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ABSTRACT 
 

Web Services are one of the fastest growing areas of information technology in recent years, also being a 
main motivating factor for internet computations in which, one of the services being, service discovery. 
Web service discovery is the process of finding appropriate services for the user defined tasks.Web Service 
clustering is a technique for efficiently facilitating service discovery. Most Web Service clustering 
approaches are based on suitable semantic similarity distance measure and a threshold. Threshold selection 
is essentially difficult and often leads to unsatisfactory accuracy. In this paper, a self-organizing based 
clustering algorithm called Taxonomy based clustering for taxonomically organizing semantic Web Service 
advertisements. A query matching method is also applied on these clusters to get more accurate and 
relevant results based for user requests. The system is tested and observed promising results both in terms 
of accuracy and performance. 
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1. INTRODUCTION  
 

 Service discovery is one of the key problems 
that have been widely researched in the area of 
Service Oriented Architecture (SOA) based systems 
over the past decade. This problem is significant 
because all the other big problems in this area of 
research, such as service selection and composition, 
are intricately related to an efficient discovery 
mechanism. If the SOA middleware can discover 
services (over a set of service registries such as 
Universal Description Discovery & Integration 
(UDDI) accurately and fast then the problem of 
service selection and composition become 
relatively easy. However, the discovery problem is 
intrinsically difficult because most large scale SOA 
based systems (e.g., Web Services, Cloud 
Computing, etc) are dynamic and uncertain in 
nature. They are dynamic because the scope of 
services is ever changing – new services get added 
on to the system and old services get removed or 
modified. Also it is very difficult to model 
statistically this dynamism. This makes process of 
service discovery fundamentally hard as the 
middleware has to cope up somehow with both the 
dynamism and the uncertainty. The key operation 
that governs all kinds of service discovery 
approaches is service matchmaking over service 
descriptions. Matchmaking is essentially 
computation of similarity between a query 

description and a service description so that the 
middleware can decide whether a service is a 
candidate solution for the given query. However, 
matchmaking can be expensive due to two reasons: 
(i) the measure for similarity is intrinsically 
complex from a computational view point, and (ii) 
the query search space is extremely large resulting 
in a lot of unwanted but expensive similarity 
computation (i.e. comparisons). Hence, first, we 
need to choose a similarity measure for 
matchmaking that is simple and computationally 
fast, and second, we need an efficient way of 
pruning the query search space for service 
discovery. Moreover, both the similarity measure 
selection as well as the pruning strategy should 
entail optimal accuracy of query results in terms of 
precision (i.e., least inclusion of false results) and 
recall (i.e., least exclusion of true results). 
Similarity measures in most matchmaking 
researches is either based on semantic subsumption 
reasoning (using DL reasoners) over service 
descriptions written in languages such as OWL-S 
[2] or is based on statistical IR similarity models 
(such as vector space models, probabilistic models, 
information theory based models, etc). While 
semantic subsumption reasoning in worst case can 
be intractable and for most reasoners is not very 
fast similarity computation using IR techniques do 
not guarantee soundness and completeness. Also in 
some cases we need considerable training of the 
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searching model before a relatively fair accuracy 
can be reached. 

 

As for search space pruning strategies one very 
efficient approach is service clustering. In this 
approach services are clustered into functionally 
similar groups and then every cluster can be 
mapped to an index for a directed query processing. 
When a query comes in the middleware can 
guarantee the exclusion of any potential candidate 
service outside its corresponding cluster and hence, 
limit the search only to that cluster. Web service 
clustering algorithms can be classified into two 
general approaches: (i) similarity distance measure 
based and (ii) self-organization based. Both the 
approaches have the capacity to exploit semantic 
information of the service descriptions. Most 
distance-based approaches in service clustering 
strike a balance between the accuracy and the 
computational cost incurred by the algorithm. 
However, there are several significant limitations 
that can be observed in this approach. To begin 
with, for any sort of sample space having an 
independent, identical probability distribution 
(I.I.D) it is difficult to construct a classifier that 
classifies the samples into their correct clusters. 
One of the reasons is that the accuracy of the 
algorithm depends upon the order of sample 
selection during clustering. Secondly, distance-
based algorithms need to assume the choice of good 
distance threshold for clustering. We claim that for 
the problem of semantic Web Service clustering we 
do not need a distance based approach. 

