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ABSTRACT 
 

Many important computational problems may be formulated as constraint satisfaction problems (CSP). In 
this paper, we propose a new approach to solve the binary CSP problems using the continuous Hopfield 
networks (CHN). This approach is divided into three steps: the first concerns reducing the size of the CSP 
problems using arc consistency technique AC3. The second step involves modeling the filtered constraint 
satisfaction problems as 0-1 quadratic programming subject to linear constraints. The last step concerns 
applying the continuous Hopfield networks to solve the obtained 0-1 optimization model. Therefore, the 
mapping procedure and an appropriate parameter setting procedure about CSP problems are given in detail. 
Finally, some computational experiments solving the CSP problems are shown. 

Keywords: Constraint Satisfaction Problems, Filtering Algorithms, Quadratic 0-1 Programming, 
Continuous Hopfield Networks, Energy Function. 

 
1. INTRODUCTION  
 

A large number of problems in artificial 
intelligence and other areas of computer science can 
be viewed as special cases of the constraint 
satisfaction problems. Some examples include 
machine vision, belief maintenance, scheduling, 
temporal reasoning, graph problems, aircraft 
conflict, etc. 

A constraint satisfaction problem is defined by a 
set of variables, a finite and discrete domain for 
each variable and a set of constraints. Each 
constraint restricts the combination of values that a 
set of variables may take simultaneously. Solving 
the CSP problem requires assigning a value for each 
variable from each domain in such a way that all 
constraints are satisfied. The task is to find one 
solution or all solutions. However, the CSP 
problems are NP-complete problems requiring a 
combination of heuristics and combinatorial search 
methods in order to be solved in a reasonable 
time[12]. 

A number of different approaches have been 
developed for solving the constraint satisfaction 
problems [10], [18], [19], [21]. Some of them use 
backtracking to directly search for possible 

solutions [5], others use consistency techniques to 
simplify the original problems [3], [4], [24], and 
some are a combination of these two techniques [2], 
[5], [13]. Moreover, we proposed different 
approaches to solve the constraint satisfaction 
problems. The first one consists of modeling a 
constraint satisfaction problem as 0-1 quadratic 
knapsack problem subject to quadratic constraint 
[6], [7]. The second one is a new model of the 
binary CSP problem as 0-1 quadratic programming 
which consists in minimizing the quadratic function 
subject to linear constraints[8]. The later model will 
be used in order to determine a generalized energy 
function for the binary constraint satisfaction 
problem. This step is the most important one for 
solving any binary CSP problem using continuous 
Hopfield networks. 

This neural network was introduced by Hopfield 
and Tank [13], [14] and it has been extensively 
studied, developed and has found many applications 
in many areas, such as pattern recognition, model 
identification, and optimization [11], [28]. 
Moreover, this neural network is applied to solve 
many problems such as traveling salesman 
problems [27], graph coloring problems [17], 
allocation problems [16], etc. It is important to note 
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that all these problems can be reformulated as 
constraint satisfaction problems [15], [16], [21]. In 
this paper, we propose a general approach for 
solving the binary constraint satisfaction problems 
using the continuous Hopfield networks, which will 
be able to solve all problems that can be modeled in 
terms of constraint satisfaction problems. 

This paper is organized as follows: In section 2, 
the arc-consistency procedure used in this approach 
is studied and the model of the binary CSP 
problems is formulated as a quadratic assignment 
problem with linear constraints.  In section 3, a 
generalized energy function associated with the 
CSP problems is defined and a direct parameter 
setting procedure is computed. The proposed 
algorithm is described in the next section. 
Implementation details of the proposed approach, 
complexity analysis, and experimental results are 
presented in the last section. 

