
Journal of Theoretical and Applied Information Technology
 20th November 2013. Vol. 57 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

HASHSORT - A NOVEL HASHING FUNCTION BASED ON
SORTING TECHNIQUE TO RESOLUTE COLLISION

S. MUTHUSUNDARI 1, R.M. SURESH 2

1Research Scholar, Sathyabama University,Chennai,India
2Principal, Jerusalem Engineering College, Chennai, India

E-mial: nellailath@yahoo.co.in , rmsuresh@hotmail.com

ABSTRACT

Hash tables are extensively used in data structures to implement tables that associate a set of keys to a set
of values, as they provide O(1), to perform operations such as query, insert and delete operations.
However, at moderate collisions are quite frequent which not only increases the access time, but also
decrease the performance in the deterministic. Due to this deterministic performance, the hash table
degrades. In some systems, it is very difficult to keep the hash operations more deterministic. In recent
trends, more research papers have been proposed, which employs a new and fast hash functions to
implement hash tables and to avoid collisions. In this paper, we propose a novel hash table implementation
called Hashsort function, which reduces the Collisions occur in the hash table. The basic idea of this paper
is to reduce the collisions, such that automatically it increases the access time. High performance can be
obtained by reducing the collisions in the hash table. Hashsort, makes an easy choice for the
implementation of hash table in data structure.

Keywords: Collision, Hashsort, Hash table, Sorting, Data structures.

1. INTRODUCTION

Hashing is a method for storing and retrieving
data from a database. It is used to insert, delete,
and search for records based on a search key
value. To implement the hash table, these
operations need to have constant time. In fact, a
good hash system typically shows at only one or
two records for each search, insert, or delete
operation. This performance takes the O(log n)
average cost required to implement a binary
search on a sorted array of n records, or the
O(log n) average cost required to perform an
operation on a binary search tree.

1.1 Hashing Techniques
• Hashing provides very fast access to

records on certain search conditions.
• The search condition key on a single

field, called the hash field.
• The main aim behind hashing is to

provide a function ‘h’ called a hash
function (or) randomizing function, that

is applied to the hash field value of a
record and yields the address of the disk
block in which the record is stored.

 Hashing is used for an internal search
within a program whenever a group of records is
accessed or exclusively by using the value of one
field.

Hashing, a ubiquitous information retrieval
strategy for providing efficient access to
information based on a key. Under many
circumstances, hashing is very effective in both
time and space. Information can usually be
retrieved in constant time. Space reference use is
not exactly, but is at least acceptable for most
incidents.

Hashing does have some drawbacks; they can
lead to large performance undulate. Relevant
factors include some knowledge of the domain
(English prose vs. technical text, for instance),
regarding the keys that will be stored, and
stability of data. If these factors can be predicted

Journal of Theoretical and Applied Information Technology
 20th November 2013. Vol. 57 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

with some reliability in the information retrieval
system, they usually need hashing an advantage
of retrieval algorithms.

Consider the problem first from the performance
standpoint. The goal is to avoid or to reduce

collisions. A collision occurs when two or more
keys refer to the same places in the hash table.

 If no keys collide, then placing the information
associated with a key is simply the process of
determining the key's location. Whenever a
collision occurs, we need to further determine a
unique location for a key. A collision that leads to
the performance degrades.

Assume the domain of keys has N possible values.
Collisions occurs whenever N > m, that is, when
the number of values exceeds the number of
locations in which they can be stored. The
performance is achieved by having N =m, and
using a 1: 1 mapping between keys and locations.
Defining such a mapping is easy; the representation
of knowledge is required. For example, if keys are
consecutive integers in the range (N1, N2),
then m = N2 - N1 + 1 and the mapping on a
key k is k - N1. If keys are two-character strings of
lowercase letters, then m = 26 26, and the
mapping (using C character manipulation for
ASCII) is (k [0] - ' a ') * (k [1] - ' a ') . These
two mappings can be performed in a constant time.

The mapping is involved in hashing, that has two
facets of performance: number of collisions and
amount of unused space in the hash table.
Optimization of one leads the expense of the other.
The main aim of this paper, in hashing is to
optimize both; that is, to tune both the facets
parallel, so as to achieve a low number of
collisions together with a reasonably small amount
of unused space.