 

This paper proposes a self-organizing based 
clustering algorithm called Taxonomy based 
clustering for taxonomically organizing semantic 
Web Service advertisements. The approach 
overcomes the problem of sample selection order as 
well as suboptimal choice of threshold. For the 
Taxonomy based clustering algorithm, it is also 
proposed a non-distance based subsumption 
matchmaking technique that does not require DL 
reasoners for computing subsumption. Instead it 
uses bit-based encoding technique that significantly 
reduces the comparison cost as compared to 
subsumption and other IR based techniques. In this 
way the algorithm guarantees a much higher 
accuracy than distance-based approaches. The 
system has been  tested the proposed algorithm on 
both simulation based randomly generated test data 
and the standard OWL-S TC test data set and 

observed promising results both in terms of 
accuracy and runtime performance. 

 

The rest of the paper is divided as follows: 
Section 2 discusses related work where standard 
service discovery infrastructure and service 
matching techniques have been introduced. Section 
3, explains the taxonomy based clustering in detail. 
In Section 4, web service discovery as a query 
matching problem where the motivation behind the 
proposed clustering technique has been laid. 
Section 5 evaluates the proposed approaches and 
Section 6 concludes this paper.  

2. RELATED WORK 
 

All web service discovery problems have been 
treated as a special case of information retrieval 
problem by most researchers. The common 
principle is to cluster similar services in groups that 
are stored in backend system. Backend systems can 
be classified into three types: (i) index table based 
(such as UDDI, Jini, MSLP [3]), (ii) DHT-based 
(such as CHORD [1]), and (iii) taxonomical 
hierarchy based (such as capability graphs [4]). 
Currently, the most popular backend 
implementation for service discovery is UDDI. 
However, UDDI is at a very syntactic level. It is 
organized based on pre-defined thematic categories. 
However, the services are not categorized with 
respect to their functionality. This is a major 
drawback in terms of design as consumer access is 
mainly based on the functional attributes of Web 
services. Many researchers have proposed an 
extension to the existing UDDI structure by adding 
semantic descriptions to the services. The semantic 
description can be at three levels: (i) functional 
(such as OWL-S [2]), (ii) contextual (CCC/PP), and 
(iii) QoS (such as WSOL [5]). Service clustering 
can be performed at these three levels [6] using 
several approaches. 

 

Web service clustering one of the most widely 
used method which is distance based. In this 
approach a semantic distance measure is first 
defined. This distance measure can be of two types: 
(i) keyword based [7] and (ii) ontology based [8]. 
In keyword based distance measures the similarity 
of two services is computed using a vector space 
model based on TF/IDF technique derived from IR 
research. As an alternative approach, there has been 
significant research on ontology based semantic 
distance measure [9,10]. Semantic distance 
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measures can be classified into three categories: (i) 
taxonomic distance based [11,12], (ii) information 
content (IC) based [13], and (iii) concept property 
based [14]. In the case of service similarity measure 
a simple taxonomic distance based or IC based 
measure cannot give us precise results. This is 
because a Web service is a complex concept with 
independent multi-faceted dimensions like 
functionality, context and QoS. In general most 
research approaches choose a specific similarity 
distance measure. Then similarity is separately 
computed at the attributive level - namely, input (I), 
output (O), pre-condition (P), and post 
condition/result (R) [10]. Based on such 
computation a decision rule is applied that tells 
whether two services are similar or not with respect 
to a defined global threshold. The other alternative 
service clustering approach is self organization. The 
proposed clustering algorithm falls under this 
approach. Self-organization of Web services takes 
place on a conceptual plane (rather than a metric 
plane). The basis of clustering in this case is 
subsumptive matching instead of similarity 
computation. According to the model given in [10], 
there can be four types of Web service subsumptive 
match: (i) exact match (where the attribute/s of one 
service is same as or sub class of the attribute/s of 
another service), (ii) plug-in (where the attribute/s 
of the plug-in/replaceable service subsumes the 
attribute of the other service), (iii) subsumes (where 
the attribute/s of the subsuming service is a higher 
level generalization of the attribute/s of the other 
service), (iv) fail (where the attribute/s of one 
service has no subsumptive relation with the 
attribute/s of the other service). It has been pointed 
out by several researchers that in the context of 
service discovery a subsume match is considered 
the weakest match while an exact match is the 
strongest [4, 9, 15]. 