 

2. REDUCING THE SIZE OF THE CSP 
PROBLEMS AND MODELING THEM 

In general, a constraint satisfaction problem 
forms a class of models representing problems that 
have common properties, a set of variables and a set 
of constraints [21]. The variables should be 
instantiated from a discrete domain while making 
sure the constraints are satisfied. This study of CSP 
problems has become focused on binary constraint 
satisfaction problems i.e., the CSP with constraints 
of arity less than or equal to 2, and each constraint 
Cij between variables yi and yj is defined by its 
binary relation Rij. Formally speaking, the binary 
constraint satisfaction problems are defined by 
triple sets (Y,D, C) where: 

- Y = {y1,......,yN} is a set of N variables, 

- D = {D(y1),.....,D(yN)} where each D(yi) is a 
set of di possible values for yi, 

- C = {Cij} is a set of m constraints which 
restricts the values that the variables yi and yj 
can simultaneously take. 

The solution of constraint satisfaction problems 
is obtained by assigning each variable a value from 
its domain satisfying all constraints [10]. In order to 
use the continuous Hopfield networks for solving 
the constraint satisfaction problems, we opted for 
using the mathematical model which consists in 
modeling the CSP problems as a 0-1 quadratic 
programming. This model can be used to define the 
generalized energy function of the CHN. However, 

before modeling the CSP problems, we can use the 
arc consistency technique in order to reduce the size 
of the CSP problems and, thus, reduce the 
continuous Hopfield network architectures. 

2.1 Consistency techniques 
In general, a binary constraint satisfaction 

problem is represented as an undirected graph with 
the vertices corresponding to the variables and the 
edges corresponding to the constraints. It is known 
that, the binary CSP problems have only two kinds 
of constraints: unary constraints and binary 
constraints. The simplest degree of consistency that 
can be enforced on a CSP problem is node 
consistency which concerns only the unary 
constraints [10]. However, a stronger degree of 
consistency is arc consistency. The latter concerns 
the binary constraints in CSP problem and 
guarantees that each value admits at least a support 
in each constraint. Many algorithms have been 
proposed to establish arc consistency such as AC1, 
AC2,...,AC2000 and AC3.1[3], [4], [23], [24]. 

Definition 1 
Let Cij  a binary constraint between two 

variables yi and  yj, with two domains D(yi) and 
D(yj). 

We call Cij arc consistent if 

- ∀ a ∈ D (yi}), ∃ b ∈ D(yj) such that  (a, b) 
satisfies the constraint Cij , 

- ∀ b ∈ D (yj}), ∃ a ∈ D(yi)  such that  (a, b) 
satisfies the constraint Cij} . 

We call a CSP problem arc consistent if all its 
binary constraints are arc consistent. 

The description of the arc consistency AC3 
technique which was used is the following [19]: 
Initially, all arcs (Cij,yi) are  put  in a  set named K. 
Then, each arc is revised in turn, and when the 
revision is effective (at least one value has been 
removed), the set K has to be updated. This revision 
removes values of D(yi) that have become 
inconsistent with respect to constraint Cij [19]. The 
algorithm is stopped when the set K becomes 
empty. Therefore, the property of consistency is 
forced for CSP problem. 

In this paper, the arc consistency algorithm plays 
an important role for solving the constraint 
satisfaction problems [10]. This consistency 
technique does not remove all inconsistent values 
from the variables'domains, but it can still eliminate 
many "obvious" inconsistencies and, thus, simplify 
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the model of the CSP problems. In this context, 
there are three important roles of this filtering: 

- Prove that the CSP problems do not admit a 
solution (if one domain after filtering is 
empty)[10]. 

- Reduce the size of the modeled CSP problems 
since for each value from variables'domains is 
associated with the binary variable. Therefore, 
if any inconsistent value from the 
variables'domains is deleted, the represented 
binary variable must be eliminated from the 
proposed model and, thus reduce the size of 
this model as much as possible. 

- Reduce the Hopfield neural network 
architectures. When we reduce the size of this 
model, the number of neurons in the 
architecture of the continuous Hopfield 
networks is reduced because each binary 
variable is associated with one neuron in the 
continuous Hopfield networks. 

2.2 Modeling The Constraint Satisfaction 
Problems 

The constraint satisfaction problems have been 
recognized as an efficient model for solving many 
combinatorial and complex problems. These 
problems are formulated as 0-1 quadratic knapsack 
problem subject to quadratic constraint [6],[7]. 
Another model of the CSP problem as 0-1 quadratic 
programming, which consists of minimizing a 
quadratic function subject to linear constraints, has 
been proposed [8]. 