In order to avoid and to reduce collisions and
increases the fast performance, the proposed
Hashsort hashing function scheme works well as
long as there are no collisions and lead to small
amount of unused memory space. The time needs
to store and retrieve data is proportional to the time
to compute the hash function. Typically, this
function is very easy to be calculated in constant
time. The space occupied to store the elements is
that required for an array of m elements. if m is
small, this is not to be a problem. The remainder of
the paper is organized as follows. Section II
discusses the exisiting hashing functions. Section
III deals the Related work, Section IV describes
proposed hashsort : a sorting based hashing

function in greater detail. Section V discusses the
Illustration of the proposed method.. Section VI
presents the comparison with existing method
linear probing and reports of the simulation results.
Section VII considers the results. The paper
concludes with Section VIII.

2. EXISTING HASH FUNCTIONS

 Most of the hash functions, which are
already to perform to implement the hash tables
are as follows.

1. Division Method (MODULO arithmetic):

 It takes the modulo operation of the key. i.e it
takes the remainder of the key value, which is
associated in to the table. H: Key ----> Integer
Index
 E.g. - Table size of 10
 76 % 10 = 6 location in the table the key
element 76 to be placed.

2. Mid-Square Method - Concat, Square and
Remove the Middle.

3. Folding Method:
 a) break key up into binary segments (ASCII)
 b) XOR these together
 c) Calculate the numeric integer equivalent

3. RELATED WORK

Ross Anderson et.al [10] have presented a new
and fast tiger hash function, which believe to be
secured and designed to run quickly on 16 bit
processor. They used the compression function to
achieve the fast hash function.

Sailesh Kumar et.al [9] have presented a new
peacock hashing function, which reduces the on
chip memory by more than 10 folds and keeping
high degree performance.

Alexander Russell et.al [12] proposed a collision
free hash function, to inherit the structural

Journal of Theoretical and Applied Information Technology
 20th November 2013. Vol. 57 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

246

properties from the underlying simple clew free
functions.

Rasmus Pagh et.al [15] have introduced a new
Cuckoo hashing, is found to be practical. It uses
two hash functions like h1 and h2. Based on the
two hash functions a collision free table is
constructed.

 Carter and Wegman [23] proposed Universal
Hashing, a way of avoiding assumptions on the
distribution of input values.

 Kirsch et al [24] have proposed the use of a
stash, a simple data structure independent of the
cuckoo hash table that is used to store keys that
cause irresolvable collisions. The use of a stash can
gently improve the failure probability bounds of
insertion, and given knowledge of the total number
of keys inserted, only a constant amount of
additional space is required (Kirsch et al. 2008).
Additional variants of cuckoo hashing include one
that is engineered for use in hardware
(Kirsch&Mitzenmacher 2008) and history-
independent hashing (Naor, Segev & Wieder
2008). Kutzelnigg (Kutzelnigg 2008) analyzed the
performance of an asymmetric cuckoo hash table
(Pagh & Rodler 2004) (where the two hash tables
used contain a different number of slots). However,
this variant was found to increase the probability of
insertion failure.

Nikolas et al [25] proposed how to efficiently
implement an array hash table for integers. They
have demonstrated, through careful experimental
results, which hash table, whether it be a
bucketized cuckoo hash table, an array hash table,
or alternative hash table schemes such as linear
probing, provides the best performance—with
respect to time and space— for maintaining a large
dictionary of integers in-memory, on a current
cache-oriented processor.

4. PROPOSED HASHSORT - A SORTING

BASED HASHING FUNCTION

 Sorting makes the problem much simpler and
to optimize the use of other functions. The choice
of viewing hash function is very important. The
right choice function, termed a hashsort function,
would distribute all the elements into the hash
tables such that no collisions ever occurred.
Mapping a key to a table is performed very fast. A

hashsort hash function guarantees the best uniform
performance.

 A proposed hashsort hashing function is an
alternative to resolving collisions which makes the
hash function performance very fast. The hashsort
hashing function consists of the following steps.

4.1 Algorithm

4.2 Advantages of Hashsort hashing function

• Easy and fast to identify the location in
the table

• Two locations are considered for placing
the key element.

• No calculation is required to perform
compare with the other hash function like
mod function.

