrated
the capability of integration between UML
behavioral models (State Machine Diagrams) with
Static model (Class Diagrams). Consequently, more
controls are provided concerning the transformation
to code.

The limitation of the Open Source Metamodelis
inherited from EAV representation drawbacks.
Where a considerable up-front programming is
needed to do many tasks that a conventional
architecture would do automatically. Moreover,

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

437

such programming needs to be doneonly once, and
availability of generic EAV toolscould remove this
limitation. Also, for bulk retrieval EAV design is
considered less efficient than a
conventionalstructure. Consequently, performing
complex attribute-centricqueries, which are based
on values of attributes, and returning a set of objects
is both significantly less efficient as well as
technically more difficult.

7. CONCLUSIONAND AND FUTURE
WORK

In this paper we have presented a new concept of
Open Source Metamodel where we represented a
metamodel combined with its instance models
inspired by the Entity-Attribute-Value concept.
Both the metamodel and its model represented in a
single repository. Having is repository in
XML/XMI format make it exchangeable and
accessible to most of CASE tools in general and
MDA transformation tools in specific.

The paper focused on the representation of
models and metamodels under the MDA context.
However, in the near future we plan to bring the
Domain Specific Language (DSL) on board in order
to standardize and simplify the repository update
and population.

Also our intention to use this approach for
platform representation in to support of a
transformation to a particular platform executable
code.

ACKNOWLEDGEMENT

The authors would like to express their deepest
gratitude to UniversitiTeknologi Malaysia (UTM)
for their financial support under Research
University Grant Scheme.

REFRENCES:

[1] H. Kern, et al., "Towards a comparative

analysis of meta-metamodels," in Proceedings
of the compilation of the co-located workshops
on DSM'11, TMC'11, AGERE!'11,
AOOPES'11, NEAT'11, & VMIL'11, 2011, pp.
7-12.

[2] R. M. Colomb, "Metamodelling and Model-
Driven Architecture," Faculty of Computer
Science and Information Systems University of
Technology Malaysia, vol. 1, 2009 2009.

[3] A. Eisenberg, et al., "SQL: 2003 has been
published," ACM SIGMoD Record, vol. 33,
pp. 119-126, 2004.

[4] T. Kiefer and M. M. Nicola, "Generating
structured query language/extensible markup
language (SQL/XML) statements," ed: Google
Patents, 2012.

[5] M. Peltier, et al., "MTRANS: A general
framework, based on XSLT, for model
transformations," in Workshop on
Transformations in UML (WTUML), Genova,
Italy, 2001.

[6] M. Peltier, et al., "On levels of model
transformation," in XML Europe, 2000, pp. 1-
17.

[7] V. Dinu and P. Nadkarni, "Guidelines for the
effective use of entity-attribute-value modeling
for biomedical databases," International
journal of medical informatics, vol. 76, p. 769,
2007.

[8] W. Kent, "A simple guide to five normal forms
in relational database theory,"
Communications of the ACM, vol. 26, pp.
120-125, 1983.

[9] D. Varró and A. Balogh, "The model
transformation language of the VIATRA2
framework," Science of Computer
Programming, vol. 68, pp. 214-234, 2007.

[10] I.-Y. Song and K. Froehlich, "Entity-
relationship modeling," Potentials, IEEE, vol.
13, pp. 29-34, 1994.

[11] T.Halpin, "Object-role .modeling
(ORM/NIAM)" in Handbook on Architectures
of Information Systems, ed: Springer, 2006,
pp. 81-103.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

438

APPENDICES

APPENDIX A
 Airline Passenger state model of Figure 1 represented as a conventional database population