In the following, we want to present the proposed 
model of the binary constraint satisfaction 
problems. For each variable yi of the CSP problem, 
we introduce di binary variables xik such that: 

1 =
= ( )

0
i k

ik k i

if y v
x v D y

Otherwise


∈


             (1) 

 
Where {1,....., }, {1,....., }ik d i N∈ ∈  
This matrix is easily converted to a n-vector: 

( )11 1 11
=

T

d N NdN
x x x x x   

 
with 

=1
= N

ii
n d∑  and =| ( ) |i id D y  

 
Based on this notion of encoding values for each 

variable, we can define the objective function and 
the constraints of our model. 

 

2.2.2 Objective function 
 Each constraint Cij between two variables iy  

and jy  is defined by its relation Rij  (Rij is a subset 
of the cartesian product ( ) ( )i jD y D y× , specifying 
the compatible values between iy  and jy ). Note 
that, if there is no constraint between variables iy  
and jy , ( , )ij r sR v v  holds for any pair ( , )r sv v  of 

( ) ( )i jD y D y× . For each couple ( , )r sv v  such that 
( , )r s ijv v R∈ , we generate a constraint:  

= 0ir jsx x                                                 (2) 
 For each relation Rij , the constraints (2) can be 

aggregated in a single constraint:  

=1 =1
= 0

dd ji

irjs ir js
r s

q x x∑∑                                   (3) 

 Where 
1 ( , )

=
0

r s ij
irjs

if v v R
q

Otherwise
∈




 

and {1,....., }, {1,....., }, <i N j N i j∈ ∈  
These constraints (3) can be aggregated in a 

single constraint:  

=1 =1 < =1 =1
( ) = = 0

dd jN N i

irjs ir js
i j i j r s

f x q x x∑ ∑ ∑∑           (4) 

 
The later constraint can be writing in the 

following form:  

=1 =1 =1 =1

1( ) = = 0
2

dd jN N i

irjs ir js
i j r s

f x q x x∑∑∑∑                          (5) 

 Where: 

If i<j then 
1 ( , )

=
0

r s ij
irjs

if v v R
q

Otherwise
∈




  

If i=j then = 0 {1,..., }irjs iq r d∀ ∈  and 
{1,..., }js d∀ ∈ ,  

If >i j  then =irjs jsirq q ,  
If there is no constraint between variables iy  
and jy  then = 0 {1,..., }irjs iq r d∀ ∈  and 

{1,..., }js d∀ ∈ .  
 

Finally, we can define the objective function 
( )f x  in the following way:  

1( ) =
2

Tf x x Qx  

Where the matrix Q is the n n×  symmetric 
matrix and irjsq  are the elements of this matrix. 
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2.2.3 Constraints 
Each variable iy  must take a unique value from 

its domain ( )iD y , then the linear constraints of the 
CSP problem are defined bellow:  

=1
= 1 {1,...., }

di

ik
k

x i N∀ ∈∑                   (6) 

 The later constraints can be written in the 
following matrix form:  

                                 =Ax b  
 

Finally, we obtain the following 0-1 quadratic 
program (QP) with a quadratic function subject to 
linear constraints:   

1( ) =
2

( )
=

{0,1}

T

n

Min f x x Qx

Subject toQP
Ax b

x








∈

 

Where Q is an n n×  symmetric matrix, A is an 
N n×  matrix and b is an N vector. 

The following theorem establishes the links 
between the binary CSP problems and an 
optimization model QP. 

Theorem 1 [8] 

Let V(QP) an optimal value of the 0-1 quadratic 
programming (QP). The value V(QP) is equal to 
zero if and only if the binary constraint satisfaction 
problem has a solution. 

In this work, our objective is to solve the 
constraint satisfaction problems  using the 
continuous Hopfield networks. Then, in this case, 
the most important step consists of representing or 
mapping the constraint satisfaction problems in the 
form of the energy function associated with the 
continuous Hopfield networks. According to the 
proposed model, which consists of modeling  the  
constraint satisfaction problems into a quadratic 
programming QP problem, we define the associated 
energy function and the parameters setting. 
Therefore, the continuous Hopfield networks can be 
used to solve the binary constraint satisfaction 
problems. 

