
Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

355

A NOVEL DIFFERENTIAL EVOLUTION BASED
ALGORITHM FOR HIGHER ORDER NEURAL NETWORK

TRAINING
1Y. KARALI, 2SIBARAMA PANIGRAHI, 3H. S. BEHERA

123 Veer Surendra Sai University Of Technology (VSSUT), Department of Computer Science and
Engineering, Burla, 768018, Odisha, India

E-mail: 1yasobanta0706karali@gmail.com , 2panigrahi.sibarama@gmail.com ,
3hsbehera_india@yahoo.com

ABSTRACT

In this paper, an application of an adaptive differential evolution (DE) algorithm for training higher order
neural networks (HONNs), especially the Pi-Sigma Network (PSN) has been introduced. The proposed
algorithm is a variant of DE/rand/2/bin and possesses two modifications to avoid the shortcomings of
DE/rand/2/bin. The base vector for perturbation is the best vector out of the three randomly selected
individuals for mutation, which actually assists intensification keeping the diversification property of
DE/rand/2/bin; and novel mutation and crossover strategies are followed considering both exploration and
exploitation. The performance of the proposed algorithm for HONN training is evaluated through a well-
known neural network training benchmark i.e. to classify the parity-p problems. The results obtained from
the proposed algorithm to train HONN have been compared with solutions from the following algorithms:
the basic CRO algorithm, CRO-HONNT and the two most popular variants of the differential evolution
algorithm (DE/Rand/1/bin and DE/best/1/bin). It is observed that the application of the proposed algorithm
to HONN training (DE-HONNT) performs statistically better than that of other algorithms.

Keywords: Artificial Neural Network, Higher Order Neural Network, Pi-Sigma Neural Network,
Differential Evolution, Chemical Reaction Optimization.

1. INTRODUCTION

Conventionally artificial neural network (ANN)
models have been applied predominantly to
perform pattern matching, pattern recognition and
mathematical function approximation. Compared to
traditional ANNs, higher order neural networks
(HONNs) have several unique features, including:
1) stronger approximation property; 2) faster
convergence; 3) greater storage capacity; and 4)
higher fault tolerance capability. Thus, HONN
models have shown superior performance than
traditional ANNs on forecasting, classification and
regression problems.

In this paper the class of HONNs and in
particular Pi-Sigma Networks (PSNs) has been
studied. The PSNs were introduced by Shin and
Ghosh [1]. The PSNs have addressed several
difficult tasks such as zeroing polynomials [2] and
polynomial factorization [3] more effectively than
traditional feed-forward neural networks (FNNs).
Moreover, PSN employs a less number of weights
than other HONNs, but still manages to incorporate
the capability of first order HONN indirectly. The
efficiency of HONN models depends on the
algorithm used for its preparation. The objective of
any supervised HONN training is to minimize the

error between the approximation by the HONN and
the target output. For this the optimal weight set of
a HONN must be obtained. The optimal weight set
of a HONN can be obtained by using either
gradient or evolutionary learning algorithms. The
objective function of HONN training is going to be
a multimodal search problem, since it depends on a
number of parameters. Thus, the gradient based
training algorithms often suffer from several
shortcomings, including: 1) easily getting trapped
in local minima; 2) has slow convergence
properties; 3) training performance is sensitive to
initial values of its parameters. Due to these
disadvantages, research on different optimization
techniques that are dedicated to HONN training is
still needed. There are many optimization
techniques such as differential evolution (DE) [4],
genetic algorithm (GA) [5], particle swarm
optimization (PSO) [6], ant colony optimization
(ACO) [7], a bee colony optimization (BCO) [8],
an evolutionary strategy (ES) [9], quantum inspired
algorithms (QEA) [10], chemical reaction
optimization (CRO) [11-13] etc. that can be used
for HONN training.

