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ABSTRACT 

 
In this paper, an application of an adaptive differential evolution (DE) algorithm for training higher order 
neural networks (HONNs), especially the Pi-Sigma Network (PSN) has been introduced. The proposed 
algorithm is a variant of DE/rand/2/bin and possesses two modifications to avoid the shortcomings of 
DE/rand/2/bin. The base vector for perturbation is the best vector out of the three randomly selected 
individuals for mutation, which actually assists intensification keeping the diversification property of 
DE/rand/2/bin; and novel mutation and crossover strategies are followed considering both exploration and 
exploitation. The performance of the proposed algorithm for HONN training is evaluated through a well-
known neural network training benchmark i.e. to classify the parity-p problems. The results obtained from 
the proposed algorithm to train HONN have been compared with solutions from the following algorithms: 
the basic CRO algorithm, CRO-HONNT and the two most popular variants of the differential evolution 
algorithm (DE/Rand/1/bin and DE/best/1/bin). It is observed that the application of the proposed algorithm 
to HONN training (DE-HONNT) performs statistically better than that of other algorithms. 

Keywords: Artificial Neural Network, Higher Order Neural Network, Pi-Sigma Neural Network, 
Differential Evolution, Chemical Reaction Optimization. 

 
1. INTRODUCTION  

Conventionally artificial neural network (ANN) 
models have been applied predominantly to 
perform pattern matching, pattern recognition and 
mathematical function approximation. Compared to 
traditional ANNs, higher order neural networks 
(HONNs) have several unique features, including: 
1) stronger approximation property; 2) faster 
convergence; 3) greater storage capacity; and 4) 
higher fault tolerance capability. Thus, HONN 
models have shown superior performance than 
traditional ANNs on forecasting, classification and 
regression problems. 

In this paper the class of HONNs and in 
particular Pi-Sigma Networks (PSNs) has been 
studied. The PSNs were introduced by Shin and 
Ghosh [1]. The PSNs have addressed several 
difficult tasks such as zeroing polynomials [2] and 
polynomial factorization [3] more effectively than 
traditional feed-forward neural networks (FNNs). 
Moreover, PSN employs a less number of weights 
than other HONNs, but still manages to incorporate 
the capability of first order HONN indirectly. The 
efficiency of HONN models depends on the 
algorithm used for its preparation. The objective of 
any supervised HONN training is to minimize the 

error between the approximation by the HONN and 
the target output. For this the optimal weight set of 
a HONN must be obtained. The optimal weight set 
of a HONN can be obtained by using either 
gradient or evolutionary learning algorithms. The 
objective function of HONN training is going to be 
a multimodal search problem, since it depends on a 
number of parameters. Thus, the gradient based 
training algorithms often suffer from several 
shortcomings, including: 1) easily getting trapped 
in local minima; 2) has slow convergence 
properties; 3) training performance is sensitive to 
initial values of its parameters. Due to these 
disadvantages, research on different optimization 
techniques that are dedicated to HONN training is 
still needed. There are many optimization 
techniques such as differential evolution (DE) [4], 
genetic algorithm (GA) [5], particle swarm 
optimization (PSO) [6], ant colony optimization 
(ACO) [7], a bee colony optimization (BCO) [8], 
an evolutionary strategy (ES) [9], quantum inspired 
algorithms (QEA) [10], chemical reaction 
optimization (CRO) [11-13] etc. that can be used 
for HONN training.  

The rest of this paper is structured as follows. 
Section-2 briefly describes the background related 

http://www.jatit.org/
mailto:yasobanta0706karali@gmail.com
mailto:2panigrahi.sibarama@gmail.com
mailto:3hsbehera_india@yahoo.com


Journal of Theoretical and Applied Information Technology 
 20th October 2013. Vol. 56 No.2 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
356 

 

to architecture and mathematical model of PSN; 
chemical reaction optimization; and differential 
evolution. The proposed training algorithm for PSN 
has been explained in Section-3. Experimental 
results are presented in section-4. And finally 
concludes in Section-5. 

