
Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

382

AN EFFICIENT SEMANTIC WEB SERVICES SELECTION
MODEL USING CLUSTERING

1SHYNU P.G.

1Asstt Prof., School of Information Technology & Engineering, VIT University, Vellore, India

E-mail: 1pgshynu@gmail.com

ABSTRACT

Web Services are one of the fastest growing areas of information technology in recent years, also being a
main motivating factor for internet computations in which, one of the services being, service discovery.
Web service discovery is the process of finding appropriate services for the user defined tasks.Web Service
clustering is a technique for efficiently facilitating service discovery. Most Web Service clustering
approaches are based on suitable semantic similarity distance measure and a threshold. Threshold selection
is essentially difficult and often leads to unsatisfactory accuracy. In this paper, a self-organizing based
clustering algorithm called Taxonomy based clustering for taxonomically organizing semantic Web Service
advertisements. A query matching method is also applied on these clusters to get more accurate and
relevant results based for user requests. The system is tested and observed promising results both in terms
of accuracy and performance.

Keywords: Web Services Discovery, Composition, Ontology, Semantic Similarity, Clustering

1. INTRODUCTION

 Service discovery is one of the key problems
that have been widely researched in the area of
Service Oriented Architecture (SOA) based systems
over the past decade. This problem is significant
because all the other big problems in this area of
research, such as service selection and composition,
are intricately related to an efficient discovery
mechanism. If the SOA middleware can discover
services (over a set of service registries such as
Universal Description Discovery & Integration
(UDDI) accurately and fast then the problem of
service selection and composition become
relatively easy. However, the discovery problem is
intrinsically difficult because most large scale SOA
based systems (e.g., Web Services, Cloud
Computing, etc) are dynamic and uncertain in
nature. They are dynamic because the scope of
services is ever changing – new services get added
on to the system and old services get removed or
modified. Also it is very difficult to model
statistically this dynamism. This makes process of
service discovery fundamentally hard as the
middleware has to cope up somehow with both the
dynamism and the uncertainty. The key operation
that governs all kinds of service discovery
approaches is service matchmaking over service
descriptions. Matchmaking is essentially
computation of similarity between a query

description and a service description so that the
middleware can decide whether a service is a
candidate solution for the given query. However,
matchmaking can be expensive due to two reasons:
(i) the measure for similarity is intrinsically
complex from a computational view point, and (ii)
the query search space is extremely large resulting
in a lot of unwanted but expensive similarity
computation (i.e. comparisons). Hence, first, we
need to choose a similarity measure for
matchmaking that is simple and computationally
fast, and second, we need an efficient way of
pruning the query search space for service
discovery. Moreover, both the similarity measure
selection as well as the pruning strategy should
entail optimal accuracy of query results in terms of
precision (i.e., least inclusion of false results) and
recall (i.e., least exclusion of true results).
Similarity measures in most matchmaking
researches is either based on semantic subsumption
reasoning (using DL reasoners) over service
descriptions written in languages such as OWL-S
[2] or is based on statistical IR similarity models
(such as vector space models, probabilistic models,
information theory based models, etc). While
semantic subsumption reasoning in worst case can
be intractable and for most reasoners is not very
fast similarity computation using IR techniques do
not guarantee soundness and completeness. Also in
some cases we need considerable training of the

http://www.jatit.org/
mailto:pgshynu@gmail.com

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

383

searching model before a relatively fair accuracy
can be reached.

As for search space pruning strategies one very
efficient approach is service clustering. In this
approach services are clustered into functionally
similar groups and then every cluster can be
mapped to an index for a directed query processing.
When a query comes in the middleware can
guarantee the exclusion of any potential candidate
service outside its corresponding cluster and hence,
limit the search only to that cluster. Web service
clustering algorithms can be classified into two
general approaches: (i) similarity distance measure
based and (ii) self-organization based. Both the
approaches have the capacity to exploit semantic
information of the service descriptions. Most
distance-based approaches in service clustering
strike a balance between the accuracy and the
computational cost incurred by the algorithm.
However, there are several significant limitations
that can be observed in this approach. To begin
with, for any sort of sample space having an
independent, identical probability distribution
(I.I.D) it is difficult to construct a classifier that
classifies the samples into their correct clusters.
One of the reasons is that the accuracy of the
algorithm depends upon the order of sample
selection during clustering. Secondly, distance-
based algorithms need to assume the choice of good
distance threshold for clustering. We claim that for
the problem of semantic Web Service clustering we
do not need a distance based approach.