 
 
 

3. CONSTRAINT SATISFACTION 
PROBLEMS  SOLVED BY CONTINUOUS 
HOPFIELD NETWORKS 

As can be noticed, after filtering the constraint 
satisfaction problems via the arc consistency 
algorithm AC3, we can model it (filtered CSP 
problems) into  0-1 quadratic programming with a 
quadratic function subject to linear constraints. 
Based on this model, we present a general method 
for solving the CSP problems using the continuous 
Hopfield networks. 

In the beginning of the 1980s, Hopfield 
published two scientific papers, which attracted a 
lot of interest. This was the starting point of the new 
area  of neural networks, which continues today. In 
the same context, Hopfield and Tank presented the 
energy function approach in order to solve several 
optimization problems [17]. Their results 
encouraged a number of researchers to apply this 
network for solving different problems [1], [17], 
[27]. 

The continuous Hopfield neural network is a 
generalization of the discrete case. Afterwards, 
many researchers implemented continuous Hopfield 
network to solve the optimization problem, 
especially in mathematical programming problems. 
Then, the continuous Hopfield network is a major 
artificial neural network for solving optimization 
problems [27]. 

As we know, the CHN is a fully connected neural 
network i.e. the n neurons of  Hopfield network are 
fully connected. Let Wij be the strength of the 
connection from neuron  i to neuron j. Each neuron  
i has an offset bias. The current state and the output 
of the neuron  i are respectively represented by ui 
and xi [26]. The dynamics of the CHN is described 
by the differential equation: 

               = bdu u Wx i
dt τ

− + +                                  (7) 

 Where u , x  and bi  will be the vectors of 
neuron states, outputs and biases. In the continuous 
Hopfield networks, the relationship between the 
internal state iu  of a neuron i  and its output level 

ix  is determined by an activation function, which is 
bounded below by 0 and above by 1. Commonly, 
this activation function is given by:  

          0
0

1= ( ) = (1 tanh( )) > 0
2

i
i i

u
x g u u

u
+         (8) 

 It is a hyperbolic tangent, where 0u  is a 
parameter used to control the gain (or slope) of the 
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activation function. The proof of stability of such 
continuous Hopfield networks relies upon the fact 
that ( )E x  is a Lyapunov function, provided that the 
inverse function of , ( )g u  (the first derivative of the 
activation function), exists. The existence of this 
equilibrium points for the CHN is guaranteed if a 
Lyapunov function exists. Hopfield proposed an 
energy function of the continuous Hopfield network 
that, if matrix W  is symmetric [14], then the 
following Lyapunov function exists:  

1

0
=1

1 1( ) = ( ) ( )
2

n xiT b T

i
E x x Wx i x g z dz

τ
−− − + ∑∫         (9) 

 Where the function 1( )g z−  is a monotone 
increasing function. The idea is that the networks 
Lyapunov function, when τ ∞† , is associated 
with the cost function to be minimized in the 
combinatorial problem. In this way, the CHN 
output can be used to represent a solution of the 
combinatorial problem. Then, for solving any 
combinatorial problem via the continuous Hopfield 
networks, we will write this problem in the 
following form:  

1( ) = ( )
2

T b TE x x Wx i x− −                     (10) 

 Typically, in the CHN , the energy function is 
made equivalent to the objective function which is 
to be minimized, while each of the constraints of 
the optimization problem are included in the energy 
function as penalty terms. 

3.1 Generalized Energy Function For The 
Constraint Satisfaction Problems 

   In order to solve the constraint satisfaction 
problems using the continuous Hopfield networks, 
we define the generalized energy function for the 
CSP problems basing on the proposed model. 
Recall that, the constraint satisfaction problems are 
modeled as 0-1 quadratic programming with n 
variables and N linear constraints [8].  