 

2. RELATED WORKS 

2.1 Pi-Sigma Neural Network (PSN) 

Pi–Sigma Network (PSN) is a feed forward 
neural network that computes the product of the 
sum of the input components and passes it to a 
nonlinear function. The network architecture of 
PSN (shown in Fig.1) consists of a single hidden 
layer of summing units and an output layer of 
product units (instead of summing). The weights 
connecting the input neurons to the neurons of the 
hidden layer are adapted during the learning 
process by the training algorithm, while those 
connecting the neurons of the hidden layer to the 
output layer are fixed to one and are not trainable. 
Such a network topology with only one layer of 
trainable weights drastically reduces the training 
time [1, 15-16]. Moreover, the product units of PSN 
give higher order capabilities which increase its 
computational power. This is because, the product 
units enable to expand the input space into higher 
dimensional space which leads to an easy 
separation of nonlinearly separable classes where 
linear separability is possible or a reduction in the 
proportion of the nonlinearity is achieved. Thus, 
PSN provides nonlinear decision boundaries 
offering a better classification capability than the 
linear neuron (Guler and Sahin, 1994). In addition, 
Shin and Ghosh (1991) argued that PSNs not only 
provides a better classification over an extensive 
class of problems but also require less memory and 
need at least two orders of less number of 
computations as compared to MLP for similar 
performance level. 
 

 
Figure 1: Architecture of a Typical Pi-Sigma Network 
 

Consider a PSN with NOIN (number of input 
neurons), NOHN (number of hidden neurons) and 
one output neuron. The number of hidden neurons 
in the hidden layer defines the order of a PSN. For 
a NOHNth order PSN the number of trainable 
weights is NOIN × NOHN considering each 
summing unit is associated with NOIN weights. 
The output of the PSN is computed by making 
product of the output of NOHN hidden units and 
passing it to a nonlinear function, which is defined 
as follows: 

)(
1
∏
=

=
NOHN

j
jhY σ  

Where σ a nonlinear transfer function and hj is is 
the output of jth hidden unit which is computed by 
making sum of the products of each input (xi) with 
the corresponding weight (wij) between ith input 
and jth hidden unit. The output of hidden unit is 
calculated as follows: 

∑
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2.2 Differential Evolution  

The differential evolution (DE) algorithm is a 
simple and efficient stochastic direct search method 
for global optimization of multimodal function over 
a continuous space, was introduced several years 
ago (1997) [4]. Since the inception of DE, it has 
been upgraded intensively in recent years [18]. It 
has several advantages such as: ability to find the 
global minimum of a non-differentiable, nonlinear 
and multimodal function irrespective of initial 
values of its parameters, parallelizability to cope 
with computation intensive cost functions, ease of 
use and good convergence properties. Therefore DE 
became a forefront optimization technique for 
neural network training. Compared to most other 
EAs, DE is much simpler and straightforward to 
implement. Although particle swarm optimization 
(PSO) is also very easy to code, the performance of 
DE and its variants outperforms the PSO variants 
over a wide variety of problems as has been 
indicated by studies like [20-21] and the CEC 
competition series. The two most popular variants 
of DE are DE/best/1/bin and DE/rand/1/bin. The 
major difference between these two lies in the 
selection of base vector for perturbation. In 
DE/best/1/bin the base vector is the best solution of 
the current population whereas in DE/rand/1/bin the 
bas vector is selected randomly. The conventions 
used above is DE/a/b/c, where ‘DE’ stands for 
‘differential evolution’, ‘a’ represents the base 
vector to be perturbed, ‘b’ represents number of 
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difference vectors used for perturbation of ‘a’ and 
‘c’ represents the type of crossover used (bin: 
binary, exp: exponential). Interested reader may go 
through [4, 18] to have a detail description 
regarding DE algorithm and its variants. 