3. TAXONAMY BASED CLUSTERING 
 
 A self-organizing based clustering algorithm 
called Taxonomy based clustering for Web Service 
advertisements in proposed. The basic idea behind 
the clustering algorithm is to generate clusters over 
the sample space for each dimension independently 
(i.e., stratified approach). The stratified approach of 
clustering web services overcomes the problem of 
sample selection order as well as suboptimal choice 
of threshold. As a result, we get four different 
levels of cluster spaces – each corresponding to the 
four functional dimensions. We now define the 
scope of the problem which is to cluster web 

services according to their functionality for their 
efficient and accurate discovery.  
 
 As the proposed taxonomic web service 
clustering is essentially a subsumptive match based 
technique hence, we first need to compare any two 
given services with respect to a particular 
dimension (I, O, P, R) for three possibilities: (i) one 
is the ancestor/predecessor of the other (i.e., 
subsumption), (ii) both are sibling under a common 
parent, and (iii) both are mutually disjoint with no 
possible abstraction. For an example, assuming that 
two services s1 and s2 have their corresponding 
output dimension (i.e. O cluster space) to be vehicle 
and SUV (Fig 1). In such case both the services 
have a subsumptive relation with respect to the O 
dimension. Again, assuming that another service s3 
takes in bus as its output then s3 and s2 are siblings 
under the common parent s1 
 
 
 

 
 

Figure 1. Vehicle, Location & Address Ontologies 
 
3.1. Scope of Problem 
 
 Problem Definition: Given a finite set of web 
services generate a set of clusters such that if a 
member web service of a particular cluster has a 
particular class of functionality then all the other 
members of the same cluster must have same class 
of functionality subject to the constraints:  

• The selection of web services from the 
sample space follows I.I.D (i.e., 
independent, identical distribution) 

• The selection order of samples does not 
affect the accuracy of the clustering 
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process (no effect of sample selection 
order) 

• Fuzzy clusters are not allowed (no 
probabilistic membership of sample within 
a cluster) 

 
3.2. Stratification of Sample Space 
 
 Now we can formally define a cluster space as 
follows: 
 
Definition 1: A g-subsumption is s1.g K s2.g = true 
iff (s1.g T s2.g) = s1.g where T is intersection over 
g dimension; g = {I, O, P, R}. 
 
Definition 2: A g-type taxonomic cluster (denoted 
asT g ) is a partial-order of web service (samples) 

over g-subsumption relation 
g
k with a unique 

maximum upper bound (or least specific parent) 
called the root. 
 
Definition 3: A cluster space (denoted as CS) w.r.t 
to a particular functional dimension g is a well-
defined finite set of g-type taxonomic clusters such 
that any member taxonomic cluster may have g-
subsumption relation k g with one or more member 
taxonomic cluster via corresponding member 
samples. 
 
 The cluster spaces corresponding to the O 
dimension are called the O cluster space as the 
Type 1 component of a query is directed towards 
this cluster space. The cluster spaces corresponding 
to the I dimension are called the I cluster space as 
the Type 2 component of a query is directed 
towards this cluster space. 
  
 As the proposed taxonomic web service 
clustering is essentially a subsumptive match based 
technique hence, we first need to compare any two 
given services with respect to a particular 
dimension (I, O, P or R-spaces) for three 
possibilities: (i) one is the ancestor/predecessor of 
the other (i.e., subsumption), (ii) both are sibling 
under a common parent, and (iii) both are mutually 
disjoint with no possible abstraction 
 
 The order of sample selection over an I.I.D may 
have negative side-effect on the overall clustering 
performance. This can be shown via an example. 
Let us consider three services s1, s2, and s3. Let 
these services need to be clustered according to 
their output dimension (O). 

 It is given that s1.o = {car, location}, s2.o = 
{vehicle, city, address}, s3.o = {SUV, 
street_address}. The domain set for this example 
is: {vehicle, location, address} (Fig 1). From a 
semantic taxonomy point of view, s1 and s2 are 
siblings under a common abstraction {vehicle, 
location} while s3 is sibling to this abstraction 
under a common abstraction {vehicle}. 
 