1( ) =
2

( )
=

{0,1}

T

n

Min f x x Qx

Subject toQP
Ax b

x








∈

 

The generalized energy function allows 
representing mathematical programming problems 
with quadratic objective function and linear 
constraints. This energy function includes the 
objective function ( )f x  and it penalizes the linear 
constraints =Ax b  with a quadratic terms and a 

linear terms. Then, the generalized energy function 
must also be defined by [27]:  

( ) = ( ) ( ) [0,1]O C nE x E x E x x+ ∀ ∈              (11) 
 Where: 

- ( )OE x  is directly associated with the objective 
function of the constraint satisfaction problems,  

- ( )CE x  is a quadratic function that penalizes 
the violated constraints of the CSP problems.  

 
The following generalized energy function is 

proposed:  

1( ) = ( ) ( )
2 2

T TE x x Qx Ax Axα
+ Φ  

              ( )(1 )T Tx diag x Axγ β+ − +      (12) 
 Where Rα +∈ , NRβ ∈ , nRγ ∈ , Φ  is an 

N N×  symmetric matrix and ( )diag γ  denotes the 
diagonal matrix constructed from the vector γ .  

To define the energy function for the CSP 
problems, the following considerations need to be 
taken into account so that the mathematical 
expression of energy function (12) is simplified.   
Only the main diagonal terms of the quadratic 
matrix parameter Φ  are considered:  

0
=

=kj

if j k
if j kφ

≠
Φ 


 

Where φ  is a scalar,  All linear constraints are 
equally weighted, where β  is the associated 
parameter,  The parameter penalizing the non-
extreme values of irx  is γ .  We notice that the CSP 
problems have only one family of linear constraints: 

=1
( ) = = 1 {1,..., }

di

i ik
k

e x x i N∀ ∈∑                    (13) 

Consequently, the following generalized energy 
function for the CSP problems is proposed:  

2

=1 =1

1( ) = ( ) ( ( )) ( )
2

N N

i i
i i

E x f x e x e xα φ β+ +∑ ∑       

          
=1 =1

(1 )
dN i

ir ir
i r

x xγ+ −∑∑                                     (14) 

 which in algebraic form is:  

, =1 =1 =1 =1 =1 =1

1( ) =
2 2

dd d djN Ni i i

irjs ir js ir is
i j r s i r s

E x q x x x xα φ+∑∑∑ ∑∑∑  
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=1 =1 =1 =1
            (1 )

d dN Ni i

ir ir ir
i r i r

x x xβ γ+ + −∑∑ ∑∑              (15) 

 In our case, the weights irjsW  of the continuous 
Hopfield networks are in function of the 
coefficients corresponding to the quadratic terms 

ir jsx x , and the external inputs b
iri  (thresholds) are in 

function of the coefficients corresponding to the 
linear terms irx  in the chosen energy function. Then 
to determine the weights and thresholds, we use the 
assimilation between equation (10) and the 
algebraic form of the generalized energy function. 
Finally, the weights and thresholds of the 
connections between the n  neurons are:  

= (1 ) 2
  =                                    

irjs ij irjs ij ij rs
b
ir

W q
i

α δ δ φ δ δ γ
β γ

− − − +
 − −

(16) 

 Where ijδ  is the Kroenecker delta.  

1 =
=

0ij

if i j
if i j

δ

 ≠

 

In this way, the quadratic programming has been 
presented as an energy function of continuous 
Hopfield networks. To solve an instance of the CSP 
problem, the parameter setting procedure is used. 
This procedure assigns the particular values for all 
parameters of the network, so that any equilibrium 
points are associated with a valid affectation for all 
variables when all constraints are satisfied. 

3.2 Parameters Setting Of The Continuous 
Hopfield Networks 

   The weights and thresholds of the continuous 
Hopfield network depend on the parameters α , φ , 
β  and γ . To solve the CSP problems via the CHN, 
an appropriate setting of these parameters is needed. 
In this subsection, our objective is to determine 
these parameters. The dynamics of the CHN must 
ensure that any invalid solution Fx H∈  cannot be 
a stable point. Any constraint which is imposed on 
the dynamics of the CHN must be translated into a 
set of constraints on its parameter values, this is the 
kernel of the parameter setting. A feasible solution 
is guaranteed by the CHN from a stability analysis 
of the Hamming hypercube corners set:  

= { : {0,1} }n
CH x H x∈ ∈  

Where = { [0,1] }nH x∈  is the Hamming 
hypercube and = { : = }F CH x H Ax b∈  is a set of 
feasible solutions. 

