
Journal of Theoretical and Applied Information Technology
 10th November 2013. Vol. 57 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

76

A COMPREHENSIVE STUDY OF CMMI BASED
FRAMEWORK FOR COLLABORATIVE SOFTWARE

MAINTENANCE

1HANEEN AL-AHMAD, 2RODZIAH ATAN, 3ABDUL AZIM ABD GHANI, 4 MASRAH AZMI
MURAD

Faculty of Computer Science & IT, University Putra Malaysia
43400 UPM, Serdang, Selangor, Malaysia

Haneeen_0005@hotmail.com & (rodziah, azmi & masrah)@fsktm.upm.edu.my
Faculty of Computer Science & IT, Information System Department, University Putra Malaysia, 43400

UPM, Serdang, Selangor, Malaysia

ABSTRACT

Software maintenance (SM) environment is a highly complex area, knowledge-driven and collaborative.
Therefore, Capability Maturity Model Integration (CMMI) is a process improvement approach that
provides organizations with the essential elements of effective processes that ultimately improve their
performance. We propose a new framework of CMMI based on Multi-Agent System (MAS) to identify the
process measurement of SM. The proposed MAS architecture includes three types of agents: Personal
Agent (PA), Maintenance Agent (MA) and Key Process Area Agent (KPAA). In order to verify our
proposed CMMI framework based on MAS architecture, a pilot study is conducted using a questionnaire
survey. Rasch Model is used to analyze the pilot data. Item reliability is found to be poor and a few
respondents and items are identified as misfits with distorted measurements.

Keywords: Capability Maturity Model Integration, Software Maintenance, Software Maintenance Process,
Multi Agent System and Rasch Model

1. INTRODUCTION

Knowledge transfer of a large number of the best
practices described in a maturity model has proved
difficult [1]. This is especially true during the
training of an assessor or a new participant in a
process improvement activity. Software
measurement, in order to be effective, must be
focused on specific goals; applied to all life-cycle
products, process and resources; and interpreted
based on characterization and understanding of the
organizational context, environment and goals [2].
Software maintenance (SM), according to IEEE
definition, is a modification of a software product
after delivery in order to correct faults, to improve
performance or other attributes, to adapt a product
to a changed environment, or to improve the
product maintainability [3]. A maturity level is a
well-defined evolutionary plateau toward achieving
a mature software process. Each maturity level
provides a layer in the foundation for continuous
process improvement. In CMMI models with a
staged representation, there are five maturity levels
[4]. Initial, Managed, Defined, Quantitatively
Managed and Optimizing as illustrated in table 1.

Table 1: CMMI Staged Representation- Maturity Levels

Level

Continuous
Representation

Capability
Levels

Staged
Representation
Maturity Levels

Level 1 Performed Initial

Level 2 Managed Managed

Level 3 Defined Defined

Level 4 Quantitatively
Managed

Quantitatively
Managed

Level 5 Optimizing Optimizing

Maturity levels consist of a predefined set of
process areas. The maturity levels are measured by
the achievement of the specific and generic goals
that apply to each predefined set of process areas.
The following sections describe the characteristics
of each maturity level [5].
At maturity level 1 (Initial Level), processes are
usually ad hoc and chaotic. The organization

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th November 2013. Vol. 57 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