This paper proposes a self-organizing based
clustering algorithm called Taxonomy based
clustering for taxonomically organizing semantic
Web Service advertisements. The approach
overcomes the problem of sample selection order as
well as suboptimal choice of threshold. For the
Taxonomy based clustering algorithm, it is also
proposed a non-distance based subsumption
matchmaking technique that does not require DL
reasoners for computing subsumption. Instead it
uses bit-based encoding technique that significantly
reduces the comparison cost as compared to
subsumption and other IR based techniques. In this
way the algorithm guarantees a much higher
accuracy than distance-based approaches. The
system has been tested the proposed algorithm on
both simulation based randomly generated test data
and the standard OWL-S TC test data set and

observed promising results both in terms of
accuracy and runtime performance.

The rest of the paper is divided as follows:
Section 2 discusses related work where standard
service discovery infrastructure and service
matching techniques have been introduced. Section
3, explains the taxonomy based clustering in detail.
In Section 4, web service discovery as a query
matching problem where the motivation behind the
proposed clustering technique has been laid.
Section 5 evaluates the proposed approaches and
Section 6 concludes this paper.

2. RELATED WORK

All web service discovery problems have been
treated as a special case of information retrieval
problem by most researchers. The common
principle is to cluster similar services in groups that
are stored in backend system. Backend systems can
be classified into three types: (i) index table based
(such as UDDI, Jini, MSLP [3]), (ii) DHT-based
(such as CHORD [1]), and (iii) taxonomical
hierarchy based (such as capability graphs [4]).
Currently, the most popular backend
implementation for service discovery is UDDI.
However, UDDI is at a very syntactic level. It is
organized based on pre-defined thematic categories.
However, the services are not categorized with
respect to their functionality. This is a major
drawback in terms of design as consumer access is
mainly based on the functional attributes of Web
services. Many researchers have proposed an
extension to the existing UDDI structure by adding
semantic descriptions to the services. The semantic
description can be at three levels: (i) functional
(such as OWL-S [2]), (ii) contextual (CCC/PP), and
(iii) QoS (such as WSOL [5]). Service clustering
can be performed at these three levels [6] using
several approaches.

Web service clustering one of the most widely
used method which is distance based. In this
approach a semantic distance measure is first
defined. This distance measure can be of two types:
(i) keyword based [7] and (ii) ontology based [8].
In keyword based distance measures the similarity
of two services is computed using a vector space
model based on TF/IDF technique derived from IR
research. As an alternative approach, there has been
significant research on ontology based semantic
distance measure [9,10]. Semantic distance

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

384

measures can be classified into three categories: (i)
taxonomic distance based [11,12], (ii) information
content (IC) based [13], and (iii) concept property
based [14]. In the case of service similarity measure
a simple taxonomic distance based or IC based
measure cannot give us precise results. This is
because a Web service is a complex concept with
independent multi-faceted dimensions like
functionality, context and QoS. In general most
research approaches choose a specific similarity
distance measure. Then similarity is separately
computed at the attributive level - namely, input (I),
output (O), pre-condition (P), and post
condition/result (R) [10]. Based on such
computation a decision rule is applied that tells
whether two services are similar or not with respect
to a defined global threshold. The other alternative
service clustering approach is self organization. The
proposed clustering algorithm falls under this
approach. Self-organization of Web services takes
place on a conceptual plane (rather than a metric
plane). The basis of clustering in this case is
subsumptive matching instead of similarity
computation. According to the model given in [10],
there can be four types of Web service subsumptive
match: (i) exact match (where the attribute/s of one
service is same as or sub class of the attribute/s of
another service), (ii) plug-in (where the attribute/s
of the plug-in/replaceable service subsumes the
attribute of the other service), (iii) subsumes (where
the attribute/s of the subsuming service is a higher
level generalization of the attribute/s of the other
service), (iv) fail (where the attribute/s of one
service has no subsumptive relation with the
attribute/s of the other service). It has been pointed
out by several researchers that in the context of
service discovery a subsume match is considered
the weakest match while an exact match is the
strongest [4, 9, 15].