The parameter setting procedure is based on the 
partial derivatives of the generalized energy 
function:  

( ) = ( )ir
ir

E x E x
x

∂
∂

 

Where: 

=1 =1 =1
( ) = (1 2 )

d djN i

ir irjs js is ir
j s s

E x q x x xα φ β γ+ + + −∑∑ ∑ (17) 

 A point x H∈  will be an equilibrium point for 
the CHN if and only if the two following relations 
are satisfied [27]:  

( ) 0 = 0
( ) 0 = 1

ir ir

ir ir

E x if x
E x if x

≥
 ≤

                      (18) 

 Where {1,..., }i N∀ ∈  and {1,..., }ir d∀ ∈  

This procedure uses the hyperplane method [27], 
so that the Hamming hypercube H  is divided by a 
hyperplane containing all feasible solutions. To 
avoid the stability of any no feasible and corner 
solution C Fx H H∈ − , the following instability 
conditions are imposed:  

( ) = 0
( ) = 1

ir ir

ir ir

E x if x
E x if x

ε
ε

≤ −
 ≥

                       (19) 

 Based on this hyperplane method and the 
associated half-spaces, the complementary corners 
set of the feasible solutions for the CSP problem is 
partitioned and a set of analytical equations of the 
CHN parameter is proposed. The hyperplane 
method is briefly explained below; however, for 
simplicity reasons the following parameters 
constrains are first assigned:    

- To minimize the objective function, we impose 
the following constraint: > 0α ,   

- On the other hand, to penalize the non-
feasibility of the family of linear constraints 

( )ie x , it is natural to impose the following 
constraint: 0φ ≥ ,   

- In order to guarantee the instability of the 
interior points Cx H H∈ − , some initial 
conditions are imposed on some parameters:  

              = 2 0irirW φ γ− + ≥                               (20) 
Where {1,..., }, {1,..., }ii N r d∈ ∈ .  

Given the linear constraints of the QP problem:  

( ) = 1 {1,..., }ie x i N∀ ∈                   (21) 
 The partition of C FH H−  is defined as: 
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1,1 1,2=  C FH H H H−   
This two partition are defined in the folowing way: 

1,1 0 -        = { : ( ) > 1} { ( ) }iH i e x e x N∃ ≥  

where 0 =1
( ) = ( )N

ii
e x e x∑ . In this case, one variable 

iy  has been assigned two different values ,r sv v  in 
( )iD y  so that = = 1ir isx x . Consequently, the 

following instability condition is imposed:  

( ) 2irE x φ β γ ε≥ + − ≥                         (22) 
   

1,2 0-      = { : ( ) < 1} { ( ) < }iH i e x e x N∃   
 
In this case, one variable iy  has not been assigned 
any value ( )r iv D y∈ , such that 

= 0 {1,..., }ir ix r d∀ ∈ . Therefore, the following 
instability condition is imposed:  

( )irE x dα β γ ε≤ + + ≤ −                      (23) 

 With 
=1 =1

=
d jN

irjs
j s

d Max q
  
 
  
∑∑  

 Then, we can determine the parameters setting 
by resolving the following system:  

> 0 , 0
2 0 (24. )

2 = (24. )
= (24. )

a
b

d c

α φ
φ γ
φ β γ ε
α β γ ε

≥
 − + ≥
 + −
 + + −

 

 The inequation (24.a) guaranteed the satisfaction 
of the integrity constraints ( {0,1}irx ∈ ), but the 
equations (24.b) and (24.c) guaranteed the 
satisfaction of the linear constraints. These 
parameters setting are determined by fixing α , ε  
and computing the rest of parameters ,γ β  and φ :   

= 2dφ α ε+ ,  = / 2γ φ   = 3β ε γ−   Then, the 
weights and thresholds of continuous Hopfield 
networks (system 16) can be computed using these 
parameters setting. Finally, we obtain an 
equilibrium point for the CHN  using the algorithm 
depicted in [26], so compute the solution of 
constraint satisfaction problem. 