77

usually does not provide a stable environment.
Success in these organizations depends on the
competence and heroics of the people in the
organization and not on the use of proven
processes. Maturity level 1 organizations often
produce products and services that work; however,
they frequently exceed the budget and schedule of
their projects. Maturity level 1 organizations are
characterized by a tendency to over commit,
abandon processes in the time of crisis, and not be
able to repeat their past successes.
At maturity level 2 (Managed Level), an
organization has achieved all the specific and
generic goals of the maturity level 2 process areas.
In other words, the projects of the organization have
ensured that the requirements are managed and that
processes are planned, performed, measured, and
controlled [4].
At maturity level 3 (Defined Level), an
organization has achieved all the specific and
generic goals of the process areas assigned to
maturity levels 2 and 3. At maturity level 3,
processes are well characterized and understood,
and are described in standards, procedures, tools,
and methods.
At maturity level 4 (Quantitatively Managed
Level), an organization has achieved all the specific
goals of the process areas assigned to maturity
levels 2, 3, and 4 and the generic goals assigned to
maturity levels 2 and 3. At maturity level 4 Sub-
processes are selected that significantly contribute
to overall process performance. These selected sub-
processes are controlled using statistical and other
quantitative techniques.
At maturity level 5 (Optimizing Level), an
organization has achieved all the specific goals of
the process areas assigned to maturity levels 2, 3, 4,
and 5 and the generic goals assigned to maturity
levels 2 and 3. Processes are continually improved
based on a quantitative understanding of the
common causes of variation inherent in processes.
Maturity level 5 focuses on continually improving
process performance through both incremental and
innovative technological improvements [6].
Multi Agent System (MAS) has attracted a great
deal of attention in recent years because they have
introduced a new paradigm for analyzing,
designing, and implementing software systems. A
lot of multi-agent methodologies have been born
and improved since the presence of MAS. They
have shown a great power in solving problems.
MAS is designed and implemented as several
interacting agents. MAS are ideally suited to
representing problems that have multiple problem
solving methods and multiple perspectives. MAS

takes initiative where appropriate, and socially
interact, where appropriate, with other artificial
agents and humans in order to complete their own
problem solving and to help others with their
activities [7],[8].

2. LITERATURE REVIEW

Software maintenance function suffers
from a scarcity of management models that would
facilitate its evaluation, management and
continuous improvement. This paper is part of a
series of papers that presents a Software
Maintenance Capability Maturity Model
(SMCMM). The contributions of this specific paper
are: 1) to describe the key references of software
maintenance; 2) to present the model update
process conducted during 2003; and 3) to present,
for the first time, the updated architecture of the
model [9].
SM process is one of the most costly activities
within information system practice. The purpose of
this paper is to address some of the difficulties in
this process, by proposing a framework for the
development of maintenance mode. Essential to the
software maintenance process is an ability to
understand not only the software but the required
changes as well. This can only be achieved where
the relevant knowledge is available. Based upon
this primary requirement, the proposed framework
has made the knowledge as its basis for modeling
other requirements for software maintenance model
development. The framework first identifies the
three operational elements, i.e. Function, static
entity and dynamic entity, required for the general
software maintenance process. With respect to the
knowledge (as part of the dynamic entity
components), the framework shows how these three
operational elements should behave and interact
amongst themselves to deliver a successful
software maintenance model [10].
Holgeid [11], presents the main results from a
survey investigation performed in Norwegian
organizations within the area of software
development and maintenance. The results are
based on responses from 53 Norwegian
organizations. Somewhat surprisingly, the amounts
of both traditional and functional maintenance work
are significantly higher than in the similar
investigation done five years earlier. It is also
significantly higher than in the USA and in other
countries. Also too much of the scarce IT-personnel
spent their time on tasks that do not add value to the
users of the systems.
[12] presents an overview of the measurement
practices that are being introduced for level 3 and

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th November 2013. Vol. 57 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

78

higher to the Software Maintenance Maturity
Model (S3M). Software maintenance still does not
receive a noticeable share of management attention
and suffers from lack of planning, as often
illustrated by its crisis management style. Part of
the problem is that maintenance is typically
perceived as being expensive and ineffective.
Moreover, few proposals of best practices have
been put forward which can readily be applied in
industry. In general, the software engineering
community expects that product quality will be
enhanced if the maintenance process is improved.
[13] Deals with a method developed for software
maintenance called Remote Maintenance Shell. It
allows software installation, modification and
verification on the remote target system without
suspending its regular operation. The method is
based on remote operations performed by mobile
agents. The role of Remote Maintenance Shell in
software maintenance is elaborated, as well as its
architecture. A case study on version replacement
of an object-oriented application is included.
[16] Presented results of introducing an agile
process based on extreme programming, XP, in an
evolutionary and maintenance software
development environment. The agile process was
introduced to a large software development
organization. The process was applied by a team
during eight months. The conclusions indicate that
it in this case is more difficult to introduce XP, in
its original appearance, into the case environment
than in less complex environments. The complexity
of the organization made it necessary to redesign
many of the practices in order for them to fit the
needs of the software development team.