• Naturally cost and time is reduced.
• The effort required to perform a search is

constant time because of the key element
is in sorted manner.

• Number of collisions is reduced or
eliminated based on the key elements.

5. ILLUSTRATION

Let us consider the key elements are inserted in to
the hash table

141 28 34 41 58 69 129 85 65 127

Proposed Hashsort Algorithm steps:

1. Key elements to be arranged in sorted

manner.
2. The first bit of the key is taken, that

shows the key element to be placed in
that location in the table.

3. If that location is not free in the table
then the last bit of the key is taken in its
respective place the key element is
placed.

4. If first and last bit position is not free in
the table, then only collision is
occurred.

5. If collision is occurred, then based on
the linear probing method in the next
free cell the key element is place

Journal of Theoretical and Applied Information Technology
 20th November 2013. Vol. 57 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

247

1. Key elements to be arranged in sorted manner.
By using Bubble sort technique the key
elements are arranged in ascending order.

Given Key Elements: 141 28 34 41 58
69 129 85 65 127

Sorted Key Elements: 28 34 41 58 65
69 85 127 129 141

2. The first bit of the key is taken, that shows the
key element to be placed in that location in the
table. Consider the table size is 10.

The first key element is 28. The first bit
of 28 is 2. Hence the first key element is
to be placed in 2nd location in the table.

The second key element is 34. The first bit
is 34 is 3. Hence the second key element
is to be placed in 3rd location in the table.

The third key element is 41. The first bit
is 41 is 4. Hence the third key element is
to be placed in 4th location in the table.

The fourth key element is 58. The first bit
is 58 is 5. Hence the fourth key element is
to be placed in 5th location in the table.

The fifth key element is 65. The first bit is
65 is 6. Hence the fifth key element is to
be placed in 6th location in the table.

The sixth key element is 69. The first bit
is 69 is 6. Hence the first key element is to
be placed in 6th location in the table. But
the 6th location is not free. As per the step
3 the last bit of 69 is considered. The last
bit of 69 is 9.

Hence the sixth key element is to be
placed in 9th location in the table.

The seventh key element is 85. The first
bit is 85 is 8. Hence the seventh key
element is to be placed in 8th location in
the table.

The eighth key element is 127. The first
bit is 127 is 1. Hence the eighth key
element is to be placed in 1st location in
the table.

The ninth key element is 129. The first bit
is 129 is 1. Hence the ninth key element is
to be placed in 1st location in the table.
But the 1st location is not free. As per the
step 3 the last bit of 129 is considered.
The last bit of 129 is 9. Hence the ninth
key element is to be placed in 9th location
in the table.

But ninth location is also not free. Hence
collision is occurred.

As per the step 5 If collision is occurred,
then based on the linear probing method
in the next free cell the key element is
placed.

The next free cell is 7th location. Hence it
is placed in the 7th location.

The tenth key element is 141. The first bit
of 141 is 1. The last bit of 141 is 1. Hence
collision is occurred. By linear probing
the next free cell is 0.
Hence it is placed in 0th location.

Only two collisions are occurred by this
proposed Hashsort method.

6. COMPARISONS WITH EXISTING
METHOD

6.1 Linear probing method
 Let us consider the same key elements are
inserted in to the hash table

 141 28 34 41 58 69 129 85
65 127

Location Key
Element

0 141
1 127
2 28
3 34
4 41
5 58
6 65
7 129
8 85
9 69

Collision 1

Collision 2

Journal of Theoretical and Applied Information Technology
 20th November 2013. Vol. 57 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

248

 Consider the table size is 10.

 First key element 141 is considered: 141
mod 10 = 1 : 1st location

 Second key element 28 is considered: 28
mod 10 = 8 : 8th location

 Third key element 34 is considered: 34 mod
10 = 4 : 4th location.

 Fourth key element 41 is considered: 41
mod 10 = 1 : 1st location so collision (1).

The next free cell is 2nd location.

 Fifth key element 58 is considered: 58 mod
10 = 8 : 8th location so collision(2)

 The next free cell is 9th location.

 Sixth key element 69 is considered: 69 mod
10 = 9 : 9th location so collision(3)

 Hence the next free cell is 0th location.

 Seventh key element 129 is considered:
129 mod 10 = 9 : 9th location so collision (4).
Hence the next free cell is 3rd location.