The rest of this paper is structured as follows.
Section-2 briefly describes the background related

http://www.jatit.org/
mailto:yasobanta0706karali@gmail.com
mailto:2panigrahi.sibarama@gmail.com
mailto:3hsbehera_india@yahoo.com

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

356

to architecture and mathematical model of PSN;
chemical reaction optimization; and differential
evolution. The proposed training algorithm for PSN
has been explained in Section-3. Experimental
results are presented in section-4. And finally
concludes in Section-5.

2. RELATED WORKS

2.1 Pi-Sigma Neural Network (PSN)

Pi–Sigma Network (PSN) is a feed forward
neural network that computes the product of the
sum of the input components and passes it to a
nonlinear function. The network architecture of
PSN (shown in Fig.1) consists of a single hidden
layer of summing units and an output layer of
product units (instead of summing). The weights
connecting the input neurons to the neurons of the
hidden layer are adapted during the learning
process by the training algorithm, while those
connecting the neurons of the hidden layer to the
output layer are fixed to one and are not trainable.
Such a network topology with only one layer of
trainable weights drastically reduces the training
time [1, 15-16]. Moreover, the product units of PSN
give higher order capabilities which increase its
computational power. This is because, the product
units enable to expand the input space into higher
dimensional space which leads to an easy
separation of nonlinearly separable classes where
linear separability is possible or a reduction in the
proportion of the nonlinearity is achieved. Thus,
PSN provides nonlinear decision boundaries
offering a better classification capability than the
linear neuron (Guler and Sahin, 1994). In addition,
Shin and Ghosh (1991) argued that PSNs not only
provides a better classification over an extensive
class of problems but also require less memory and
need at least two orders of less number of
computations as compared to MLP for similar
performance level.

Figure 1: Architecture of a Typical Pi-Sigma Network

Consider a PSN with NOIN (number of input
neurons), NOHN (number of hidden neurons) and
one output neuron. The number of hidden neurons
in the hidden layer defines the order of a PSN. For
a NOHNth order PSN the number of trainable
weights is NOIN × NOHN considering each
summing unit is associated with NOIN weights.
The output of the PSN is computed by making
product of the output of NOHN hidden units and
passing it to a nonlinear function, which is defined
as follows:

)(
1
∏
=

=
NOHN

j
jhY σ

Where σ a nonlinear transfer function and hj is is
the output of jth hidden unit which is computed by
making sum of the products of each input (xi) with
the corresponding weight (wij) between ith input
and jth hidden unit. The output of hidden unit is
calculated as follows:

∑
=

=
NOIN

i
iijj xwh

1
)(

2.2 Differential Evolution

The differential evolution (DE) algorithm is a
simple and efficient stochastic direct search method
for global optimization of multimodal function over
a continuous space, was introduced several years
ago (1997) [4]. Since the inception of DE, it has
been upgraded intensively in recent years [18]. It
has several advantages such as: ability to find the
global minimum of a non-differentiable, nonlinear
and multimodal function irrespective of initial
values of its parameters, parallelizability to cope
with computation intensive cost functions, ease of
use and good convergence properties. Therefore DE
became a forefront optimization technique for
neural network training. Compared to most other
EAs, DE is much simpler and straightforward to
implement. Although particle swarm optimization
(PSO) is also very easy to code, the performance of
DE and its variants outperforms the PSO variants
over a wide variety of problems as has been
indicated by studies like [20-21] and the CEC
competition series. The two most popular variants
of DE are DE/best/1/bin and DE/rand/1/bin. The
major difference between these two lies in the
selection of base vector for perturbation. In
DE/best/1/bin the base vector is the best solution of
the current population whereas in DE/rand/1/bin the
bas vector is selected randomly. The conventions
used above is DE/a/b/c, where ‘DE’ stands for
‘differential evolution’, ‘a’ represents the base
vector to be perturbed, ‘b’ represents number of

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

357

difference vectors used for perturbation of ‘a’ and
‘c’ represents the type of crossover used (bin:
binary, exp: exponential). Interested reader may go
through [4, 18] to have a detail description
regarding DE algorithm and its variants.

