
Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

407

 USING Z FORMAL SPECIFICATION FOR ENSURING
CONSISTENCY IN MULTI-VIEW MODELING

1KHADIJA EL MILOUDI, 2YOUNES EL AMRANI, 3AZIZ ETTOUHAMI

1 LCS laboratory, Faculty of Sciences, University Mohammed V-Agdal, Rabat, MOROCCO
2 LRI laboratory, Faculty of Sciences, University Mohammed V-Agdal, Rabat, MOROCCO
3LCS laboratory, Faculty of Sciences, University Mohammed V-Agdal, Rabat, MOROCCO

E-mail: 1 elmiloudi.khadija@gmail.com, 2elamrani@fsr.ac.ma, 3touhami@fsr.ac.ma

ABSTRACT

Consistency between different UML diagrams is an important challenge in object oriented modeling but
UML lacks any mechanism to rigorously check consistency between the models. This paper presents the
first formal semantics of UML sequence diagram using Z notation. The main focus of our approach is to
guarantee consistency between sequence and class diagram in multi view modeling context. By means of a
representative example, we show how our approach is used for the detection of inconsistencies.

Keywords: Z, UML, Formal Methods, Sequence Diagram, Multi-view Modeling, Consistency Checking.

1. INTRODUCTION

During software development, models are built
representing different views on a software system.
We focus on design models expressed in the
Unified Modeling Language (UML) [1] and more
specifically on class and sequence diagrams. This
paper reports our recent results on formalizing
UML sequence diagram in Z notation [2]. This
formal model will be used to study the multi-view
consistency compared to class diagram
formalization presented in a previous paper [3].
Examples are offered to demonstrate the approach.
The remainder of this paper is organized as follows.
In Section 2, related work is discussed. The Z
formalization of sequence diagram is defined in
Section 3. Section 4 overviews a set of multi-view
inconsistencies handled by the proposed model.
Finally, the conclusions are drawn in Section 5 as
well as future work.

2. RELATED WORK

A wide range of approaches for the formalization
of behavioral diagrams and checking consistency
has been proposed in the literature.

Dubauskaite and Vasilecas in [4] chooses to use
UML to express consistency rules among different
views of UML models. The rules are defined at the
metamodel level. Our approach is more thorough
thanks to Z which has a precise semantics based on
mathematical notations that removes ambiguities
compared to UML.

In [5] a framework for deriving B specifications
from UML structure and behavioral diagrams is
proposed. The conformance between two aspects of
UML specifications can be formally verified by
analyzing the corresponding B specification. Their
proposal has been applied to derive automatically B
specifications from class and interaction diagrams.
Our approach is similar to [5] in terms of use of
formal methods. We derive automatically Z
specifications from class and sequence diagrams.
The difference between their approach and ours is
that paper focus more on multi view consistency by
providing theorems and predicates.

In [6] the authors uses an algorithmic approach
to a consistency check between UML Sequence and
State diagrams. The BVUML tool is implemented
for automating the validation process. Our paper
focuses on a consistency check between the static
and the dynamic view expressed respectively by the
class and the sequence diagram. The strength of our
approach takes root into the simplicity and visibility
of the Z notation which allow the use of the
Z/EVES system to automatically process the model.

A formal semantics of UML sequence diagram is
presented in [7]. The semantics captures the
consistency between sequence diagram with class
diagram and state diagram. The sequence diagram
is represented as an ordered hierarchical tree
structure. Our paper proposes a semantics of UML
sequence diagram using Z notation allowing the
automatic checking of consistency of UML models
which is not available in [7].

http://www.jatit.org/
mailto:elamrani@fsr.ac.ma
mailto:touhami@fsr.ac.ma

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

408

The paper [8] proposes safe composition as a
technique for consistency checking of multi view
models with variability. A representative set of
UML consistency rules and a feature composition
technique are used. A categorization scheme of
consistency rules defined in [8] is used in our
paper.

Authors of [9] defines the semantics of UML
class and sequence diagrams using basic set
notations. Their approach is based on an attribute
grammar reflecting the semantic properties of
programs. A set of axioms which reify the
principles of OO programming is defined. Contrary
to what has been discussed in [9], formal methods
contribute to efficient software development with
very low rate of defects. The formal model
presented in this paper is automatically generated
and can be easily proven using Z/EVES system.
The simplicity and clarity of the proposed model
enable easily its reuse for the automatic generation
of correct programs.

In [10], thirteen consistency rules are given to
identify inconsistencies between the most frequent
6 types of UML diagrams used in the information
systems modeling. Four methods are provided to
check inconsistencies between UML diagrams. The
four methods are: manual check, compulsory
restriction, automatic maintenance and dynamic
check. Consistency rule identified in [10] are
handled by our approach.