 Eighth key element 85 is considered: 85 mod
10 = 5 : 5th location.

 Ninth key element 65 is considered: 65 mod
10 = 5 : 5th location so collision(5). Hence the
next free cell is 6th location.

 Tenth key element 127 is considered : 127
mod 10 = 7 : 7th location.

 Here 5 collisions are occurred. For the same
given key elements.

Table 1. Comparison Of A Proposed Hashsort Function
With Existing Linear Probing Method

7. SAMPLE TEST RESULT COMPARISON

Location Key
Element

0 69
1 141
2 41
3 129
4 34
5 85
6 65
7 127
8 28
9 58

Given
Data

Sorted
Data

First
bit

Last
bit

Performance of
proposed Hashsort

Performance of
Exisitng Linear
probing

Remarks Location Remarks Location

141 28 2 8 No
Collision

2 No
Collisio
n

1

28 34 3 4 No
Collision

3 No
Collisio
n

8

34 41 4 1 No
Collision

4 No
Collisio
n

4

41 58 5 8 No
Collision

5 Collisio
n

2

58 65 6 5 No
Collision

6 Collisio
n

9

69 69 6 9 No
Collision

9 Collisio
n

0

129 85 8 5 No
Collision

8 Collisio
n

3

85 127 1 7 No
Collision

1 No
Collisio
n

5

65 129 1 9 Collision 7 Collisio
n

6

127 141 1 1 Collision 0 No
Collisio
n

7

Total Number of Collisions 2 5

Collision 3

Collision 4

Collision 1

Collision 5

Collision 2

Journal of Theoretical and Applied Information Technology
 20th November 2013. Vol. 57 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

249

 Based on the comparisons were made
from the above table 1, our proposed hashsort
method is occurred with 2 collisions and the
existing linear probing method is occurred with 5
collisions. Hence it is proven, our proposed
method is 2.5 times much efficient than the
existing method in terms of collisions. For any
random generated set of data, the proposed
hashsort method has a better choice to distribute
the key elements in to the Hash Table.

8. RESULTS
We have measured the performance of the

proposed hashsort method with existing collision
avoidance technique linear probing method. The
algorithm is implemented in C language.

The sample test data results are given below.

8.1 Case 1
Test Data : 5 elements are given as 23 45 43
12 78

Fig 1. Case 1 Test Data Result For The Proposed Hashsort
Function

The above fig 1 shows the test data for the proposed
Hashsort function, where as no collisions are occurred. If
it has been placed by the existing linear probing method,
it takes one collision.

8.2 Case 2
Test Data: 8 elements are given as 12 56 65 78
98 34 23 34

Fig 2. Case 2 Test Data Result For The Proposed
Hashsort Function

In the above Fig 2 shows, the Hashsort function
works with no collisions, while it is compared
with linear probing, it takes 3 collisions. Hence
we conclude, our proposed Hashsort method is
performing minimum of 2.5 times greater than the
existing linear probing method for any random
number of n numbers. Hence the efficiency and
High determinism is achieved by reducing the
collisions in the hash table construction. Hashsort,
makes an easy choice for the implementation of
hash table in data structure.

9. CONCLUSION

 In this paper we presented a new proposed
Hashsort function is being implemented in C
language. By analyzing the
results above, we concluded that our proposed
Hashsort method is better than the existing
linear probing method. Hence the search
operation is obtained in linear time and due to
the less number of collisions the accessing
time is increased and obtained the
deterministic hash function. In future work,
our proposed Hashsort method can be
implemented by using D-Shuffle Sorting
Technique instead of Bubble sort to arrange
the key elements in ascending order.

REFERENCES

[1] A. Broder, M. Mitzenmacher, “Using Multiple
Hash Functions to Improve IP Lookups”,
IEEE INFOCOM, 2001, pp. 1454-1463.

[2] W. Cunto, P. V. Poblete,”Two Hybrid Methods
for Collision Resolution in Open Addressing
Hashing”, SWAT 1988, pp. 113-119

[3] P. Larson, Dynamic Hash Tables, CACM,
1988, 31 (4).

Journal of Theoretical and Applied Information Technology
 20th November 2013. Vol. 57 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

250

[4] R. Pagh, F. F. Rodler, Cuckoo Hashing, Proc.
9th Annual European Symposium on
Algorithms, August 28-31, 2001, pp.121-133.