Every differential evolution algorithm operates
in following steps:
Step 1: Problem and algorithm parameter
initialization
Step 2: Initialize the initial population and calculate
the fitness of each chromosome/individual
Step 3: Apply Mutation operator to generate the
mutant vector
Step 4: Apply crossover between the target vector
and mutant vector to generate the trial vector.
Step 5: Perform Selection between trial vector and
target vector
Step 6: Termination criteria check if satisfied go to
step-7 otherwise go to step-3
Step 7: Use the best individual as the solution of
the problem.

2.3 Chemical Reaction Optimization

Chemical reaction optimization (CRO) algorithm
was proposed recently by Lam [11], is a variable
population-based metaheuristic optimization
technique inspired by the nature of chemical
reactions. It does not attempt to capture every detail
of chemical reaction rather loosely couples
chemical reaction with optimization. A chemical
reaction is a process that transforms one set of
chemical substances (reactants/molecules) to other.
Each molecule consists of some atoms and is
associated with enthalpy (minimization problem)
and/or entropy (maximization problem). During the
chemical reaction the intra-molecular structure of a
reactant changes. Most of the reactions are
reversible in nature. Basing on the number of
reactants take part in a reaction, the reaction may
be: monomolecular (one reactant takes part in the
reaction) or bimolecular (two reactants take part in
a chemical reaction) and so on. The major
difference between CRO and other evolutionary
techniques is that, the population size (that is the
number of reactants) may vary from one generation
to the other where as in evolutionary techniques the
population size remains fixed. But few authors have
proposed fixed population sized CRO algorithms
and shown that fixed population sized CRO not
only performs better but also easier to implement.
To have an elaborated description regarding CRO
algorithm, interested readers may go through the
tutorial of CRO [17].
Every chemical reaction optimization algorithm
consists of following steps:

Step 1: Problem and algorithm parameter
initialization
Step 2: Setting initial reactants and evaluation of
entropy/enthalpy
Step 3: Applying Chemical reactions
Step 4: Reactants update
Step 5: Termination criteria check if satisfied go to
step-6 otherwise go to step-3
Step 6: Use the reactant having best enthalpy /
entropy as the solution.

3. DE-HONNT METHOD

In this proposed methodology an attempt has

been made to combine the advantage of DE/rand/2
and DE/best/2 by overcoming the shortcomings of
both the algorithms. The major advantage of
DE/rand/2 is diversification i.e. it has less chance to
trap to local optima whereas it suffers from
exploitation i.e. takes more generations to reach the
optimal solution. Compared to DE/rand/2,
DE/best/2 is greedier in nature and has faster
convergence property. The benefit of fast
convergence is obtained by guiding the search with
the best solution so far discovered, thereby
converging to that point. However, due to guided
towards a single solution (i.e. The best solution), in
many cases the population may lose its diversity
and thereafter gets trapped in a local optimum in a
small number of generations.

Taking these facts into consideration to overcome
the limitation of slow convergence but reliable
DE/rand/2 we use an explorative yet greedy variant
of DE/rand/2/bin mutation strategy with novel
parameter adaptation. In this algorithm three
random individuals are selected from the
population for mutation, but out of the three
individuals the best individual (i.e. individual with
best fitness value) is selected as base vector for
perturbation. The other two vectors are used for
difference vector. This mutation scheme keeps the
intensification property of DE/best/2 (as best out of
three individuals is selected as base vector i.e. used
to guide the solution) without losing the
diversification property of DE/rand/2 (three
individuals are selected randomly, avoids
premature convergence to a same point and/or to
local optima).