3. METHODOLOGY

In this phase, three main activities were
undertaken. First, the generic CMMI, MAS and SM
models are studied and summarized. Then the
components are extracted from the above generic
models. Afterward, these components are revised to
remove redundant and non-related components.
A survey was conducted in selected 41 respondents
from three organizations participated in the survey.
Fifty questionnaires were distributed to the
respondents, and only forty one questionnaires were
returned. The questionnaire data were verified and
was analyzed using Rasch Model. The result of the

survey contributed to the formulation of the
proposed framework.
A suitable questionnaire set is then developed to
verify the initial components. The main aim of the
questionnaire is to determine which components are
deemed important by SM practitioners. The
questionnaire is developed using a 4-Likert Scale
order of importance, with ’1’ being less important
and ‘4‘denotes more important. To ensure
reasonable face validity, questionnaires were
further deliberated and refined by academic lectures
in the Software Engineering field, a statistician and
three SM managers.
To verify the constructs of the questionnaire, a pilot
group of respondents shall test the questionnaire.
The pilot group respondents are selected based on
convenience sampling from an in-house SM
organization. The Rasch rating scale model is used
in the analysis to determine if the questions are well
understood by respondents (i.e. Hard to answer
questions), or if the questions are mundane and
trivial (i.e. Too easy) that perhaps the questions
could just be left out. Rasch is a probabilistic model
that uses logit as the measurement units, by
transforming the ordinal data and raw scores into a
linear scale [17]. Being linear, research enables us
to conduct more constructive analyses, such as to
determine the reliability of respondents and items,
determine outliers for both respondents and items
that do not fit the model to enable us to investigate
further to explain the inconsistency. This form of
validity comes from the fit of the observed person-
item responses to a useful definition of
measurement of the estimated values of item and
person measures [18]. As a result, some
problematic questionnaire items could be identified,
revised and some discarded to make the
questionnaire more acceptable. The revised
questionnaire shall later be used for further analysis
to verify important components for CMMI based on
the MAS model for collaborative SM.

4. PROPOSED FRAMEWORK

 Currently, there is a lack of formal CMMI
based MAS models for the collaborative SMP
environment, and there are no hard and fast rules on
how to formulate a CMMI based MAS model.
April, Abran & Dumke reviewed and synthesized
several CMMI models into a comprehensive
generic collaborative SM model. However, how the
synthesized CMMI based MAS model was

Combined and validated was not discussed. Using a
similar approach, a CMMI based MAS model for
the collaborative SM environment shall be

synthesized from components from related generic
CMMI models and existing SMP models. The main
question is – are all these synthesized components

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th November 2013. Vol. 57 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

79

important to the users, developers and maintainers
in SMP environments? To validate the initial
model, [9],[16],[19],[20], offers insights on
developing and validating the instrument construct

to select the important components, respectively.
Figure 1 shows a schematic representation of the
framework. The framework has been built by using
four layers.

Figure 1. CMMI Based on MAS Framework

Model’s Goals: (1) to measure the quality of SMPs.
(2) to evaluate the continuous improvement of the
SMPs. (3) to generate and facilitate the source code
of the SMPs improvement that could be improves
by the developers and maintainers.
KPAs’ Goals: a) to ensure that events and service
requests (SRs) are identified and registered daily; b)
to determine the relative importance, within the
current workload, of new events and SRs; and c) to
ensure that the workload is focused on approved
priorities.

Scope of the model: Models are often an
abstract representation of reality. For a better
mapping with the maintainers and reality, the
proposed model includes many of the essential
perspectives of the software maintainer, and as
much as possible of the maintainer’s practical work
context. Our model is intended to describe specific
techniques or all the technologies used by
maintainers. Our model has recently adopted from
the continuous representation of CMMI and only

deal with the levels 0 (absent), 3 & 4 of the CMMI
because the evaluation and the measurement of the
quality of the SMPs only existing in these levels.

5. RESULTS AND DISCUSSION

 The pilot data were tabulated and analyzed
using WinSteps, a Rasch tool. The results of the
Person and Item summary statistics and measures
are tabulated in Table 1 and Table 2. The results of
the survey are analyzed in three parts; data
reliability, fitness of respondent and items data and
determination of component groups cutoff points.