3.3. Taxonomy Based Clustering Algorithm 
 
 The basic outline of the proposed taxonomy 
based clustering algorithm involves positioning a 
randomly selected sample (Web Service) from the 
given ample space and semantically positioning it 
in the cluster space by searching for the most 
specific parents (MSP) and the least specific 
children (LSC). An important optimization can be 
made here by restricting the search for LSCs only to 
the children of the MSPs already discovered. 
Semantic positioning is based on subsumption 
matching between the sample and the already 
clustered samples in the cluster space. Thus, a 
sample after positioning either forms a new 
taxonomy (i.e. cluster) or joins an existing set of 
taxonomies. 
 
 The algorithm, Taxonomy based Clustering 
returns an instantiated CS when given the sample 
space (S). This main algorithm requires two 
functions: (a) findMSP for computing the MSP of a 
particular sample, and (b) findLSC for computing 
the LSC of a particular sample. For service 
matching the algorithm SubsumptionMatch uses the 
binary bit code representation with encoding 
algorithms presented in [16]. It returns 0 if there is 
no match, 1 if the first argument service subsumes 
the second argument service, and 2 if the argument 
services are sibling under a common abstract parent 
service. It may happen that the sample service does 
not find any MSP. In that case two things may 
happen: (a) the sample becomes a root or (b) the 
sample can be a sibling of one or more of the 
existing root services under a common root service. 
 
ALGORITHM: Taxonomy Based Clustering 
 
INPUT: sample space S = {s1, s2, s3 ….. sn} 
OUTPUT: cluster space CS1...n 
 
TaxonomicClustering(S){ 
 CS = NULL // initially CS is set as empty 
   For count = 1 to n{ 
     sample = randomSelect(S); 
      S = S – {sample}; 
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MSP = findMSP(sample, CS); 
For 1 to MSP.size{ // PLSC: Potential LSC 

PLSC=PLSCS 
findLSC(memberOf(MSP)); } 
findLSC(sample, PLSC, CS);} 

         Return CS; 
} 
 
 
ALGORITHM: findMSP 
 
INPUT: sample, CS 
OUTPUT: MSP of sample 
 
findMSP(sample, CS){ 
sample.visited = false; 
 For count = 1 to CS.size{ 
   node = extractMember(CS); 
  // CASE A: When CS is empty (initial state) 
     If node == NULL{ …} 
         Else if (node != NULL &&  
 node.visited =      false){ 
      // CASE B: When sample has no parents 
      // 0 denotes the disjoint relation with respect to        
 //the‘g’ dimension 
      If (g-SubsumptionMatch(sample, node) == 0) 
 { 
             MSP = NULL; 
             return MSP; } 
 // CASE C: When sample gets at least one 
 // 1 denotes parent-child relation with respect to 
 the ‘g’dimension 
 Else if (g-SubsumptionMatch(sample, node) == 1)        
{ 
      node.visited = true; // this node won’t be 
//selected again 
   If (node.childrensize != 0){ 
      For count = 1 to node.childrensize{ 
              node = node.child[count]; 
              findMSP(sample, node);} } 
   Else{ 
             sample.parent[parentsize + 1] = node; 
              sample.parentsize ++; 
             node.child[childrensize + 1] = sample; 
             node.childrensize ++; 
            } 
        } 
   For count = 1 to sample.parentsize{ 
        MSP = MSP S sample.parent[count];} 
       return MSP; 
      } 
   Else if (node != NULL && node.visited == true){ 
        continue;} 
      } 
} 

 
ALGORITHM: findLSC 
 
INPUT: sample, member of sample MSP, CS 
OUTPUT: LSC of sample for the member of 
sample MSP 
findLSC(sample, member, CS) 
{ // CASE A: When sample has a non-empty MSP 
 If member != NULL{ 
For count = 1 to member.childrensize{   
If(g-SubsumptionMatch(member.child[count],  
  sample) == 1){ 
LSC = LSC S member.child[count];}} 
insertMember(CS, sample); 
return LSC; 
} 
// CASE B: When sample has an empty MSP 
Else{ 
For count = 1 to CS.size{ 
node = extractMember(CS); 
If node.visited == false{ 
node.visited = true; 
   If (SubsumptionMatch(node, sample) == 1){ 
      LSC = LSC S node;} 
   Else continue;} 
Else continue;} 
insertMember(CS, sample); 
return LSC; } 
} 
 