The crossover probability (Cr) is generated
randomly (within a range [0-1], regenerated if
beyond range) from a cauchy distribution with
location parameter=0.7 and scale parameter 0.1.
Here instead of normal or uniform distribution, the
Cauchy distribution is considered because it

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

358

diversifies the solution more as compared to
traditional normal or uniform distribution.
Algorithm 1 (DE-HONNT)
Set the iteration-counter i=0
/*Randomly Initialize the population of PopSize
individuals: Pg={C1

g, C2
g , C3

g ……., CPopSize
g },

with Ci
g ={ Wi,1

g,…….,Wi,D
g} for i=1,2,3.....NP,

D=length of each chromosome, Wi,k
g=kth gene of ith

 individual in gth generation representing a weight
of PSN.
Evaluate the fitness of each individual
While(termination criteria is not satisfied) do begin

% for each individual chromosome (Ci
g) in the

population
 for i=1 to PopSize
 Select five individuals (I1, I2, I3, I4, I5) and
such
 that I1≠I2≠I3≠I4≠I5≠i
 Sort the five selected individuals
 Set r1=best individual out of I1, I2, I3, I4, I5
 And rest four are assigned to r2, r3, r4, r5
 % Mutation Step
 % Generate scale factor
 Fi =gaussianrnd (0.5, 0.1), is a random
 number generated randomly from Gaussian
 distribution with mean 0.5 and standard
 deviation 0.1.
 for x=1 to D
 MVk,x

g= Wr1,x
g + Fi*(Wr2,x

g - Wr3,x
g)

 + Fi*(Wr4,x
g - Wr5,x

g)
 end of for
 % Generate Cross over Probability
 Cri = cauchyrnd(0.7,0.1), is a random number
 generated randomly from Cauchy distribution
 with location parameter 0.7 and scale parameter

0.1. It is regenerated if the random number falls
out of the range [0-1].

 for x=1 to D
 if rand(0,1)< Cri
 TVk,x

g = MVk,x
g

 else
 TVk,x

g = Wi,x
g

 end of if
 end of for
 % Selection Step
 % Fitness of a chromosome is -1×RMSE on
 train set
 if fitness(TV) > fitness(Cg

i)
 Ci

g+1= TV
 else
 Ci

g+1= Ci
g

 end of if
 end of for
 Set the generation counter g=g+1
end of while

The scale parameter (F) is generated randomly

from a Gaussian distribution with mean=0.5 and
standard deviation=0.1. Here instead of Cauchy
distribution, Gaussian distribution is used because it
gets most of the numbers within unity due to its
short tail property. Moreover, the random numbers
generated are not bound within any limit, this is
because larger values of scale parameter ‘F’ will
assist the solution space to easily escape from large
plateaus or suboptimal peaks/valleys, thereby
minimizing the chances to trap to local optima.

4. SIMULATION RESULTS

For comparative performance analysis of

proposed training method with DE/rand/1/bin,
DE/best/1/bin, CRO [14] and CRO-HONNT [22] to
train PSN, parity-p problems (p∈ [3; 6]) have been
considered. These problems are widely used
benchmarks and are suitable for testing the non-
linear mapping and generalization capabilities of
training algorithms. The parity-p problem is
described as follows: if P represents the number of
inputs, and each input can accept values “1” or
“−1”, then, the output of the network is “1” if and
only if the number of “1” in the inputs of the PSN
is odd. Otherwise “−1” occurs in the output of the
PSN. Although these problems are easily defined,
they are hard to solve, because of their sensitivity to
initial weights and possession of a large number of
local minima. To classify parity-p (p∈ [3;6])
problem, PSNs having structure p-p-1 without bias
units were considered and trained using proposed
method and other methods for comparison. For
each parity problem the training set was equal to
the testing set and contained 2p patterns.

The termination criterion applied to the training
algorithms for parity-p (p∈ [3;4]) was the mean
square training error (MSE) and it was different for
each parity problem (0.025,0.0125 respectively);
and for parity-p(p∈ [5;6]) was either MSE (0.125,
0.125 respectively, this termination criterion is
dominant in the experiments) or maximum
generation exceeded (1000, 1000 respectively).
These termination criteria have been set based on
the author's own experience. The PSNs trained here
have a threshold activation function at output layer;
and the upper and lower bound of initial weight sets
for parity-p problem is set to 2p to -2p. For DE
algorithms the crossover probability Cr and scale
factor F were set to 0.7 and 0.5 respectively. For
each problem and each algorithm, the popsize
(population size/reactant size) is fixed to 10. By
making above experimental set up we have

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

359

conducted 1000 independent simulations using each
method for each parity problem. All the simulations
were carried out on a system with Intel ® core
(TM) 2Duo E7500 CPU, 2.93 GHz with 2GB
RAM and implemented using MATLAB (R2009a,
The Mathworks, Inc., and Version-7.8.0.347).