5.1 Data Reliability

Summary statistics for respondents
(person) and items (questions) are depicted in Table
1 and Table 2, respectively. 41 respondents
returned the survey questionnaire. Out of which,
Rasch identified an extreme score which will later
be excluded from further analysis.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th November 2013. Vol. 57 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

80

Table 1. Summary of Measured (Non-Extreme) Persons

Raw

Score Count Measure
Model

Error
Infit Outfit

MNSQ ZSTD MNSQ ZSTD
MEAN 133.8 42.8 0.49 0.27 1.02 -0.2 1.01 -0.2
S.D. 14.9 3.5 0.69 0.02 0.52 2.1 0.53 2
MAX. 167 45 2.64 0.34 3.14 6.4 3.37 6.7
MIN. 86 30 -0.65 0.25 0.28 -4.5 0.28 -4.4

Real RMSE .30 Adj.SD .62 Separation 2.10 Person Reliability .82
Model RMSE .27 Adj.SD .64 Separation 2.35 Person Reliability .85
S.E. Of Person Mean = .11
Maximum Extreme Score: 1 Persons
Valid Responses: 95.0%
Person Raw Score-To-Measure Correlation = .51 (approximate due to missing data)
CRONBACH ALPHA (KR-20) Person Raw Score Reliability = .94 (approximate
due to missing data)

Table 2. Summary of Measured Items

Raw
Score Count Measure

Model
Error

Infit Outfit
MNSQ ZSTD MNSQ ZSTD

MEAN 119.8 38.3 0.02 0.3 1 0 1 0.1
S.D. 16.7 3.2 0.64 0.08 0.12 0.6 0.15 0.7
MAX. 150 40 1.16 0.6 1.29 1.5 1.4 1.9
MIN. 88 29 -1.2 0.2 0.83 -1.3 0.74 -1.3

Real RMSE .32 Adj.SD .54 Separation 1.69 Item Reliability .74
Model RMSE .27 Adj.SD .64 Separation 2.35 Item Reliability .75
S.E. Of Person Mean = .09

The spread of person responses is = 3.29 logit is
fair. This is due to extreme responses by a
participant. However, Reliability = 0.82 and
Cronbach Alpha=0. 94 indicates high reliability
data and hence the data could be used for further
analyses.

On the questionnaire items, the summary
of 45 measured questionnaire items (see Table 4.3)
reveals that the spread of data at 2.36 logit and
reliability of 0.74 are good and fair, respectively.
Details on measured items are listed in Table 4.4.
The acceptable limits are 0.4 < Acceptable Point
Measure Correlation < 0.8 and 0.5 < Outfit Mean
Square < 1.5, and -2.0 < Outfit z-standardized value
< 2.0).

6. CONCLUSION

 The CMMI based on MAS Framework
components for the collaborative SM environment
was initially synthesized from the generic CMMI,

MAS and SM frameworks. A questionnaire survey
followed by the expert opinion survey was
conducted to ascertain the important components of
the framework. The CMMI based on MAS
framework consists of Knowledge Required for SM
Activities, SM Governance Tools, CMMI Tools
and Agent Tools. To formulate the CMMI based on
the MAS framework for collaborative SM, the
components of CMMI tools, SM governance tools,
and agent tools are compiled from various
literatures. An initial model of modified CMMI
based on MAS components for collaborative SM is
proposed. The relationships between these
components are used to construct the questionnaire,
which were tested in a pilot study. RUMM was
used in analyzing pilot questionnaire. Item
reliability is found to be poor and a few respondents
and items were identified as misfits with distorted
measurements. Some problematic questions are
revised and some predictably easy questions are
excluded from the questionnaire.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th November 2013. Vol. 57 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

81

REFERENCE

[1] Abran, A. Moore, J. Bourque, W. Dupuis, P

and Tripp, L.. Guide for the Software
Engineering Body of Knowledge (SWEBOK),
Ironman version, IEEE Computer Society
Press: Los Alamitos CA, 2004. 6(1)- Pp: 6-15.