3.4 Web Service Matching 
 
 The Taxonomy clustering is essentially a 
subsumptive match based technique hence, we first 
need to compare any two given services with 
respect to a particular dimension (I, O, P, R) for 
three possibilities-(i) one is the 
ancestor/predecessor of the other (i.e., 
subsumption), (ii) both are sibling under a common 
parent, and (iii) both are mutually disjoint with no 
possible abstraction. For an example, assuming that 
two services s1 and s2 have their corresponding 
output dimension (i.e. O cluster space) to be vehicle 
and SUV (Fig 2). In such case both the services 
have a subsumptive relation with respect to the O 
dimension. Again, assuming that another service s3 
takes in bus as its output then s3 and s2 are siblings 
under the common parent s1. Fast subsumption 
testing of a well defined feature domain can be 
done using several ontology encoding techniques 
(such as interval encoding and prime encoding [4]). 
 
 The encoding technique used in the proposed 
work is to use bit codes. It use a ‘1’ bit for a unique 
bit position (representing a unique characteristic 
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property) and inherit all the ‘1’s of the parents into 
their corresponding positions. Thus, a root concept 
may be coded 001 while its sole child will be coded 
011. 

 
 In general, the coding is done following a 
topological sort over the ontological domain space 
starting from the root concepts till the leaf concepts. 
If there is a multiple inheritance then the codes of 
the parents are ORed. Thus, for a root parent having 
code 001 and another root parent having code 010 
their children will have the code 111. A 
subsumption can then be tested by doing a AND to 
check whether one of the operands is produced. The 
resulting operand denotes the ancestor while the 
other operand denotes its descendant. Thus, in the 
last example, for the codes 010 and 111, an AND 
produces 010 (Figure. 2). Although bit encoding is 
fast yet the former may not be efficient for huge 
domain space. This is because the space complexity 
of bit encoding is linear to the size of the domain 
space (i.e. O(n) bits where n is the number of 
concepts). The approach that is taken here is to 
break the operands into sufficiently smaller bit 
strings and then use a divide and conquer 
methodology for testing the subsumption. For any 
newly selected sample web service out of the 
sample space the objective is to find: (a) the most 
specific parent services in the existing cluster space 
under which it can be classified, and (b) the least 
specific children services that can be subsumed by 
it. Here it uses a SGPS match-making algorithm 
(called SGPS-Matching) based on dimension 
subsumption [16]. For two service samples to 
functionally match each other each with respect to a 
particular dimension (I, O, P, R) we need to 
compare concepts for subsumption that comprise 
the dimension. More precisely, the binary codes of 
the parameters within a dimension (say O cluster 
space) of a particular service sample are ORed 
together (if the parameters are more than one). The 
code (simple or ORed) of one service is then 
ANDed with that of the other service.  
 
4. WEB SERVICE DISCOVERY 
 
 Web service discovery can be posed as a query 
matching problem. A user provides a query that 
typically involves a desired service. Existing 
services that match the desired service need to be 
found out of a large collection of services. This 
requires a pair-wise query matching between the 
functional dimensions of the query and the services. 
According to OWL-S [2], the functional 
dimensions of services constitute four dimensions: 

(i) Input (I), (ii) Output (O), (iii) Pre-condition (P), 
and (iv) Postcondition/Effect/Result (R). Query 
matching for service discovery is most often based 
on the web service match model proposed by 
Paolucci et al [4]. We first need to discriminate the 
basic types of queries in terms of the four 
dimensions IOPR that can be possible over a 
service space. 
 