 
4. DESCRIPTION OF THE NEW SOLVER 

OF CSP PROBLEMS 

The new solver was developed to find a solution 
of the CSP problem via the continuous Hopfield 
networks. The diagram of this algorhitm is 
described by the following steps (Figure 1): 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Diagram of the proposed algorithm 

 

The important steps of this algorithm are the 
following: 

- The first step is to read the data of CSP 
problem, this data is presented in XML file 
(database). This reading requires   developing 
techniques to extract data (domains, variables, 
relationships and constraints). 

- The main objective of the second step is to 
filter the CSP problem. There are two 
important roles of this filtering: 

• Reducing the size of the CSP 
problem, 

• Showing that the CSP problem does 
not admit a solution (if one domain 
after the filter is empty). 

Modeling the filtered CSP  

Input data of CSP problem 

Filtering CSP via AC3 

 ∃ i∈{1, …, N} 
D(yi) = ∅ 
 

No 
 

Yes 
 

 

Yes 
 

V(QP) = 0 
No 
 Solution not find 

No Solution End 
 

End 
 

Solution 

CHN(Wij, ii
b) 

No 
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This filtering is realized by the arc 
consistency technique AC3. 

- The third step concerns modeling the filtered 
CSP problem as 0-1 quadratic programming 
(determining the matrix Q, the matrix A and 
the vector b). 

- The last step concerns using the CHN to obtain 
a solution of this model, so that if an optimal 
value of the 0-1 quadratic programming is 
equal to 0 (V(QP) = 0), the solution of CSP 
problem is found; else, the  CSP problem has 
no solution (theorem 1). 

5. COMPUTATIONAL EXPERIMENTS 

In order to show the practical interest of the 
proposed approach, the experiments and the 
complexity analysis are studied in this section. 

5.1 Complexity analysis 
   In this subsection we evaluate and determine 

the complexity of arc consistency algorithm (AC3) 
and the continuous Hopfield network algorithm. 
Given a constraint satisfaction problem with N  
variables, m  constraints and maxd  the size of the 
largest domain. The complexity of the AC3 
algorithm is on the order of 3( )maxO md  average time 
complexity [20]. Simulating the continuous 
Hopfield network algorithm for large instances of 
constraint satisfaction problems constitutes real 
challenges in terms of the memory space that must 
be allocated for the weight matrix W  and 
thresholds vector bi , which is the highest-cost data 
structure. In general, the number of memory bytes 
required and the time complexity of simulating the 
continuous Hopfield networks are studied in detail 
in the following work [25]. 

5.2 Numerical results 
   The experiment aims at solving problems of 

different natures (random, academic and real-world 
problems). These series represent a large spectrum 
of instances (benchmarks). These experiments are 
executed in personal computer with a 2.79 GHz 
processor and 512 MB RAM. The performance has 
been measured in terms of the CPU time per 
second.  

51
= 0.999 10i

ik
i

d k
x U

d
−+ −

+  

Where = 1,..., , = 1,..., ii N k d  and U  is a 
random uniform variable in the interval [ 0.5,0.5]− . 
Recall that, N  is the number of variables. Based on 

a series of the experiments, α  and ε  are fixed by 
the following values: 

1=
N

α , 4= 10ε − . 

The rest of parameters setting ,γ β  and φ  are 
computed: 

= 2dφ α ε+ , = / 2γ φ  and = 3β ε γ− . 
In our experimentation, some instances to be 

solved were chosen from the library 
benchmarks[21], are used to test this software.  

A statistical study was performed in order to 
study the quality of our approach. This study is 
based on the calculation operator’s performance: 

- Ratio mode: the most repetitive (mode) optimal 
value obtained by CHN in number of run,  

- Ratio mean: the average of the optimal value in 
a number of run,  

- Ratio minimum : the smaller optimal value 
(better results obtained by our solver),  

- Mean of CSP time: the average time consumed 
to obtain the solution in a number of run.  