[2] Basili, V.R. Caldiera, G and Rombach, H.D.
(1994). The Goal Question Metric Approach.
In Encyclopedia of Software Engineering,
Wiley, pp. 528-532.

[3] Pigoski, T.M. Practical Software maintenance:
Best Practice for Managing your Software
Investment, 1st edi. 1997. Wiley.

[4] CMMI Maturity Levels, available at:
http://www.tutorialspoint.com/cmmi/cmmi-
maturity-levels.htm 2002. (Accessed on July
2013).

[5] April, A., Huffman Hayes, J., Abran, A., and
Dumke, R. Software Maintenance Maturity
Model (SMmm): the software maintenance
process model’, Journal of Software
Maintenance and Evolution: Research and
Practice, 2005. 17 (3), pp. 197-223.

[6] April, A., Desharnais, J.M., and Dumke, R. A
Formalism of ontology to support a software
maintenance knowledge-based system. A
Formalism of ontology to support a software
maintenance knowledge-based system. 2006.
Pp. 331-336.

[7] Talib, A. M., Atan, R., Abdullah, R., and
Murad, M. A. A. Towards New Data Access
Control Technique Based on Multi Agent
System Architecture for Cloud Computing."
Communications in Computer and
Information Science 189 CCIS (Part II),
2011a. Pp. 268-279.

[8] Talib, A. M., Atan, R., Abdullah, R., and
Murad, M. A. A. CloudZone: Towards an
Integrity Layer of Cloud Data Storage Based
on Multi Agent System Architecture. ICOS,
2011b. Pp.127-132.

[9] April, A., Abran, A., and Dumke, R.R.
‘SMCMM model to evaluate and improve the
quality of the software maintenance process:
SMCMM model to evaluate and improve the
quality of the software maintenance process’
(IEEE, 2004, edn.), 2004, 1st Edi. pp. 243-248.

[10] Deraman, A.. ‘A Framework For Software
Maintenance Model Development’, Malaysian
Journal of Computer Science, 1998. 11(2), Pp.
23-31.

[11] Holgeid, K.K., Krogstie, J., and Sjberg,
D.I.K.. ‘A study of development and
maintenance in Norway: assessing the
efficiency of information systems support
using functional maintenance’, Information
and Software Technology, 2000, 42, (10), Pp.
687-700.

[12] April, A., and Abran, A. ‘A software
maintenance maturity model (S3M):
Measurement practices at maturity levels 3
and 4’, Electronic Notes in Theoretical
Computer Science, 2009. 233, pp. 73-87

[13] Lovrek, I., Jezic, G., Kusek, M., Ljubi, I.,
Caric, A., Huljenic, D., Desic, S., and Labor,
O. ‘Improving software maintenance by using
agent-based remote maintenance shell’, in
Editor (Ed.)^(Eds.): ‘Book Improving
software maintenance by using agent-based
remote maintenance shell’ (IEEE, 2003, edn.),
2003. Pp. 440-449.

[14] Svensson, H., and Host, M. ‘Introducing an
agile process in a software maintenance and
evolution organization: Introducing an agile
process in a software maintenance and
evolution organization’ (IEEE, 2005, edn.),
2nd edi. 2005. Pp. 256-264.

[15] Bond, T. G., and Fox, C. M. Applying the
Rasch Model: Fundamental Measurement in
the Human Sciences. Journal of Educational
Measurement, 2003. Volume 40, pp: 185-187.

[16] Wright, B. D., and Stone, M. H. Measurement
Essentials. Delaware: 1999. Wide Range.

[17] Chen, J.C., and Huang, S.J. ‘An empirical
analysis of the impact of software
development problem factors on software
maintainability’, Journal of Systems and
Software, 2009. 82, (6), pp. 981-992.

[18] Jung, H.W., and Goldenson, D.R. ().
‘Evaluating the relationship between process
improvement and schedule deviation in
software maintenance’, Information and
Software Technology, 2009 51(2), pp. 351-
361.

http://www.jatit.org/

	1HANEEN AL-AHMAD, 2RODZIAH ATAN, 3ABDUL AZIM ABD GHANI, 4 MASRAH AZMI MURAD
	3. METHODOLOGY