State

Event

Name

Name

WishTravel

reservation

Completed

reschedual

HoldRes

reqCheckIn

ReadyTravel

checkIn

WBoardCard

complete

urgeFly

Transition

Source Target triggeredby

WishTravel HoldRes reservation

HoldRes ReadyTravel reqCheckIn

ReadyTravel HoldRes reschedual

ReadyTravel WBoardCard checkIn

WBoardCard Completed complete

Completed WishTravel urgeFly

APPENDIX B

 Airline Passenger state model of Figure 1 represented in EAV database population

ENTITY ATTRIBUTE VALUE_

EVENT NAME checkIn

EVENT NAME Complete

EVENT NAME reqCheckIn

EVENT NAME Reschedule

EVENT NAME Reservation

EVENT NAME urgeFly

STATE NAME Completed

STATE NAME HoldRes

STATE NAME ReadyTravel

STATE NAME WBoardCard

STATE NAME WishTravel

TRANSITION SOURCE Completed

TRANSITION SOURCE HoldRes

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

439

TRANSITION SOURCE ReadyTravel

TRANSITION SOURCE ReadyTravel

TRANSITION SOURCE WBoardCard

TRANSITION SOURCE WishTravel

TRANSITION TARGET Completed

TRANSITION TARGET HoldRes

TRANSITION TARGET HoldRes

TRANSITION TARGET ReadyTravel

TRANSITION TARGET WBoardCard

TRANSITION TARGET WishTravel

TRANSITION TRIGGEREDBY checkIn

TRANSITION TRIGGEREDBY complete

TRANSITION TRIGGEREDBY reqCheckIn

TRANSITION TRIGGEREDBY reschedule

TRANSITION TRIGGEREDBY reservation

TRANSITION TRIGGEREDBY urgeFly

APPENDIX C

 Combined Metamodel with its Instance Model in Single EAV Database Population

ENTITY ATTRIBUTE VALUE_

Metamodel ID 1

Metamodel Version 1.1

Metamodel Name State Machine

Metamodel Date 25-Jun-13

Metamodel.Element ID 1.1.1.1

Metamodel.Element Name NamedElement

Metamodel.Element.NamedElement DataType String

Metamodel.Element.NamedElement Attribute Name

Metamodel.Element.NamedElement.EVENT NAME checkIn

Metamodel.Element.NamedElement.EVENT NAME complete

Metamodel.Element.NamedElement.EVENT NAME reqCheckIn

Metamodel.Element.NamedElement.EVENT NAME reschedule

Metamodel.Element.NamedElement.EVENT NAME reservation

Metamodel.Element.NamedElement.EVENT NAME urgeFly

Metamodel.Element.NamedElement.EVENT NAME Completed

Metamodel.Element.NamedElement.EVENT NAME HoldRes

Metamodel.Element.NamedElement.EVENT NAME ReadyTravel

Metamodel.Element.NamedElement.EVENT NAME WBoardCard

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

440

Metamodel.Element.NamedElement.EVENT NAME WishTravel

Metamodel.Element.NamedElement.NAME NAME Completed

Metamodel.Element.NamedElement.NAME NAME HoldRes

Metamodel.Element.NamedElement.NAME NAME ReadyTravel

Metamodel.Element.NamedElement.NAME NAME WBoardCard

Metamodel.Element.NamedElement.NAME NAME WishTravel

Metamodel.Element.TRANSITION SOURCE Completed

Metamodel.Element.TRANSITION SOURCE HoldRes

Metamodel.Element.TRANSITION SOURCE ReadyTravel

Metamodel.Element.TRANSITION SOURCE ReadyTravel

Metamodel.Element.TRANSITION SOURCE WBoardCard

Metamodel.Element.TRANSITION SOURCE WishTravel

Metamodel.Element.TRANSITION TARGET Completed

Metamodel.Element.TRANSITION TARGET HoldRes

Metamodel.Element.TRANSITION TARGET HoldRes

Metamodel.Element.TRANSITION TARGET ReadyTravel

Metamodel.Element.TRANSITION TARGET WBoardCard

Metamodel.Element.TRANSITION TARGET WishTravel

Metamodel.Element.TRANSITION TRIGGEREDBY checkIn

Metamodel.Element.TRANSITION TRIGGEREDBY complete

Metamodel.Element.TRANSITION TRIGGEREDBY reqCheckIn

Metamodel.Element.TRANSITION TRIGGEREDBY reschedule

Metamodel.Element.TRANSITION TRIGGEREDBY reservation

Metamodel.Element.TRANSITION TRIGGEREDBY urgeFly

http://www.jatit.org/

	AHMED MOHAMMED ELSAWI1, SHAMSUL SAHIBULDIN2, ABDELHAMID ABDELHADI3