The following Tables show the experimental

results for parity-p (p∈ [3; 6]) problems. The table
shows Min the minimum number; Mean the mean
value; Max the maximum number; and St.D. the
standard deviation of the number of training
generations and the correct classification
percentage. To have a better comparison among the
methods, we have performed post hoc analysis and
ANOVA on the results obtained from 1000
independent simulations for each problem using
each method. The correct classification percentage
is computed as follows:

Correct classification (%)=
NOP

CNOP

i i∑=1

Where NOP is number of testing patterns
(NOP=2p); p- Number of inputs to the PSN; Ci- the
coefficient representing the correctness of the
classification of the ith testing pattern which is
determined as follows:

−=−=

==
=

Otherwise 0,
1T and 1Y when 1,

1T and 1Y when ,1
C ii

ii

i

Where Yi and Ti are the output of PSN and
target for ith test pattern.

All the training methods gave perfect generalization
(100% correct classification) capabilities for parity-
3 and 4 problems respectively; hence for these two
problems only number of generations to attain the
termination criteria was measured.

TABLE 1: Simulation results on parity-3 problem (best
results in bold)

Algorithms Generations
Mean ± St.D. Min Max

DE-HONNT 1.98 ± 1.40ab 1 11
CRO-HONNT 1.86 ± 1.64a 1 12

CRO 2.65 ± 4.03c 1 65
DE/rand/1 2.12 ± 1.52b 1 17
DE/best/1 2.11 ± 1.46b 1 9

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

One can see from table-1 and table-2 that for both
the problems the proposed method takes

statistically less number of generations to obtain the
optimal solutions than the DE variants and basic
CRO algorithm. Although the CRO-HONNT takes
less number of generations than the proposed
method for parity-3 problem but it is not
statistically significant to DE-HONNT. Moreover,
DE-HONNT takes statistically significantly less
number of generations than CRO-HONNT for
parity-4 problem.

TABLE 2: Simulation results on parity-4 problem (best
results in bold)

Algorithms Generations
Mean ± St.D. Min Max

DE-HONNT 14.36 ± 11.14a 1 98
CRO-HONNT 17.41 ± 15.27b 1 187

CRO 23.04 ± 40.49c 1 920
DE/rand/1 18.21 ± 15.38b 1 193
DE/best/1 18.79 ± 15.74b 1 163

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

TABLE 3: Simulation results on parity-5 problem (best

results in bold)

Algorithms Generations
Mean ± St.D. Min Max

DE-HONNT 108.85 ± 140.33a 4 1000
CRO-HONNT 173.61 ± 160.95b 2 1000

CRO 194.45 ± 235.14c 6 1000
DE/rand/1 245.30 ± 227.84d 10 1000
DE/best/1 248.62 ± 224.79d 5 1000

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

TABLE 4: Simulation results on parity-5 problem (best
results in bold)

Algorithms Correct Classification (%)
Mean ± St.D. Min Max

DE-HONNT 99.92 ± 0.71c 93.75 100
CRO-HONNT 99.87 ± 0.87bc 93.75 100

CRO 99.67 ± 1.43a 87.50 100
DE/rand/1 99.82 ± 1.03bc 93.75 100
DE/best/1 99.79 ± 1.15b 87.50 100

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

Table-3 and Table-4 show the simulation results
obtain on parity-5 problem. It can be observed that,
although all methods gave 100% generalization
most of the time but none of the methods gave
100% correct classification for all the 1000
independent simulations. The percentage of correct
classification by proposed method is not statistical
significant to that of DE/rand/1 and CRO-HONNT
whereas statistically significant to that of

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

360

DE/best/1/bin and traditional CRO method.
However, the proposed method takes statistically
less number of generations than other methods to
obtain the optimal solutions.