3. TAXONAMY BASED CLUSTERING

 A self-organizing based clustering algorithm
called Taxonomy based clustering for Web Service
advertisements in proposed. The basic idea behind
the clustering algorithm is to generate clusters over
the sample space for each dimension independently
(i.e., stratified approach). The stratified approach of
clustering web services overcomes the problem of
sample selection order as well as suboptimal choice
of threshold. As a result, we get four different
levels of cluster spaces – each corresponding to the
four functional dimensions. We now define the
scope of the problem which is to cluster web

services according to their functionality for their
efficient and accurate discovery.

 As the proposed taxonomic web service
clustering is essentially a subsumptive match based
technique hence, we first need to compare any two
given services with respect to a particular
dimension (I, O, P, R) for three possibilities: (i) one
is the ancestor/predecessor of the other (i.e.,
subsumption), (ii) both are sibling under a common
parent, and (iii) both are mutually disjoint with no
possible abstraction. For an example, assuming that
two services s1 and s2 have their corresponding
output dimension (i.e. O cluster space) to be vehicle
and SUV (Fig 1). In such case both the services
have a subsumptive relation with respect to the O
dimension. Again, assuming that another service s3
takes in bus as its output then s3 and s2 are siblings
under the common parent s1

Figure 1. Vehicle, Location & Address Ontologies

3.1. Scope of Problem

 Problem Definition: Given a finite set of web
services generate a set of clusters such that if a
member web service of a particular cluster has a
particular class of functionality then all the other
members of the same cluster must have same class
of functionality subject to the constraints:

• The selection of web services from the
sample space follows I.I.D (i.e.,
independent, identical distribution)

• The selection order of samples does not
affect the accuracy of the clustering

Vehicle

Location

Address

Bus

Car

Country

City

City Address

Street

Sedan

SUV

Kansas City

Orlando City

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

385

process (no effect of sample selection
order)

• Fuzzy clusters are not allowed (no
probabilistic membership of sample within
a cluster)

3.2. Stratification of Sample Space

 Now we can formally define a cluster space as
follows:

Definition 1: A g-subsumption is s1.g K s2.g = true
iff (s1.g T s2.g) = s1.g where T is intersection over
g dimension; g = {I, O, P, R}.

Definition 2: A g-type taxonomic cluster (denoted
asT g) is a partial-order of web service (samples)

over g-subsumption relation
g
k with a unique

maximum upper bound (or least specific parent)
called the root.

Definition 3: A cluster space (denoted as CS) w.r.t
to a particular functional dimension g is a well-
defined finite set of g-type taxonomic clusters such
that any member taxonomic cluster may have g-
subsumption relation k g with one or more member
taxonomic cluster via corresponding member
samples.

 The cluster spaces corresponding to the O
dimension are called the O cluster space as the
Type 1 component of a query is directed towards
this cluster space. The cluster spaces corresponding
to the I dimension are called the I cluster space as
the Type 2 component of a query is directed
towards this cluster space.

 As the proposed taxonomic web service
clustering is essentially a subsumptive match based
technique hence, we first need to compare any two
given services with respect to a particular
dimension (I, O, P or R-spaces) for three
possibilities: (i) one is the ancestor/predecessor of
the other (i.e., subsumption), (ii) both are sibling
under a common parent, and (iii) both are mutually
disjoint with no possible abstraction

 The order of sample selection over an I.I.D may
have negative side-effect on the overall clustering
performance. This can be shown via an example.
Let us consider three services s1, s2, and s3. Let
these services need to be clustered according to
their output dimension (O).