We present in the rest of this paper the
contribution of our approach compared to existing
work. Our approach handles the various rules
discussed in the literature especially those
corresponding to the consistency between the class
and sequence diagram. It is worth noting that our
approach is the first work on sequence diagram
formalization and multi view consistency checking
based on Z notation [2].

3. Z FORMALIZATION OF SEQUENCE
DIAGRAMS

UML sequence diagrams are behavioral

diagrams used to represent the interaction between
different objects in the system over time in many
different situations. These objects are instances of
classes defined in the class diagram.

As we will define the semantics of a sequence
diagram in the context of a class diagram, we
briefly introduce the notation of class diagrams
first. The semantics of class diagrams are detailed
in a previous paper [3].

In Object-oriented modeling, a class describes
the state and behavior of the class objects. The set
of all object identities is introduced as the given set
[OBJECT]. To model the set of all classes we
introduce the given set [CLASS].

We illustrate our approach by the case study

proposed in [8]. Consider the class diagram of a
video on demand system (VOD) shown in Figure 1.
The class diagram consists of three classes: Service,
Streamer, and Program. These classes have some
methods, a navigable association going from
Service to Streamer, and one from Streamer to
Program. Lastly a sequence diagram illustrates a
call of method select in a Service object and a call
of method stream from Service to Streamer [8].

Figure 1: Class Diagram of VOD System

The following schema denotes the class Service.
An attribute self represents the identifier of the
current instance.

Attributes are represented in our model as state

variables with their types. In this case, the class
Service does not contain attributes.

Then a free type is defined. It adds an optional
nil value not available in Z to be used in
initializations.

In our example, a schema called SService

represents all instances of the class. The state
variable services denotes the set of the instances of
the class Service identified by the system. The state
variable serviceIds is the set of their identities. A
function idService binds each unique instance

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

409

identifier to the corresponding class. More details
are available in [3].

The function idService guarantees that no two

objects in the state have the same identity.
And finally a schema entitled System provides

an overview of all the classes of the system. The
system represents all classes modeling a concept.

The class behavior is also specified in the formal

model of class diagram using methods. Each
method is represented by a schema defining its
signature. Each operation includes a schema that
indicates whether the system state will be changed
(ServiceOp below) or remains unchanged. This
schema also guarantees that the object identifier
(self) remains unchanged. The method parameters
are defined as inputs in the form (data?: type) in
the schema of the operation. The method select
does not have parameters.

The complete formal model of class diagram
used in this paper is shown with more detail in [3].

Consider the following example of sequence
diagram specifying a particular scenario of the
video on demand system. This example introduces
the first formal semantics of sequence diagram in
the literature based on Z notation.

Figure 2: Example of Sequence Diagram

The objects o1 and o2 are respectively instances
of the classes Service and Streamer. We declare o1
and o2 as OBJECT and later we precise their
belonging to their respective classes.

To represent all the class operations, we

introduce an enumerated set OP containing all the
methods. The methods must be defined in the class
diagram formalization as explained before. The
parameters of the methods are defined as inputs in
the schema of each operation.

The messages exchanged between the objects o1

and o2 are calls to the methods previously defined.
The method calls are represented by an instance of
each method.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

410

Now, the semantics of the sequence diagram can
be fully defined.

 A sequence diagram consists of a set of objects
interacting with each other by means of a sequence
of messages. We choose to model the sequence
diagram as a Z sequence of messages. Each
message is defined by a tuple representing the
sender of the message, the receiver of the message
and the message.

The first predicate defines the set of objects

which participate in the sequence diagram. These
objects must be included in the set of instances of
their respective classes. This constraint is expressed
through the second predicate. And finally, the
sequence of messages is explicitly expressed by the
third predicate.

4. CONSISTENCY CHECKING

Since the behavior of an object is described with
a class diagram and its interactions with other
objects are specified with different sequence
diagrams, the multi view consistency must be
checked.

The formal semantics of sequence diagram
defined above allows checking if a sequence
diagram is consistent with a class diagram.

The current OMG UML [1] specification
provides well-formedness rules for the syntax of
UML diagrams. The definition in UML of the
semantics of these diagrams is in natural language
which is ambiguous. Whereas our semantic
provided in Z is precise and non-ambiguous.

The following Consistency rules expressed in Z
notation [2] describe the semantic relationships that
must hold between the various components of the
views. These rules are defined as inter-view rules
according to the classification given by [8].