TABLE 5: Simulation results on parity-6 problem (best

results in bold)

Algorithms Generations
Mean ± St.D. Min Max

DE-HONNT 256.93 ± 278.34a 7 1000
CRO-HONNT 783.49 ± 275.93d 28 1000

CRO 728.97 ± 340.57c 23 1000
DE/rand/1 535.43 ± 332.98b 29 1000
DE/best/1 547.46 ± 336.36b 30 1000

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

TABLE 6: Simulation results on parity-6 problem (best
results in bold)

Algorithms Correct Classification (%)
Mean ± St.D. Min Max

DE-HONNT 97.75 ± 3.20c 81.250 100
CRO-HONNT 97.58 ± 3.20c 81.250 100

CRO 94.02 ± 3.69a 78.125 100
DE/rand/1 95.12 ± 5.52b 78.125 100
DE/best/1 95.21 ± 5.30b 78.125 100

*Means within a column the same letter(s) are not
statistically significant (p=0.05) accordance to
Duncan’s Multiple Range Test (SPSS V.16.0.1)

Table-5 and Table-6 show the experimental
results for parity-6 problem. None of the methods
gave perfect generalization capabilities for parity- 6
problem for all the 1000 simulations. The proposed
method not only provides statistically better correct
classification percentage but also takes statistically
significantly less number of generations to attain
the optimal solutions. Although CRO-HONNT
method has statistically same correct classification
percentage but it takes almost thrice number of
generations to attain the solutions.

5. CONCLUSION

In this paper, the Pi–Sigma network which is a

special class of higher order neural network has
been studied and proposed a novel differential
evolution based training algorithm for its training.
The use of DE-HONNT method incorporates
efficient and effective searching mechanisms, such
that it has less chance to trap to local minima and
thus enhance the higher order neural network
training procedure. Additionally, this method
provides the ability to apply them for training
“hardware friendly” PSNs, i.e. PSNs with threshold
activation functions and small integer weights can

be easily implemented using hardware. The
simulation results demonstrate that the proposed
training algorithm has superior performance in
terms of correct classification percentage (e.g.
parity-5, 6) and generations taken to attain the
termination criteria (e.g. parity-3,4,5,6) when
compared with most popular DE variants,
traditional CRO method. Although for some test
instances the new training algorithm obtains
statistically same solutions (e.g. parity-3
statistically same number of generations and parity-
5 statistically same correct classification
percentage) but for most of the instances the DE-
HONNT methods converges quickly (e.g. parity-
4,5,6) and provides statistically better correct
classification percentage(e.g. parity-6).

REFRENCES:

[1] Y. Shin and J. Ghosh, “The pi–sigma network:

An efficient higher-order neural network for
pattern classification and function
approximation”, International Joint
Conference on Neural Networks, 1991.

[2] D. S. Huang, H. H. S. Ip, K. C. K. Law and Z.
Chi, “Zeroing polynomials using modified
constrained neural network approach”, IEEE
Transactions on Neural Networks, Vol. 16, No.
3, 2005, pp. 721–732.

[3] S. Perantonis, N. Ampazis, S. Varoufakis and
G. Antoniou, “Constrained learning in neural
networks: Application to stable factorization of
2-d polynomials”, Neural Processing Letter,
Vol.7, No. 1, 1998, pp. 5–14.

[4] R. Storn and K.Price, “Differential evolution-
A simple and efficient heuristic for global
optimization over continuous spaces”, Journal
of Global Optimization, Vol. 11, No.4, 1997,
pp. 341-359.

[5] D. Goldberg, “Genetic Algorithms in Search”,
Optimization and Machine Learning. Reading,
MA: Addison-Wesley (1989).