 It is given that s1.o = {car, location}, s2.o =
{vehicle, city, address}, s3.o = {SUV,
street_address}. The domain set for this example
is: {vehicle, location, address} (Fig 1). From a
semantic taxonomy point of view, s1 and s2 are
siblings under a common abstraction {vehicle,
location} while s3 is sibling to this abstraction
under a common abstraction {vehicle}.

3.3. Taxonomy Based Clustering Algorithm

 The basic outline of the proposed taxonomy
based clustering algorithm involves positioning a
randomly selected sample (Web Service) from the
given ample space and semantically positioning it
in the cluster space by searching for the most
specific parents (MSP) and the least specific
children (LSC). An important optimization can be
made here by restricting the search for LSCs only to
the children of the MSPs already discovered.
Semantic positioning is based on subsumption
matching between the sample and the already
clustered samples in the cluster space. Thus, a
sample after positioning either forms a new
taxonomy (i.e. cluster) or joins an existing set of
taxonomies.

 The algorithm, Taxonomy based Clustering
returns an instantiated CS when given the sample
space (S). This main algorithm requires two
functions: (a) findMSP for computing the MSP of a
particular sample, and (b) findLSC for computing
the LSC of a particular sample. For service
matching the algorithm SubsumptionMatch uses the
binary bit code representation with encoding
algorithms presented in [16]. It returns 0 if there is
no match, 1 if the first argument service subsumes
the second argument service, and 2 if the argument
services are sibling under a common abstract parent
service. It may happen that the sample service does
not find any MSP. In that case two things may
happen: (a) the sample becomes a root or (b) the
sample can be a sibling of one or more of the
existing root services under a common root service.

ALGORITHM: Taxonomy Based Clustering

INPUT: sample space S = {s1, s2, s3 ….. sn}
OUTPUT: cluster space CS1...n

TaxonomicClustering(S){
 CS = NULL // initially CS is set as empty
 For count = 1 to n{
 sample = randomSelect(S);
 S = S – {sample};

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

386

MSP = findMSP(sample, CS);
For 1 to MSP.size{ // PLSC: Potential LSC

PLSC=PLSCS
findLSC(memberOf(MSP)); }
findLSC(sample, PLSC, CS);}

 Return CS;
}

ALGORITHM: findMSP

INPUT: sample, CS
OUTPUT: MSP of sample

findMSP(sample, CS){
sample.visited = false;
 For count = 1 to CS.size{
 node = extractMember(CS);
 // CASE A: When CS is empty (initial state)
 If node == NULL{ …}
 Else if (node != NULL &&
 node.visited = false){
 // CASE B: When sample has no parents
 // 0 denotes the disjoint relation with respect to
 //the‘g’ dimension
 If (g-SubsumptionMatch(sample, node) == 0)
 {
 MSP = NULL;
 return MSP; }
 // CASE C: When sample gets at least one
 // 1 denotes parent-child relation with respect to
 the ‘g’dimension
 Else if (g-SubsumptionMatch(sample, node) == 1)
{
 node.visited = true; // this node won’t be
//selected again
 If (node.childrensize != 0){
 For count = 1 to node.childrensize{
 node = node.child[count];
 findMSP(sample, node);} }
 Else{
 sample.parent[parentsize + 1] = node;
 sample.parentsize ++;
 node.child[childrensize + 1] = sample;
 node.childrensize ++;
 }
 }
 For count = 1 to sample.parentsize{
 MSP = MSP S sample.parent[count];}
 return MSP;
 }
 Else if (node != NULL && node.visited == true){
 continue;}
 }
}

ALGORITHM: findLSC

INPUT: sample, member of sample MSP, CS
OUTPUT: LSC of sample for the member of
sample MSP
findLSC(sample, member, CS)
{ // CASE A: When sample has a non-empty MSP
 If member != NULL{
For count = 1 to member.childrensize{
If(g-SubsumptionMatch(member.child[count],
 sample) == 1){
LSC = LSC S member.child[count];}}
insertMember(CS, sample);
return LSC;
}
// CASE B: When sample has an empty MSP
Else{
For count = 1 to CS.size{
node = extractMember(CS);
If node.visited == false{
node.visited = true;
 If (SubsumptionMatch(node, sample) == 1){
 LSC = LSC S node;}
 Else continue;}
Else continue;}
insertMember(CS, sample);
return LSC; }
}