Every differential evolution algorithm operates 
in following steps: 
Step 1: Problem and algorithm parameter 
initialization 
Step 2: Initialize the initial population and calculate 
the fitness of each chromosome/individual 
Step 3: Apply Mutation operator to generate the 
mutant vector 
Step 4: Apply crossover between the target vector 
and mutant vector to generate the trial vector. 
Step 5: Perform Selection between trial vector and 
target vector 
Step 6: Termination criteria check if satisfied go to 
step-7 otherwise go to step-3 
Step 7: Use the best individual as the solution of 
the problem. 
 
2.3 Chemical Reaction Optimization  

Chemical reaction optimization (CRO) algorithm 
was proposed recently by Lam [11], is a variable 
population-based metaheuristic optimization 
technique inspired by the nature of chemical 
reactions. It does not attempt to capture every detail 
of chemical reaction rather loosely couples 
chemical reaction with optimization. A chemical 
reaction is a process that transforms one set of 
chemical substances (reactants/molecules) to other. 
Each molecule consists of some atoms and is 
associated with enthalpy (minimization problem) 
and/or entropy (maximization problem). During the 
chemical reaction the intra-molecular structure of a 
reactant changes. Most of the reactions are 
reversible in nature. Basing on the number of 
reactants take part in a reaction, the reaction may 
be: monomolecular (one reactant takes part in the 
reaction) or bimolecular (two reactants take part in 
a chemical reaction) and so on. The major 
difference between CRO and other evolutionary 
techniques is that, the population size (that is the 
number of reactants) may vary from one generation 
to the other where as in evolutionary techniques the 
population size remains fixed. But few authors have 
proposed fixed population sized CRO algorithms 
and shown that fixed population sized CRO not 
only performs better but also easier to implement.  
To have an elaborated description regarding CRO 
algorithm, interested readers may go through the 
tutorial of CRO [17].  
Every chemical reaction optimization algorithm 
consists of following steps: 

Step 1: Problem and algorithm parameter 
initialization 
Step 2: Setting initial reactants and evaluation of 
entropy/enthalpy 
Step 3: Applying Chemical reactions 
Step 4: Reactants update  
Step 5: Termination criteria check if satisfied go to 
step-6 otherwise go to step-3 
Step 6: Use the reactant having best enthalpy / 
entropy as the solution. 

 
3. DE-HONNT METHOD 

 
In this proposed methodology an attempt has 

been made to combine the advantage of DE/rand/2 
and DE/best/2 by overcoming the shortcomings of 
both the algorithms. The major advantage of 
DE/rand/2 is diversification i.e. it has less chance to 
trap to local optima whereas it suffers from 
exploitation i.e. takes more generations to reach the 
optimal solution. Compared to DE/rand/2, 
DE/best/2 is greedier in nature and has faster 
convergence property. The benefit of fast 
convergence is obtained by guiding the search with 
the best solution so far discovered, thereby 
converging to that point. However, due to guided 
towards a single solution (i.e. The best solution), in 
many cases the population may lose its diversity 
and thereafter gets trapped in a local optimum in a 
small number of generations. 

Taking these facts into consideration to overcome 
the limitation of slow convergence but reliable 
DE/rand/2 we use an explorative yet greedy variant 
of DE/rand/2/bin mutation strategy with novel 
parameter adaptation. In this algorithm three 
random individuals are selected from the 
population for mutation, but out of the three 
individuals the best individual (i.e. individual with 
best fitness value) is selected as base vector for 
perturbation. The other two vectors are used for 
difference vector. This mutation scheme keeps the 
intensification property of DE/best/2 (as best out of 
three individuals is selected as base vector i.e. used 
to guide the solution) without losing the 
diversification property of DE/rand/2 (three 
individuals are selected randomly, avoids 
premature convergence to a same point and/or to 
local optima).  