[6] J. Kennedy, R. C.Eberhart and Y.Shi, “Swarm
intelligence”, San Francisco, CA:Morgan
Kaufmann, 2001.

[7] K. Socha and M. Doringo, “Ant colony
optimization for continuous domains”,
European Journal of Operation Research, Vol.
185, No. 3, 2008, pp. 1155-1173.

[8] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri,
S. Rahim and M. Zaidi, “The bees algorithm-
A novel tool for complex optimization
problems”, in IPROMS Oxford, U.K.: Elsevier,
2006.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th October 2013. Vol. 56 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

361

[9] H.G. Beyer and H.P. Schwefel, “Evolutionary
Strategies: A Comprehensive introduction”,
Nat. Comput., Vol. 1, No. 1, 2002, pp. 3-52.

[10] K. H. Han and J.H. Kim, “Quantum-inspired
evolutionary algorithm for a class of
combinatorial optimization”, IEEE
Transactions on Evolutionary Computation,
Vol. 6, 2002, pp. 580–593.

[11] A. Y. S. Lam and V. O. K. Li, “Chemical-
Reaction-inspired metaheuristic for
optimization”, IEEE Transactionson on
Evolutionary Computation, Vol. 14, No.3,
2010, pp. 381–399.

[12] A.Y.S. Lam, “Real-Coded Chemical Reaction
Optimization”, IEEE Transaction on
Evolutionary Computation, Vol. 16, No. 3,
2012, pp. 339-353.

[13] B. Alatas, “ACROA: Artificial Chemical
Reaction Optimization Algorithm for global
optimization”, Expert Systems with
Applications, Vol. 38, 2011, pp. 13170-13180.

[14] J.J.Q. Yu, A.Y.S. Lam and V.O.K. Li,
“Evolutionary Artificial Neural Network based
on chemical reaction optimization”, in:
IEEE Congress on Evolutionary
Computation (CEC), 2011, pp. 2083-2090.

[15] J. Ghosh and Y. Shin, “Efficient higher-order
neural networks for classification and function
approximation”, in: International Journal on
Neural Systems, Vol. 3, 1992, pp. 323-350.

[16] Y. Shin and J. Ghosh, “Realization of Boolean
functions using binary pi-sigma networks”, in:
C. H. Dagli, S. R. T. Kumara, Y. C. Shin
(Eds.), Intelligent Engineering Systems through
Artificial Neural Networks, ASME Press, 1991,
pp. 205–210.

[17] A. Y. S. Lam, V. O. K. Li, Chemical Reaction
Optimization: a tutorial, Memetic Computing
Vol. 4, 2012, pp. 3-17.

[18] S. Das, P. N. Suganthanam, Differential
Evolution: A Survey of the state-of-the-Art,
IEEE Transaction on Evolutionary
Computation, Vol. 15, No.1, 2011, pp. 4-31.

[19] M.G. Epitropakis, V.P. Plagianakos, M.N.
Vrahatis, Hardware-friendly Higher-Order
Neural Network Training using Distributed
Evolutionary Algorithms, Applied Soft
Computing, Vol. 10, 2010, pp. 398-408.

[20] S. Das, A. Abraham, U. K. Chakraborty, A.
Konar, Differential evolution using a
neighbourhood based mutation operator, IEEE
Transaction on Evolutionary Computation,
Vol. 13, No.3, 2009, pp. 526-553.

[21] S. Rahnamayan, H. R. Tizhoosh, M. M. A.
Salama, Opposition based differential

evolution, IEEE Transaction on Evolutionary
Computation, Vol. 12, No.1, 2008, pp. 64-79.

[22] K. K. Sahu, S.Panigrahi, H. S. Behera, A
Novel Chemical Reaction Optimization
algorithm for Higher Order Neural Network
Training, Journal of Theoretical and Applied
Information Technology, Vol. 53, No. 3, 2013,
pp. 402-409.

http://www.jatit.org/

	1Y. KARALI, 2SIBARAMA PANIGRAHI, 3H. S. BEHERA
	3. DE-HONNT METHOD