 In this context, for each instance, if the 
minimum ratio is equal to 0, then the proposed 
approach has found the solution. Otherwise, the 
proposed approach has not found a solution. 

The simulation results are presented in Table (1). 
Compared with other CSP solvers, the time 
resolution obtained by our approach is better than 
others, it does not exceed a few seconds in most 
cases.  

  We also compared our results with those given 
by two different solvers Abscon [29] And Concrete 
[30]. These results show that the continuous 
Hopfield network is an effective tool for solving 
constraint satisfaction problems. In general, our 
approach is largely effective; it can obtain a 
solution in a minimum time for most instances 
(Figure 1). 

6. CONCLUSION 

 In this paper, we have proposed a new approach 
for solving binary constraint satisfaction problems. 
The interesting steps of this approach are: applying 
the algorithm 3AC  to reduce the size of the CSP  
problems, modeling the filtered problem as a 0-1 
quadratic programming subject to linear constraints 
and using the continuous Hopfield networks to 
solve this problem. It is also interesting to note that 
this method can be used with non-binary CSP  
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problems after converting the latter into binary 
CSP  problems [22]. The experimental results show 
that our method can find a good optimal solution in 
a short time. Several directions can be investigated 
to try to improve this method such as reducing the 

architecture of Hopfield neural networks [9]. Other 
studies are in progress to apply this approach to 
many real-world problems such as aircraft conflict, 
timetabling and recognition. 

 
TABLE 1: Computational Result Of The Typical CSP Instances 

Name of  instance   Number of 
execution  

 Ratio  
 minimum  

 Ratio  
 mean  

 Ratio  
 mode  

Mean of 
iterations 

 Mean of 
CPU Times 

hanoi-3   200   0   0   0   89.8   0.004s  
hanoi-4   200   0   0   0   97.91   0.039s  
hanoi-5   200   0   0   0   108.04   2.217s  
rand-25-25-300-147-53021   100   0   5.31   4   298.24   1.919s  
rand-2-40-16-250-350-21   100   0   8.64   5   308.64   1.085s  
rand-2-50-23-587-230-24   100   0   3.51   2   336.7   4.132s  
frb35-17-4-mgd   100   0   6.03   4   288.02   0.909s  
frb35-17-2-mgd   100   0   8.75   5   269.09   0.858s  
frb50-23-5-mgd   100   0   13   11   360.14   4.304s  
frb50-23-3-mgd   100   0   5.75   4   355.57   4.298s  
geom-30a-6   200   0   8.46   9   6   0.035s  
geo50-20-d4-75-46   100   0   5.49   5   327.14   2.920s 
qcp-10-67-0   50   0   8.56   6   88   0.094s  
qcp-20-187-3   25   0   13.88   8   116.72   1.446s  
qwh-10-57-2   50   0   9.28   2   66.3   0.040s  
qwh-15-106-7   25   0   9.88   3   76.88   0.246s  
qwh-25-235-1   25   0   3.56   2   94.4   2.777s  
queens-5-5-5   100   0   2.23   2   66.33   0.010s  
langford-2-4   200   0   1.83   2   68.01   0.001s  
myciel-5g-6   100   0   3.34   1   128.16   0.081s  
driverlogw-08cc-sat   25   1   6.08   4   326.16   6.487s  
composed-25-10-20-5   50   0   14.84   5   244.12   2.147s  
geom-40-5   200   0   7.92   3   137.92   0.041s  
geom-40-6   200   0   5.92   2   164.48   0.071s  
qwh-20-166-5   25   0   9.04   4   79.96   0.904s  
qwh-20-166-9   25   0   2.68   1   78.16   0.869s  
rand-23-23-253-131-49021   100   0   12.43   5   286.51   0.965s  
driverlogw-09-sat   25   2   15.8   12   360.44   21.575s  
driverlogw-01c-sat   100   0   5.65   3   87   0.022s  
queens-12   200   0   11.06   8   151.24   0.033s  

 

 
Figure 1: The Graph Of Comparison Between The Proposed Approach And The Other Solvers.
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