 
 

Figure 2: Bit-Encoding of Vehicle Ontology 
 

 
4.1. Query Model for Service Discovery 
 
 Queries can be broadly classified into: (i) simple 
queries, (ii) complex queries, and (iii) compound 
queries. A simple query does not contain any 
conjunctive or disjunctive implication in its clauses. 
In other words, it constitutes only one query clause. 
An example would be Q1: “find all services that 
provide vehicles”. A complex query constitutes a 
simple query whose clausal literals are constrained 
via the use of qualifiers. An example would be Q2: 
"find all services that provide vehicles which 
operate within city X”. In this case the query has a 
simple query Q1 whose clausal literal vehicle is 
qualified as: “all vehicles which operate in city X”. 
Finally, a compound query is a partially ordered set 
(poset) of simple and/or complex queries logically 
associated via conjunctions and/or disjunctions. An 
example would be Q3: “find all services that 
provide hospitals and find all services that provide 
names of neurologists attending all such hospitals 
and find all services that provide vehicle 
transportation to at least one of these hospitals”. A 
compound query is conventionally referred to as 
tasks in the literature [17]. Most work in service 
discovery and composition assume that queries are 
in the form of a task. However, this is a gross 
generalization and often leads to computationally 
expensive service discovery. This is because a 
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consumer query is normally far from being a well-
formed task. It is extremely difficult to articulate 
one’s desire for a service by breaking it into 
concrete sub desires that are logically connected 
with each other so as to form a valid poset of 
desires. In [6] it is shown different types of queries 
that are used in service discovery. In the model 
proposed thereby a user initiated query is an 
ordered pair of two complex/simple sub queries in 
the form: <input, query, desire>. 
 
Definition 4: Type 2 Query (in other words, the 
input required for the service) represents the 
information that is provided by the consumer to the 
system as a whole. Specifically, it is to search all 
services that have: (i) P dimension satisfied by the 
query, and (ii) I dimension satisfied by the query.  
Definition 5: Type 1 Query (in other words, what 
the consumer desires as a service) represents the 
formal goal of the consumer (in other words). 
Specifically, it is to search all functionally similar 
services that have: (i) R dimension similar to 
desired R (or set of Rs), and/or (ii) O dimension 
similar to desired O (or set of Os). 
 
4.2. Query Processing over Stratified Cluster 
Space 
 
 Initially when a query is received by the service 
discoverer it gets split into two parts: desire and 
input. For an example in Fig-3 it shows an initial 
query “My name is Joe Smith. I live in Kansas City. 
I’d like to rent a car to go to Chicago.” This query 
can be formally split into Type 1 as: “<desire: rent 
car, restriction: location <source location: Kansas 
City, destination location: Chicago>>”. In this 
example we see that the core desire is to rent a car 
while a location restriction is imposed over the 
desire as to where the source and destination 
location would be. Similarly, the original query is 
formally split into Type 2 as: “<input: name 
<value: Joe Smith>>”. In the second step, Type 1 
query is pushed into the O cluster space while Type 
2 query is pushed into the I cluster space. The idea 
is to extract the set of all services from the O cluster 
space that satisfies (partially or completely) the 
Type 1 query while at the same time extracting the 
set of all services from the I cluster space that can 
take in the input (partially or completely) from 
Type 2 query. 
 

 
 

Figure 3. Matching Processing for Service Discovery 
 
4.2.1Type 1 Query Processing 
 
 In order to extract services from the O cluster 
space the query processing algorithm tries to find 
the Least Specific Children (LSC) set of Type 1 
query for a strong solution set (SSS). Once the LSC 
is found then all the services that are descendants of 
each member of the LSC within the O cluster space 
are included within the strong solution set. We 
choose the LSC (and subsequent descendants) 
because from a Type 1 query perspective we should 
be more interested in services that are guaranteed to 
produce the desired output. For the example 
discussed in this section we can have the set SSS as 
something like {car rental service operating in 
Midwest, SUV rental service operating in Midwest, 
Sedan rental service operating in Midwest,…} 
where all members guarantee the desired service. 
We also would like to keep a separate set of 
probabilistic (or weak) set of solutions for Type 1 
query. In order to do that the query matching 
algorithm searches for the Most Specific Parent 
(MSP) set of Type 1 query and then includes the 
ancestor services of each of the MSP members into 
the weak solution set (WSS). 
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4.2.2 Type 2 Query Processing 
 