3.4 Web Service Matching

 The Taxonomy clustering is essentially a
subsumptive match based technique hence, we first
need to compare any two given services with
respect to a particular dimension (I, O, P, R) for
three possibilities-(i) one is the
ancestor/predecessor of the other (i.e.,
subsumption), (ii) both are sibling under a common
parent, and (iii) both are mutually disjoint with no
possible abstraction. For an example, assuming that
two services s1 and s2 have their corresponding
output dimension (i.e. O cluster space) to be vehicle
and SUV (Fig 2). In such case both the services
have a subsumptive relation with respect to the O
dimension. Again, assuming that another service s3
takes in bus as its output then s3 and s2 are siblings
under the common parent s1. Fast subsumption
testing of a well defined feature domain can be
done using several ontology encoding techniques
(such as interval encoding and prime encoding [4]).

 The encoding technique used in the proposed
work is to use bit codes. It use a ‘1’ bit for a unique
bit position (representing a unique characteristic

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

387

property) and inherit all the ‘1’s of the parents into
their corresponding positions. Thus, a root concept
may be coded 001 while its sole child will be coded
011.

 In general, the coding is done following a
topological sort over the ontological domain space
starting from the root concepts till the leaf concepts.
If there is a multiple inheritance then the codes of
the parents are ORed. Thus, for a root parent having
code 001 and another root parent having code 010
their children will have the code 111. A
subsumption can then be tested by doing a AND to
check whether one of the operands is produced. The
resulting operand denotes the ancestor while the
other operand denotes its descendant. Thus, in the
last example, for the codes 010 and 111, an AND
produces 010 (Figure. 2). Although bit encoding is
fast yet the former may not be efficient for huge
domain space. This is because the space complexity
of bit encoding is linear to the size of the domain
space (i.e. O(n) bits where n is the number of
concepts). The approach that is taken here is to
break the operands into sufficiently smaller bit
strings and then use a divide and conquer
methodology for testing the subsumption. For any
newly selected sample web service out of the
sample space the objective is to find: (a) the most
specific parent services in the existing cluster space
under which it can be classified, and (b) the least
specific children services that can be subsumed by
it. Here it uses a SGPS match-making algorithm
(called SGPS-Matching) based on dimension
subsumption [16]. For two service samples to
functionally match each other each with respect to a
particular dimension (I, O, P, R) we need to
compare concepts for subsumption that comprise
the dimension. More precisely, the binary codes of
the parameters within a dimension (say O cluster
space) of a particular service sample are ORed
together (if the parameters are more than one). The
code (simple or ORed) of one service is then
ANDed with that of the other service.

4. WEB SERVICE DISCOVERY

 Web service discovery can be posed as a query
matching problem. A user provides a query that
typically involves a desired service. Existing
services that match the desired service need to be
found out of a large collection of services. This
requires a pair-wise query matching between the
functional dimensions of the query and the services.
According to OWL-S [2], the functional
dimensions of services constitute four dimensions:

(i) Input (I), (ii) Output (O), (iii) Pre-condition (P),
and (iv) Postcondition/Effect/Result (R). Query
matching for service discovery is most often based
on the web service match model proposed by
Paolucci et al [4]. We first need to discriminate the
basic types of queries in terms of the four
dimensions IOPR that can be possible over a
service space.