The crossover probability (Cr) is generated 
randomly (within a range [0-1], regenerated if 
beyond range) from a cauchy distribution with 
location parameter=0.7 and scale parameter 0.1. 
Here instead of normal or uniform distribution, the 
Cauchy distribution is considered because it 
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diversifies the solution more as compared to 
traditional normal or uniform distribution. 
Algorithm 1 (DE-HONNT) 
Set the iteration-counter i=0 
/*Randomly Initialize the population of PopSize 
individuals: Pg={C1

g, C2
g , C3

g ……., CPopSize
g }, 

with Ci
g ={ Wi,1

g,…….,Wi,D
g} for i=1,2,3.....NP,  

D=length of each chromosome, Wi,k
g=kth gene of ith 

  individual in gth generation representing a weight 
of PSN.   
Evaluate the fitness of each individual 
While(termination criteria is not satisfied) do begin 

% for each individual chromosome (Ci
g) in the  

population 
  for i=1 to PopSize   
       Select five individuals (I1, I2, I3, I4, I5) and 
such  
      that I1≠I2≠I3≠I4≠I5≠i  
       Sort the five selected individuals 
       Set r1=best individual out of I1, I2, I3, I4, I5 
                 And rest four are assigned to r2, r3, r4, r5 
      % Mutation Step 
      % Generate scale factor  
      Fi =gaussianrnd (0.5, 0.1), is a random  
      number generated randomly from Gaussian 
      distribution with mean 0.5 and standard  
      deviation 0.1.  
      for x=1 to D  
           MVk,x

g= Wr1,x
g + Fi*( Wr2,x

g - Wr3,x
g)  

                                  + Fi*( Wr4,x
g - Wr5,x

g) 
      end of for 
      % Generate Cross over Probability  
      Cri = cauchyrnd(0.7,0.1), is a random number  
      generated randomly from Cauchy distribution  
      with location parameter 0.7 and scale parameter  

0.1. It is regenerated if the random number falls  
out of the range [0-1]. 

     for x=1 to D 
         if  rand(0,1)< Cri 
             TVk,x

g = MVk,x
g 

         else 
             TVk,x

g = Wi,x
g 

         end of if 
     end of for 
     % Selection Step 
     % Fitness of a chromosome is -1×RMSE on  
     train set  
     if fitness(TV) > fitness(Cg

i)     
         Ci

g+1= TV 
     else 
         Ci

g+1= Ci
g 

     end of if 
  end of for 
  Set the generation counter g=g+1 
end of while 

 
The scale parameter (F) is generated randomly 

from a Gaussian distribution with mean=0.5 and 
standard deviation=0.1. Here instead of Cauchy 
distribution, Gaussian distribution is used because it 
gets most of the numbers within unity due to its 
short tail property. Moreover, the random numbers 
generated are not bound within any limit, this is 
because larger values of scale parameter ‘F’ will 
assist the solution space to easily escape from large 
plateaus or suboptimal peaks/valleys, thereby 
minimizing the chances to trap to local optima. 
 
4. SIMULATION RESULTS 

 
For comparative performance analysis of 

proposed training method with DE/rand/1/bin, 
DE/best/1/bin, CRO [14] and CRO-HONNT [22] to 
train PSN, parity-p problems (p∈  [3; 6]) have been 
considered. These problems are widely used 
benchmarks and are suitable for testing the non-
linear mapping and generalization capabilities of 
training algorithms. The parity-p problem is 
described as follows: if P represents the number of 
inputs, and each input can accept values “1” or 
“−1”, then, the output of the network is “1” if and 
only if the number of “1” in the inputs of the PSN 
is odd. Otherwise “−1” occurs in the output of the 
PSN. Although these problems are easily defined, 
they are hard to solve, because of their sensitivity to 
initial weights and possession of a large number of 
local minima. To classify parity-p (p∈  [3;6]) 
problem, PSNs having structure p-p-1 without bias 
units were considered and trained using proposed 
method and other methods for comparison. For 
each parity problem the training set was equal to 
the testing set and contained 2p patterns.  