 The same technique is applied over the I cluster 
space for the Type 2 query but in this case the SSS 
will include the MSP of Type 2 query (and all the 
member ancestor services) instead of LSC (which 
was the case for Type 1 query). This is so because 
for Type 2 query we are more interested in finding 
all those services that are guaranteed to take in the 
given input. Hence, a service requiring more 
specific input cannot guarantee execution all the 
time. For the given example the set of SSS for Type 
2 query can be something like {car rental service 
that has input name, bus rental service that has 
input name, age confirmation service that has input 
name, …}. All of the services in this set guarantee 
that they can take in the input name. However, as 
with Type1 query, we can also create a separate 
WSS set for Type 2 query where the input 
processing is not guaranteed. As an example the 
WSS set can be something like {jeep rental service 
that takes input first name, car rental service that 
has input last name, …}. Over here if the query 
gives the full name it is not guaranteed that the 
service can accept the information Joe Smith in its 
entirety. 
 
  It is interesting to note that the SSS set for Type 
2 can actually contain services that may not be 
related to the desire in a direct or indirect way. In 
the above example we can see that the Type 2 SSS 
set contains a member service age confirmation. 
Now even though this service is not a car rental 
service still it can be very significant for the 
discovery process. Imagine that the age 
confirmation service outputs age verification 
certificate and that is taken as an input by another 
car rental service within the Type 1 SSS/WSS set. 
In our query processing algorithm the third step, 
thus, involves checking composibility (direct or 
indirect) the SSS/WSS set of Type 2 query to the 
SSS/WSS set of Type 1 query (Fig. 3). The 
identification and selection of services that are not a 
one-to-one mapping with the query as such (like the 
example in this case) can be done because of: (a) 
the splitting of query into its desire (Type 1) and 
input (Type 2) and (b) the independent processing 
of Type 1 and 2 over the stratified O and I cluster 
spaces respectively. Comparing this technique to 
integrated approaches we can easily understand that 
such indirect matching between query and services 
is not at all possible.  
 

Once the mapping between the solution set of Type 
1 query and the solution sets of Type 1 query is 
done, it  then filter a subset of the Type 1 query 
results such that all member services of the filtered 
subset are mapped, directly or indirectly, by at least 
one of the member services of Type 2 query 
solution sets. By indirect mapping we mean that the 
output of a member service in Type 2 result sets 
may not be directly the input of a member in the 
Type 1 result sets but instead can be mapped to 
some intermediate services within the I cluster 
space which in turn can be mapped to the Type 1 
result sets. For an example, the age confirmation 
service in Type 2 SSS set can be mapped to an 
intermediate service rental history lookup service in 
I cluster space. This service may in turn output 
rental history validation certificate that may be 
required by yet another car rental service within the 
Type 1 SSS set as an input. So we can observe that 
as the service composition problem is totally 
dependent on the service discovery problem it may 
also be true that we may require some composition 
process even to discover the complete set of 
matching services. 
 
 
5.  EVALUATION 
 
 The proposed taxonomy based clustering 
algorithm has been shown to be free from the effect 
of sample selection order. This provides a 
significant edge over other known approaches with 
respect to accuracy. Moreover, the hit counts for 
clustering a particular sample are empirically seen 
to be extremely small as compared to the cluster 
space size. This provides significant improvement 
on the runtime performance as well. As query 
matching is a sub-problem of sample clustering we 
can also conclude that the average query response 
time should also be significantly low.  

 

 The evaluation methodology is three-folded:(A) 
runtime clustering performance evaluation, (B) 
runtime average query response time performance 
evaluation, and (C) accuracy (in terms of precision 
vs. recall and entropy) evaluation. The 
performances are measured based on: (a) randomly 
generated samples via simulation and (b) OWL-S 
TC v.2 test sets of 871 web services. Figure.4 
shows the average query response time for these 
services. 
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Figure 4. Average Query Response Time 
 
6. CONCLUSIONS AND FUTURE WORK 
 
 The proposed taxonomic clustering algorithm 
has been shown to be free from the effect of sample 
selection order. This provides a significant edge 
over other known approaches with respect to 
accuracy. Moreover, the hit counts for clustering a 
particular sample are empirically seen to be 
extremely small as compared to the cluster space 
size. This provides significant improvement on the 
runtime performance as well. As query matching is 
a sub-problem of sample clustering, we can also 
conclude that the average query response time 
should also be significantly low. The query 
response analysis will be taken as a future work. 
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