Figure 2: Bit-Encoding of Vehicle Ontology

4.1. Query Model for Service Discovery

 Queries can be broadly classified into: (i) simple
queries, (ii) complex queries, and (iii) compound
queries. A simple query does not contain any
conjunctive or disjunctive implication in its clauses.
In other words, it constitutes only one query clause.
An example would be Q1: “find all services that
provide vehicles”. A complex query constitutes a
simple query whose clausal literals are constrained
via the use of qualifiers. An example would be Q2:
"find all services that provide vehicles which
operate within city X”. In this case the query has a
simple query Q1 whose clausal literal vehicle is
qualified as: “all vehicles which operate in city X”.
Finally, a compound query is a partially ordered set
(poset) of simple and/or complex queries logically
associated via conjunctions and/or disjunctions. An
example would be Q3: “find all services that
provide hospitals and find all services that provide
names of neurologists attending all such hospitals
and find all services that provide vehicle
transportation to at least one of these hospitals”. A
compound query is conventionally referred to as
tasks in the literature [17]. Most work in service
discovery and composition assume that queries are
in the form of a task. However, this is a gross
generalization and often leads to computationally
expensive service discovery. This is because a

Vehicle

Bus Car

Sedan SUV

00001

00101 00011

01101 10101

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

388

consumer query is normally far from being a well-
formed task. It is extremely difficult to articulate
one’s desire for a service by breaking it into
concrete sub desires that are logically connected
with each other so as to form a valid poset of
desires. In [6] it is shown different types of queries
that are used in service discovery. In the model
proposed thereby a user initiated query is an
ordered pair of two complex/simple sub queries in
the form: <input, query, desire>.

Definition 4: Type 2 Query (in other words, the
input required for the service) represents the
information that is provided by the consumer to the
system as a whole. Specifically, it is to search all
services that have: (i) P dimension satisfied by the
query, and (ii) I dimension satisfied by the query.
Definition 5: Type 1 Query (in other words, what
the consumer desires as a service) represents the
formal goal of the consumer (in other words).
Specifically, it is to search all functionally similar
services that have: (i) R dimension similar to
desired R (or set of Rs), and/or (ii) O dimension
similar to desired O (or set of Os).

4.2. Query Processing over Stratified Cluster
Space

 Initially when a query is received by the service
discoverer it gets split into two parts: desire and
input. For an example in Fig-3 it shows an initial
query “My name is Joe Smith. I live in Kansas City.
I’d like to rent a car to go to Chicago.” This query
can be formally split into Type 1 as: “<desire: rent
car, restriction: location <source location: Kansas
City, destination location: Chicago>>”. In this
example we see that the core desire is to rent a car
while a location restriction is imposed over the
desire as to where the source and destination
location would be. Similarly, the original query is
formally split into Type 2 as: “<input: name
<value: Joe Smith>>”. In the second step, Type 1
query is pushed into the O cluster space while Type
2 query is pushed into the I cluster space. The idea
is to extract the set of all services from the O cluster
space that satisfies (partially or completely) the
Type 1 query while at the same time extracting the
set of all services from the I cluster space that can
take in the input (partially or completely) from
Type 2 query.

Figure 3. Matching Processing for Service Discovery

4.2.1Type 1 Query Processing

 In order to extract services from the O cluster
space the query processing algorithm tries to find
the Least Specific Children (LSC) set of Type 1
query for a strong solution set (SSS). Once the LSC
is found then all the services that are descendants of
each member of the LSC within the O cluster space
are included within the strong solution set. We
choose the LSC (and subsequent descendants)
because from a Type 1 query perspective we should
be more interested in services that are guaranteed to
produce the desired output. For the example
discussed in this section we can have the set SSS as
something like {car rental service operating in
Midwest, SUV rental service operating in Midwest,
Sedan rental service operating in Midwest,…}
where all members guarantee the desired service.
We also would like to keep a separate set of
probabilistic (or weak) set of solutions for Type 1
query. In order to do that the query matching
algorithm searches for the Most Specific Parent
(MSP) set of Type 1 query and then includes the
ancestor services of each of the MSP members into
the weak solution set (WSS).