The termination criterion applied to the training 
algorithms for parity-p (p∈  [3;4]) was the mean 
square training error (MSE) and it was different for 
each parity problem (0.025,0.0125 respectively); 
and for parity-p(p∈  [5;6]) was either MSE (0.125, 
0.125 respectively, this termination criterion is 
dominant in the experiments) or maximum 
generation exceeded (1000, 1000 respectively). 
These termination criteria have been set based on 
the author's own experience. The PSNs trained here 
have a threshold activation function at output layer; 
and the upper and lower bound of initial weight sets 
for parity-p problem is set to 2p to -2p. For DE 
algorithms the crossover probability Cr and scale 
factor F were set to 0.7 and 0.5 respectively. For 
each problem and each algorithm, the popsize 
(population size/reactant size) is fixed to 10. By 
making above experimental set up we have 
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conducted 1000 independent simulations using each 
method for each parity problem. All the simulations 
were carried out on a system with Intel ® core 
(TM) 2Duo E7500 CPU, 2.93 GHz  with 2GB 
RAM and  implemented using MATLAB (R2009a, 
The Mathworks, Inc., and Version-7.8.0.347). 

 
The following Tables show the experimental 

results for parity-p (p∈  [3; 6]) problems. The table 
shows Min the minimum number; Mean the mean 
value; Max the maximum number; and St.D. the 
standard deviation of the number of training 
generations and the correct classification 
percentage. To have a better comparison among the 
methods, we have performed post hoc analysis and 
ANOVA on the results obtained from 1000 
independent simulations for each problem using 
each method. The correct classification percentage 
is computed as follows: 

Correct classification (%)=
NOP

CNOP

i i∑=1  

Where NOP is number of testing patterns 
(NOP=2p); p- Number of inputs to the PSN; Ci- the 
coefficient representing the correctness of the 
classification of the ith testing pattern which is 
determined as follows: 








−=−=

==
=

Otherwise  0,
1T and 1Y  when 1,

1T and 1Y  when ,1
C ii

ii

i  

Where Yi and Ti  are the output of PSN and 
target for ith test pattern. 
 
All the training methods gave perfect generalization 
(100% correct classification) capabilities for parity-
3 and 4 problems respectively; hence for these two 
problems only number of generations to attain the 
termination criteria was measured.   
 

TABLE 1: Simulation results on parity-3 problem (best 
results in bold) 

Algorithms Generations                                                                       
Mean ± St.D.               Min            Max 

DE-HONNT 1.98 ± 1.40ab 1 11 
CRO-HONNT 1.86 ± 1.64a 1 12 

CRO 2.65 ± 4.03c 1 65 
DE/rand/1 2.12 ± 1.52b 1 17 
DE/best/1 2.11 ± 1.46b 1 9 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 
One can see from table-1 and table-2 that for both 
the problems the proposed method takes 

statistically less number of generations to obtain the 
optimal solutions than the DE variants and basic 
CRO algorithm. Although the CRO-HONNT takes 
less number of generations than the proposed 
method for parity-3 problem but it is not 
statistically significant to DE-HONNT. Moreover, 
DE-HONNT takes statistically significantly less 
number of generations than CRO-HONNT for 
parity-4 problem. 
 

TABLE 2: Simulation results on parity-4 problem (best 
results in bold) 

Algorithms Generations                                                                       
Mean ± St.D.               Min            Max 

DE-HONNT 14.36 ± 11.14a 1 98 
CRO-HONNT 17.41 ± 15.27b 1 187 

CRO 23.04 ± 40.49c 1 920 
DE/rand/1 18.21 ± 15.38b 1 193 
DE/best/1 18.79 ± 15.74b 1 163 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 

 
TABLE 3: Simulation results on parity-5 problem (best 

results in bold) 

Algorithms Generations                                                                       
Mean ± St.D.               Min            Max 

DE-HONNT 108.85 ± 140.33a 4 1000 
CRO-HONNT 173.61 ± 160.95b 2 1000 

CRO 194.45 ± 235.14c 6 1000 
DE/rand/1 245.30 ± 227.84d 10 1000 
DE/best/1 248.62 ± 224.79d 5 1000 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 