Rule 1: Message name must match class method

Each message on sequence diagram must
correspond to an instance of class method defined
in the class diagram. The enumerated set OP
contains all the methods that are previously defined
in the class diagram. Therefore, each message
necessarily corresponds to one of these methods.
Otherwise, this rule is automatically detected using
the Z/EVES System [11].

Rule 2: Each object must have a corresponding
class in the class diagram

This rule is stated as predicate in the schema
SequenceDiagram. The following predicate
specifies that each object in sequence diagram must
belong to the set of instances of its class defined in
the class diagram.

Rule 3: A message of sequence diagram must
correspond to an operation of the receiver
object.

To illustrate this consistency rule, we propose a
Z theorem.

The following theorem states that each message
appearing in sequence diagram belong to the set of
class operations of the receiver object.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th November 2013. Vol. 57 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

411

An additional function that return the set of the

class operations corresponding to each object is
used in the formal definition of the consistency
rule.

We first define the set of class operations of each

object through the function methodsOfObjects.
Then the verification is done by proving the
theorem true.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a formal semantics of UML
sequence Diagram allowing the consistency check
between the static view of a system expressed by
the class diagram and the dynamic view expressed
by the sequence diagram. Our approach is fully
automated and checked using the Z/EVES System
 [11] providing one of the first Z formal
specification for the sequence diagram. Our
approach can be applied for checking more UML
inconsistencies offered in the literature. The formal
model presented in this paper can be extended to
cover all UML diagrams.

REFRENCES:

[1] The Object Management Group: UML 2.3
superstructure specification.
http://www.uml.org/ (last access, July 2013)

[2] J.M. Spivey, “The Z Notation: A Reference
Manual”, Prentice Hall International, Oxford,
1998.

[3] K. El Miloudi, Y. El Amrani and A. Ettouhami,
“An Automated Translation of UML Class
Diagrams into a Formal Specification to Detect
UML Inconsistencies”, Sixth International
Conference on Software Engineering
Advances (Barcelona), 2011, pp. 432-438.

[4] R. Dubauskaite, and O. Vasilecas, “ Method on
Specifying Consistency Rules among Different
Aspect Models, expressed in UML”,
Electronics and Electrical Engineering, Vol.
19, No. 3, 2013, pp. 77-81.

[5] H. Ledang and J. Souquières, “Formalizing
UML Behavioral Diagrams with B”, The Tenth
OOPSLA Workshop on Behavioral Semantics:
Back to Basics, Tampa Bay, Florida (USA),
October 15, 2001, Notheastern University
Press, pp. 162–171.
http://www.loria.fr/~souquier/publications/oop
sla01.pdf.

[6] B.Litvak, S. Tyszberowicz, and A. Yehudai,
“Behavioral Consistency Validation of UML
diagrams”, Proceedings of 1st IEEE
International Conference on Software
Engineering and Formal Methods (SEFM),
IEEE Computer Society, 2003, pp. 118–125.

[7] X. Li, Z. Liu, and J. He, “A Formal Semantics
of UML Sequence Diagrams”, Proceedings of
Australian Software Engineering Conference
(ASWEC’2004), April 13-16, Melbourne,
Australia. IEEE Computer Society, 2004.

[8] R. E. Lopez-Herrejon, A. Egyed, “Detecting
Inconsistencies in Multi-View Models with
Variability”, Sixth European Conference on
Modelling Foundations and Applications
(ECMFA), 2010, pp. 217-232.

[9] F. Xia and G. S. Kane, “Defining the
Semantics of UML Class and Sequence
Diagrams for Ensuring the Consistency and
Executability of OO Software Specification”,
First International Workshop on Automated
Technology for Verification and Analysis
(ATVA), National Taiwan University,
December 10-13, 2003, pp 77– 86.

[10] X. Liu, “Identification and Check of
Inconsistencies between UML Diagrams”,
Journal of Software Engineering and
Applications (JSEA)), vol. 6, 2013, pp. 73-77.

[11] M. Saaltink, “The Z/EVES System”, ZUM'97:
The Z Formal Specification Notation — 10th
International Conference of Z Users Reading,
Springer, LNCS, vol. 1212, 1997, pp. 72-85.

http://www.jatit.org/
http://www.loria.fr/~souquier/publications/oopsla01.pdf
http://www.loria.fr/~souquier/publications/oopsla01.pdf
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lopez=Herrejon:Roberto_Erick.html
http://www.informatik.uni-trier.de/~ley/db/conf/ecmdafa/ecmfa2010.html#Lopez-HerrejonE10

	1KHADIJA EL MILOUDI, 2YOUNES EL AMRANI, 3AZIZ ETTOUHAMI