[5] D. E. Knuth, The Art of Computer
Programming, volume 3, Addison-Wesley
Publishing Co, second Edition, 1998.

[6] L. C. K. Hui, C. Martel, On efficient
unsuccessful search, Proc. 3rd ACM-SIAM
Symposium on Discrete Algorithms, 1992, pp.
217-227.

[7] H. Song, S. Dharmapurikar, J. Turner, J.
Lockwood, “Fast Hash Table Lookup Using
Extended Bloom Filter: An Aid to Network
Processing,” SIGCOMM, Philadelphia PA,
August 20-26, 2005.

[8] S. Kumar, and P. Crowley, "Segmented Hash:
An Efficient Hash Table Implementation for
High Performance Networking Subsystems",
IEEE/ACM Symposium on Architectures for
Networking and Communications Systems
(ANCS), Princeton, October, 2005.

[9] Sailesh Kumar, Jonathan Turner, Patrick
Crowley Peacock Hashing: Deterministic and
Updatable Hashing for High Performance
Networking IEEE Communications Society
subject matter experts for publication in the
IEEE INFOCOM 2008 proceedings pp 556-
564

[10] Ross Anderson and Eli Biham, “ A new
fast tiger hash function”,

[11] Rasmus Pagh, Flemming Friche Rodler “
Cuckoo Hashing” Elsevier Science December
2003

[12] Alexander Russell,” Necessary and
sufficient conditions for Collision free
hashing”, November 1995

[13]. Andrei Z. Broder and Michael
Mitzenmacher. Using multiple hash functions
to improve IP lookups. In
Proceedings of the Twentieth Annual Joint
Conferenceof the IEEE Computer and
Communications Societies (INFOCOM 2001),
volume 3, pages 1454–1463. IEEE Comput.
Soc. Press, 2001.

[14]. Martin Dietzfelbinger and Philipp Woelfel.
Almost random graphs with simple hash
functions. In Proceedings of the 35th
Annual ACM Symposium on Theory of
Computing (STOC ’03), pages 629–638,
2003.

[15] Rasmus Pagh. On the Cell Probe
Complexity of Membership and Perfect
Hashing. In Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing

(STOC ’01), pages 425–432. ACM Press,
2001.

[16] Rasmus Pagh and Flemming Friche Rodler.
Cuckoo hashing. In Proceedings of the 9th
European Symposium on Algorithms (ESA
’01), volume 2161 of Lecture Notes in
Computer Science, pages 121–133.
Springer-Verlag, 2001.

[17] Rasmus Pagh and Flemming Friche Rodler.
Cuckoo hashing. Research Series RS-01-32,
BRICS, Department of Computer Science,
University of Aarhus, August 2001. 21 pp.

[18] Patricio V. Poblete and J. Ian Munro. Last-
come-first-served hashing. J. Algorithms,
10(2):228–248, 1989.

[19] Ronald L. Rivest. Optimal arrangement of
keys in a hash table. J. Assoc. Comput. Mach.,
25(2):200–209, 1978.

[20] Mikkel Thorup. Even strongly universal
hashing is pretty fast. In Proceedings of the
11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’00), pages 496–
497. ACM Press, 2000.

[21] John Tromp, 2003. Personal communication.
[22] Petra Berenbrink, Artur Czumaj, Angelika

Steger, and Berthold V¨ocking. Balanced
allocations: the heavily loaded case. In
Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing
(STOC ’00), pages 745–754. ACM Press,
2000.

[23] Carter J L and Wegmam M.N,” Universal
classes of Hash function”, Journal of
Computer Science 18(1979),pp 143 – 154

[24] Kirsch, A., Mitzenmacher, M., & Wieder, U.
(2008), More robust hashing: Cuckoo hashing
with a stash, in ‘To appear in Proceedings
of the 16th Annual European Symposium on
Algorithms (ESA)’

[25] Nikolas Askitis, Fast and Compact Hash
Tables for Integer Keys, appeared at the 32nd
Australasian Computer Science Conference
(ACSC 2009), Wellington, New Zealand,
January 2009. Conferences in Research and
Practice in Information Technology (CRPIT),
Vol. 91