TABLE 4: Simulation results on parity-5 problem (best 
results in bold) 

Algorithms Correct Classification (%)                                                                       
Mean ± St.D.               Min            Max 

DE-HONNT 99.92 ± 0.71c 93.75 100 
CRO-HONNT 99.87 ± 0.87bc 93.75 100 

CRO 99.67 ± 1.43a 87.50 100 
DE/rand/1 99.82 ± 1.03bc 93.75 100 
DE/best/1 99.79 ± 1.15b 87.50 100 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 

Table-3 and Table-4 show the simulation results 
obtain on parity-5 problem. It can be observed that, 
although all methods gave 100% generalization 
most of the time but none of the methods gave 
100% correct classification for all the 1000 
independent simulations. The percentage of correct 
classification by proposed method is not statistical 
significant to that of DE/rand/1 and CRO-HONNT 
whereas statistically significant to that of 
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DE/best/1/bin and traditional CRO method. 
However, the proposed method takes statistically 
less number of generations than other methods to 
obtain the optimal solutions. 

 
TABLE 5: Simulation results on parity-6 problem (best 

results in bold) 

Algorithms Generations                                                                       
Mean ± St.D.               Min            Max 

DE-HONNT 256.93 ± 278.34a 7 1000 
CRO-HONNT 783.49 ± 275.93d 28 1000 

CRO 728.97 ± 340.57c 23 1000 
DE/rand/1 535.43 ± 332.98b 29 1000 
DE/best/1 547.46 ± 336.36b 30 1000 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 

TABLE 6: Simulation results on parity-6 problem (best 
results in bold) 

Algorithms Correct Classification (%)                                                                       
Mean ± St.D.               Min            Max 

DE-HONNT 97.75 ± 3.20c 81.250 100 
CRO-HONNT 97.58 ± 3.20c 81.250 100 

CRO 94.02 ± 3.69a 78.125 100 
DE/rand/1 95.12 ± 5.52b 78.125 100 
DE/best/1 95.21 ± 5.30b 78.125 100 

*Means within a column the same letter(s) are not 
statistically significant (p=0.05) accordance to 
Duncan’s Multiple Range Test (SPSS V.16.0.1) 
 

Table-5 and Table-6 show the experimental 
results for parity-6 problem. None of the methods 
gave perfect generalization capabilities for parity- 6 
problem for all the 1000 simulations. The proposed 
method not only provides statistically better correct 
classification percentage but also takes statistically 
significantly less number of generations to attain 
the optimal solutions. Although CRO-HONNT 
method has statistically same correct classification 
percentage but it takes almost thrice number of 
generations to attain the solutions.  
 
5. CONCLUSION 

 
In this paper, the Pi–Sigma network which is a 

special class of higher order neural network has 
been studied and proposed a novel differential 
evolution based training algorithm for its training. 
The use of DE-HONNT method incorporates 
efficient and effective searching mechanisms, such 
that it has less chance to trap to local minima and 
thus enhance the higher order neural network 
training procedure. Additionally, this method 
provides the ability to apply them for training 
“hardware friendly” PSNs, i.e. PSNs with threshold 
activation functions and small integer weights can 

be easily implemented using hardware. The 
simulation results demonstrate that the proposed 
training algorithm has superior performance in 
terms of correct classification percentage (e.g. 
parity-5, 6) and generations taken to attain the 
termination criteria (e.g. parity-3,4,5,6) when 
compared with most popular DE variants, 
traditional CRO method. Although for some test 
instances the new training algorithm obtains 
statistically same solutions (e.g. parity-3 
statistically same number of generations and parity-
5 statistically same correct classification 
percentage) but for most of the instances the DE-
HONNT methods converges quickly (e.g. parity-
4,5,6) and provides statistically better correct 
classification percentage(e.g. parity-6). 
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