My Name is Joe
I Live in NYC

I want a rented Car

Name: Joe

Rent a Car

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Type 2
Query:
Input

Type 1
Query:
Desire

Search for
LSC

Search for
MSP

The I Cluster
Space

The O Cluster
Space

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

389

4.2.2 Type 2 Query Processing

 The same technique is applied over the I cluster
space for the Type 2 query but in this case the SSS
will include the MSP of Type 2 query (and all the
member ancestor services) instead of LSC (which
was the case for Type 1 query). This is so because
for Type 2 query we are more interested in finding
all those services that are guaranteed to take in the
given input. Hence, a service requiring more
specific input cannot guarantee execution all the
time. For the given example the set of SSS for Type
2 query can be something like {car rental service
that has input name, bus rental service that has
input name, age confirmation service that has input
name, …}. All of the services in this set guarantee
that they can take in the input name. However, as
with Type1 query, we can also create a separate
WSS set for Type 2 query where the input
processing is not guaranteed. As an example the
WSS set can be something like {jeep rental service
that takes input first name, car rental service that
has input last name, …}. Over here if the query
gives the full name it is not guaranteed that the
service can accept the information Joe Smith in its
entirety.

 It is interesting to note that the SSS set for Type
2 can actually contain services that may not be
related to the desire in a direct or indirect way. In
the above example we can see that the Type 2 SSS
set contains a member service age confirmation.
Now even though this service is not a car rental
service still it can be very significant for the
discovery process. Imagine that the age
confirmation service outputs age verification
certificate and that is taken as an input by another
car rental service within the Type 1 SSS/WSS set.
In our query processing algorithm the third step,
thus, involves checking composibility (direct or
indirect) the SSS/WSS set of Type 2 query to the
SSS/WSS set of Type 1 query (Fig. 3). The
identification and selection of services that are not a
one-to-one mapping with the query as such (like the
example in this case) can be done because of: (a)
the splitting of query into its desire (Type 1) and
input (Type 2) and (b) the independent processing
of Type 1 and 2 over the stratified O and I cluster
spaces respectively. Comparing this technique to
integrated approaches we can easily understand that
such indirect matching between query and services
is not at all possible.

Once the mapping between the solution set of Type
1 query and the solution sets of Type 1 query is
done, it then filter a subset of the Type 1 query
results such that all member services of the filtered
subset are mapped, directly or indirectly, by at least
one of the member services of Type 2 query
solution sets. By indirect mapping we mean that the
output of a member service in Type 2 result sets
may not be directly the input of a member in the
Type 1 result sets but instead can be mapped to
some intermediate services within the I cluster
space which in turn can be mapped to the Type 1
result sets. For an example, the age confirmation
service in Type 2 SSS set can be mapped to an
intermediate service rental history lookup service in
I cluster space. This service may in turn output
rental history validation certificate that may be
required by yet another car rental service within the
Type 1 SSS set as an input. So we can observe that
as the service composition problem is totally
dependent on the service discovery problem it may
also be true that we may require some composition
process even to discover the complete set of
matching services.

5. EVALUATION

 The proposed taxonomy based clustering
algorithm has been shown to be free from the effect
of sample selection order. This provides a
significant edge over other known approaches with
respect to accuracy. Moreover, the hit counts for
clustering a particular sample are empirically seen
to be extremely small as compared to the cluster
space size. This provides significant improvement
on the runtime performance as well. As query
matching is a sub-problem of sample clustering we
can also conclude that the average query response
time should also be significantly low.

 The evaluation methodology is three-folded:(A)
runtime clustering performance evaluation, (B)
runtime average query response time performance
evaluation, and (C) accuracy (in terms of precision
vs. recall and entropy) evaluation. The
performances are measured based on: (a) randomly
generated samples via simulation and (b) OWL-S
TC v.2 test sets of 871 web services. Figure.4
shows the average query response time for these
services.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

390

Figure 4. Average Query Response Time

6. CONCLUSIONS AND FUTURE WORK

 The proposed taxonomic clustering algorithm
has been shown to be free from the effect of sample
selection order. This provides a significant edge
over other known approaches with respect to
accuracy. Moreover, the hit counts for clustering a
particular sample are empirically seen to be
extremely small as compared to the cluster space
size. This provides significant improvement on the
runtime performance as well. As query matching is
a sub-problem of sample clustering, we can also
conclude that the average query response time
should also be significantly low. The query
response analysis will be taken as a future work.

 REFRENCES:
[1] Stoicay, I., Morrisz, R., Liben-Nowellz, et al.

Chord: A Scalable peerto- peer lookup protocol
for internet applications. IEEE/ACM
Transactions on Networking (TON), Vol 11(1),
2003, pp. 17 – 32.

[2] Martin, D., et al. OWL-S: Semantic Markup
for Web Services, W3C Member Submission,
22 Nov. 2004

[3] Zhao, W., Schulzrinne, H., Guttman, E. MSLP-
Mesh-enhances Service Location Protocol, 9th
ICCCN, Las Vegas, USA, 2000.

[4] Mokhtar, S., Preuveneers, D., Georgantas, N.,
Issarny, V., Berbers, Y. EASY: Efficient
semantic Service discoverY in pervasive
computing environments with QoS and context
support, J. of Systems and Software,
81(5):785-808 2008.

[5] Tosic, V., Patel, K., Pagurek, B. WSOL - Web
Service Offerings Language, International
Workshop on Web Services, E-Business and
the Semantic Web (WES 2002), CAiSE,
Toronto, Canada, 2002.

[6] Dasgupta, S. Bhat, S., Lee, Y. An Abstraction
Framework for Service Composition in Event-
driven SOA systems, IEEE ICWS, Los
Angeles, CA, USA, 2009

[7] Corella, M. A., Castells, P. A Heuristic
Approach to Semantic Web Services
Classification, 10th International Conference
on Knowledge- Based & Intelligent
Information & Engineering Systems
(KES).2006.

[8] Bianchini, D., Antonellis, V., Pernici, B.,
Plebani P. Ontology-based Methodology for e-
Service Discovery, ACM J.l of Information
Systems, Vol 31(4): 361 – 380, June 2006.

[9] Wang, G., Xu, D., Qi, Y., Hou, D. A Semantic
Match Algorithm for Web Services Based on
Improved Semantic Distance, 4th International
Conference on Next Generation Web Services
Practices, Seoul, S. Korea, 2008.

[10] Paolucci, M., Kawamura, T., Payne, T.,
Sycara, K. Semantic Matching of Web
Services Capabilities, International Semantic
Web Conference, Italy, 2002

[11] Rada, R., Mili, H., Bicknell, E., Blettner, M.
Development and application of a metric on
semantic nets, IEEE Trans. on Systems, Man,
and Cybernetics, 19(1):17-30 1989.

[12] Hirst, G., St-Onge, D. Lexical chains as
representations of context for the detection.
Fellbaum, 1998, pp. 305–332.

[13] Resnik, P. Using information content to
evaluate semantic similarity, 14th International
Joint Conference on Artificial Intelligence,
Montreal, 1995, pp. 448–453.

[14] Keßler, C., Raubal, M., Janowicz, K. The
Effect of Context on Semantic Similarity
Measurement, Lecture Notes in Computer
Science 4806. Springer-Verlag Berlin
Heidelberg, 2007, 1274-1284.

[15] Qiu, T., Li, L., Lin, P. Web Service Discovery
with UDDI Based on Semantic Similarity of
Service Properties. 3rd International
Conference on Semantics, Knowledge and
Grid, Xi’an, China, 2007.

[16] Sourish Dasgupta, Satish Bhat, Yugyung Lee,
SGPS: a semantic scheme for web service
similarity. WWW 2009: 1125-1126.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

391

[17] J. Sousa, V. Poladian, D. Garlan, B. Schmerl,
M. Shaw. “Task-based Adaptation for
Ubiquitous Computing”, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 36(3),
2006. pp. 328-340.

[18] Klusch, M., Fries, B., Sycara, K. OWLS-MX:
A hybrid Semantic Web service matchmaker
for OWL-S services, Web Semantics: Science,
Services and Agents on the World Wide Web,
7(2):121-133, 2009.

http://www.jatit.org/

	1SHYNU P.G.

